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PREFACE

This is the thirty-fourth in a series of reports growing out of the study of
radar cross sections at The Radiation Laboratory of The University of Michigan.
Titles of the reports already published or presently in process of publication are
listed on the preceding pages.

When the study was first begun, the primary aim was to show that radar
cross sections can be determined theoretically, the results being in good agree-
ment with experiment. It is believed that by and large this aim has been achieved.

In continuing this study, the objective is to determine means for computing
the radar cross sections of objects in a variety of different environments. This
has led to an extension of the investigation to include not only the standard boundary-
value problems, but also such topics as the emission and propagation of electro-
magnetic and acoustic waves, and phenomena connected with ionized media.

Associated with the theoretical work is an experimental program which
embraces (a) measurement of antennas and radar scatterers in order to verify
data determined theoretically; (b) investigation of antenna behavior and cross
section problems not amenable to theoretical solution; (c) problems associated
with the design and development of microwave absorbers, and (d) low and high

density ionization phenomena,

K. M. Siegel
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SUMMARY

An integral transform is defined in which the kernel is a solution of
Legendre's equation and the integration is over an infinite range of the angular
variable 6. The inversion formula is stated. It is then confirmed; rigorously,
for the particular case when the original function is a rectangular pulse, and
heuristically for the general case by an appeal to the delta function concept. The
standard series expansion in terms of Legendre polynomials is recovered when
the original function is even and of period 27 in 6.

A methodical, though still formal, derivation of the transform relations

is given in an Appendix.
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SECTION I

INTRODUCTION

The object of this paper is to present an infinite Legendre integral
transform and its inverse. The search for such a transform was stimulated
by an investigation into a boundary value problem of mathematical physics,
and the background to this is now outlined in order to explain how the require-
ment for the transform arose.

In the problems of the diffraction of monochromatic waves by circular
cylinders and spheres the "classical' series forms of solution become intractable
as the radii of the diffracting obstacles increase much beyond a wavelength.
However, solutions useful when the bodies are large can be obtained from con-
toﬁr integral representations, in which the variable of integration is the separa-
tion "constant', ¥ say. The dominant part of the solution is then not itself
periodic in the angular variable 6, although, of course, the complete solution is,
with period 27. It seems that a logical way of deriving the dominant part is to
express by means of an integral over ¥, in which the integrand is the appropriate
separable solution of the wave equation, a function of 6 which is identical with
the incident field at the surface of the diffracting body over a 27 range of 6 and
which is zero outside this range. This is easily done in the case of the circular

cylinder, because the angular part of the separable solution of the wave equation
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in cylindrical coordinates is exp(iy 6), and the theory of the infinite Fourier
integral transform immediately gives the required representation. In the case
of the sphere, however, the corresponding part of the separable solution of the
wave equation in spherical polar coordinates is a function satisfying Legendre's
equation; the procedure thus suggests the desirability of seeking the inverse

of an infinite integral transform in which the kernel is a Legendre function whose
behavior for all real values of 6 is in some sense analogous to exp(iy0).

A treatment of Fourier integral theory which the mathematical physicist
finds useful and acceptable consists first in establishing rigorously, by contour
integration, the existence of the transform and its inverse when the original
function is a step function; this leads at once to the case of a rectangular pulse,
and this in turn to that of a delta function; finally, and now only formally, the
delta function is used to establish the transform relations for the general case.
As the origin of its conception suggests, the proposed Legendre transform has
some affinity with the Fourier transform, and the analysis in the present paper
is carried through on lines similar to those just indicated. No attempt is made
to establish existence conditions,

Attention is confined to Legendre's equation of order zero, and in § 2 the
appropriate solution is given, together with those of its properties to which
appeal is made in the later discussion; chapter III, on Legendre functions, of

the book Higher Transcendental Functions by Erdelyi, Magnus, Oberhettinger

and Tricomi, which is part of the Bateman Project, is used as a standard
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reference and abbreviated to B.P. In § 3 the infinite Legendre integral
transform and its inverse are stated, and then confirmed in the cases when
the original function is successively a step function, a rectangular pulse, and
a delta function. Finally, in §4, the transform relations are tested by con-
sidering the case when the original function is even and of period 27 in 6, and
the familiar representation as a series of Legendre polynomials is recovered;
the coefficients in this series have been regarded [see, for example, Tranter
(1951), Churchill (1954) ] as a finite Legendre integral transform, the kernel
here being simply a Legendre polynomial. The present theory is related to
that of Legendre seriesﬁin the same sort of way as the theory of Fourier
integral transforms is related to that of Fourier series.

The manner in which the transform relations were established in the first
place was essentially that just indicated; in brief, a guess verified. Subsequent-
ly, however, it was recognized that almost certainly they could be rigorously de-
rived from a general theory, for example that described by Titchmarsh (1946).
Titchmarsh works out many special cases, and it might be conjectured that
the one discussed here has only escaped attention so far because superficially
there would seem to be no requirement for the consideration of an infinite
range of 6.

Evidently an appeal to a general theory would have led to a more logical

presentation. Nevertheless, it is felt that the details of the procedure of
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verification are sufficiently instructive in themselves to be worth retaining.
The body of the paper has therefore been left substantially in its original form
(although in the light of the existence of a general theory one or two remarks
are perhaps a little naive); and a short Appendix has been added, in which a
methodical derivation of the transform relations is outlined, based on a formal

procedure developed by Marcuvitz (1951).
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SECTION II

A NON-PERIODIC SOLUTION OF LEGENDRE'S EQUATION

2.1 The function E
v-1/

-f.

(6)
2

As indicated in the introduction, what is sought is a non-periodic solution
of Legendre's equation, in some sense analogous to exp(iy8), which is defined
at least over a region of the complex 6-plane which includes the whole of the
real axis. It proves convenient to consider Legendre's equation with degree
Y -1/2, rather thany ; with order zero, and independent variable 6, this is

d

4 (sine—g-g—)+(’))2——i—) sin0U = 0 . (1)

An equation with no first derivative term is obtained by the substitution

V=1 \/(sinG) ; (2)
namely
2
ii_%+(y2+__12_)v=0. 3)
dé 4 sin” @

In general terms, it is clear that equation (3) has solutions which behave
like exp(iv0) for sufficiently large values of ,v ‘ . In fact, the corresponding

solution of (1) is*
ive . 16
e Rl Ly -2l (4)
J (sin 6) 2 2 2 sin6

* That (4) is a solution of equation (1) is a known result [see B.P. (1953):]; its
precise relation to the standard solutions is given subsequently.
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It is easy to see that the series for the hypergeometric function in (4) converges
for all values of 6 in the complex 6-plane, except those in the shaded regions
shown in Figure 1, these regions being delimited by the curves defined by
exp(2Im0) = 2cos(2ReB) . (5)

The value of J (sin6) in (4) is therefore determined throughout the unshaded
region in Figure 1 by prescribing that it is positive, say, when 6 has real
values between 7/6 and 57/6.

If the expression (4) is regarded as a function of ¥/, the only singularities
which it has in the finite part of the complex ¥ -plane are simple poles at

V=-1,-2,-3,....

-T i7r/6

Figure 1. The complex §-plane, showing the region (unshaded)
in which expression (4) converges, and the branch cuts (thick
lines) of the function E )y /2(9) .
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The standard treatment of Legendre functions [see e.g. Hobson (1931),
B.P. (1953)] proceeds in terms of an argument cosf rather than 6. However,
when the real part of 8 is between 0 and 7, the solution (4) can be identified
with a standard Legendre function by multiplying it by an appropriate function
of v/ . It is obviously convenient to keep as close as possible to the standard
treatment, and the basic solution to equation (1) to be used hereinafter is

therefore taken to be

. ivo , 16
% (9)=J(L) elﬂ/‘l (w-1/2)! ¢ F(L,_l_;gul;-il__),(g)
"1/2 2 ! J(sin6) 2

which for 0 < Re 9< 7 is the same as Q _/ (c0s6-i0) [B.P. (1953),

1/2
p. 146, equation (4) ] .

It should be noted that the expression (6) can be continued analytically
throughout the entire complex 6-plane cut by straight lines running parallel to
the negative imaginary axis to infinity from branch points at 6 = 0, +7, +2rw,
+37m,.... (see Figure 1). Fo»r example, another particularly useful form is

[B.P. (1953),p.146, equation (1)]

B, (0 = r bl L0V #1/2)6 F(—%- RY +—;-;v+1;e219}, ()

where here the series for the hypergeometric function converges for all values
of 6 (excluding the branch points) on and above the real axis.
Because of the factor (¢ -1 / Z)l/)/ !, expressions (6) and (7), regarded as

functions of ¥/, have simple poles, no longer at = -1,-2,-3,...., but instead
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aty = -1/2,-3/2,-5/2,....; and these latter are the only singularities of
Ev » /2(6) in the finite part of the complex Y -plane.

Expression (7) exhibits explicitly the way in which E )t /2(6) is non-periodic
in 8; namely, for m =0, +1, +2, +3,...,

m irm
i e VE

1@ (8)

Ev_l/z(e +m7) =

This important relation shows that the behavior of E -1 / 2(9) throughout the
entire complex 6-plane is specified in terms of its behavior in the region

O£ Re 0L 7.

2.2 Relationships with P =t /2(cos6)

v
. . . , X
P ) -1 /z(cos()), of Legendre's equation, Py /2(cos6) is defined in the range

It is useful to relate the function E . /2(6) to the other standard solution,

0 < Re 6 < m, and, in particular, one such relation can be used to give its
analytic continuation throughout the entire complex 6-plane cut as in Figure 1.
Because the only singularities in the complex y -plane which arise are simple
poles (at y = -1/2,-3/2,-5/2,...) it follows that all the relations to be given
hold throughout the entire complex 9/ -plane.

A convenient starting point, from which most of the results required later
can be obtained, is the formula

_ . imy _
Ey—l/z(e) = .i;g”;(;’_) [1e Pv _l/z(cos6)+Pv_1/2( cose)] , (9)

which can be shown to hold for 0 < Re 6< 7 [B.P. (1953), p.140, equation (11)] .



THE UNIVERSITY OF MICHIGAN
2778-5-T

Since [B.P. (1953),p. 140, equation (1)]

PV—1/2(COSG) = P_y_l/z(cose) s (10)

it follows from (9) that (11)
_ T o —imy _ )
B0 = 55 [ B 00+ R cost) ] ;

and, by substracting (11) from (9), that

EV_I/Z(G) - E—)}—l/2(6) = -7 tan (1y) Pﬂ_l/z(cose) . (12)

It is thus appropriate to define a new function

P = - cot(ry) 9)- E 3
B0 - (e, pO-E_ /2<e)] ; (13)
which is identical with Py . /z(cose) for 0 < Re O < 7, and which therefore

gives its analytic continuation throughout the entire cut complex 6-plane.

Evidently

~/ ad

P ) = P 6) . (14)
y-i/2 ~V-i/2

Also from (9), for-0 < Re 6 < T,

ot = T Cdmy
E (7r-6) [1e Py—1

(-cosf) + P (cosB)|. (19)
V-1/2 2cos(Ty) 2 V‘l/zc ]

/

But, from (8), .
_ o Amy _ .
Eﬁ/_1 /2(7r-6) = ie EV-I /2( 0) ;
whence (15) may be written
-iry
E 0 =_T ___ |P -cosh) - i P cosf) | . 16
7_1/2( ! 2cos(ry) [7_1/2( 0% - ’/'1/2( )] 1o

Subtraction of (16) from (9) gives, for 0 < Re 6 <, [ cf. B.P. (1953),p.144,

equation (8)]
0) = P _ fcost) = -1 [Ev-1/2(9) -Ey_l/z(-e)]. (17)

v-1/2

B



THE UNIVERSITY OF MICHIGAN

2778-5-T
Again, since
Poo) = -colm) (g (-5 (0],
y-1/2 T V-1/2 ~¥V-1/2 J

use of (16) shows that, for 0< Re 6< T,

~
-0) = 0 . 18
0 =%, 0 (18

-~/
However, it should perhaps be emphasized that P ; /2(9) is not an even

function of 6 outside the region -1 < Re 8 < 7.

2.3 Further results

As 0 tends up to 7 through positive real values, the behavior of 1;) z(cose)

t/
is well known to exhibit a logarithmic singularity [ B.P. (1953) p. 164, (16)].
A corresponding logarithmic behavior of Ey . /2(6) as 6 tends down to zero or
up to 7 is implicit in the formula (9). From this, in conjunction with (8), it

is not difficult to establish that, for m =0, +1, +2, 43,...,

Limit sing E' (6) = -emm(¥-1/2) , (19)
6 —m7m V-1/2 ,

where the dash denotes differentiation with respect to 6.

Now consider the Wronskian of the two solutions E (0, E (6) ,
V-1/2 -y-1/2
defined as
W(v,0) = E (9 E' (6) -E () E' (6) . (20)
V-1/2 0 V-2 -V-1f2 V-2

It is easily seen from equation (1) that

%[sine W,0] =0

10
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so that sin6 W(y, 0) is independent of 6. To find its actual value, let 0
tend to zero. Then, from (19), sinf W(9/, ) tends to the limit as 6 tends to

zero of the expression

-E (6 +E (6)
V-i/2 -v-1/2
But, for 0 € Re < 7, this expression, from (13), is just = tan(ry) ‘13)/ /(6).
-1/2
And since B (0) = 1, it follows that
z/—1/2
W(y,6 = _m tan(ry) (21)
sin 6
E () and E (6) are therefore independent solutions of Legendre's
V-1/2 -Y-1/2
equation (1) unless % =n, where n has one of the values 0, +1, +2, +3,.... .

In this latter case, from (9), for 0 < Re 6 & T,

Ey/40 = [P, / fcoso) + ()" B, _, /2(_0039)] = E—n—l/ © ;

also, from (8), for m =0, +1, +2, +3,... ,

E  (0+mm) =i ()" E 0 ;
n-1/2 ( tn-1/z
hence, for all 8, if n is an integer
Epays® = O (22)

This result implies, in particular, that by virtue of its definition (13),
%;—1/ 2((9), regarded as a function of 9/, is free of singularities throughout
the entire finite part of the complex » -plane.
Another result to which reference is made later is
Ij_lii;z sinf E!, _1/2(.9) = -cosf . (23)

11
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This can be proved with some straightforward algebra from, say, the

expression (7). More briefly, from (13),

Limit (- 1) E (6)
yoifz 2 VAP
= Limit 70 - 1) tan(ry) B (6)
11-»1/2 7}"1/2
= -1, since ’I\;O(G) = 1;

so equation (1) shows that

. d . . .
Limit -£_ | sinf E (6) = sin@ ,
oy /4]

and (23) follows by integration with respect to 6, where the fact that the
integration constant is ze;fo can be discovered by putting 6 = 0 and appealing
to (19). |
Also required is the result
sin 0 Ec’) 6 = -1 . (24)
This likewise may be easily deduced from equations (1) and (19) ¥
Finally, vital to the subsequent analysis is the asymptotic form of

EV 1/2(9) as I 9 | —> . For any fixed value of 6(sin8 =,‘= 0), and any fixed
value of arg4/ in the range -t < arg y < 7,
ir/4 ivo
E (6) A~ \/__71': e”/ e as")/,——>oo s (25)
7/—1/2 2 /(V sin 9)

where \/ 9 has a positive real part, and \/ (sind) is positive for real values

of O between O and 7.

*In fact [cf. B.P. (1953),top of p.152]

E,(6) = % ir - log [tan(%)] )

but this is not used in the sequel.
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SECTION III

THE INTEGRAL TRANSFORM AND ITS INVERSE

3.1 A statement of the general transform relations

First, the general result is stated, with a few explanatory remarks.

The infinite Legendre integral transform of a function F(6) is

®
=_-1 in6do ; 26
fy) = -2 S RO B, ) (0) sin0ds ; (26)
-0
and the inverse of this transformation is
0
Fo) = L S « f(¥) cot(ry) E (6) dv , 27
T -00 ‘1/-1/2
provided 8 #0, +r, £2r, +3m,.... .

No special points need be made in connection with (26), except to note that
the sin 6 factor in the integrand is suggested by comparison with the simple
finite transform in which the kernel is a Legendre polynomial*, and that (as
appears explicitly in s 4) the constant factor is also chosen to facilitate compar-
ison with this case. The path of integration in (26) can be along the real axis,
or any equivalent path in the complex 6-plane which pays due regard to the
branch cuts.

However, some features of (27) certainly call for comment.

First, 6 =0, 4w, +27, +3m,.... must be excluded, since for these values
of 6 E (6) becomes logarithmically infinite and the right hand side of (27) is

Y -1/2

meaningless. Secondly, ¥ cot(ry) E‘V (6), regarded as a function of v ,
2

has simple poles at ¥ =41, +2, +3,... . The path of integration in (27) must

* The derivation of (26) and (27) given in the Appendix shows that the factor sinf
appears in the integrand of (26) because it multiplies (¥2-1/4)U in the second term
on the left hand side of equation (1).

13
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therefore be specified with some precision. The convenient specification,
herewith adopted, is that it runs parallel to the real axis; and in conjunction
with this specification it is important to note that, aside from the effect of
any singularities which f(y/) may have, it is immaterial whether the path lies
above or below the real axis. This is because the residue of the integrand
in (27) at the pole 9 = n (n an integer) is

% n ) E, 00 (28)
whereas that aty = -n is

1 nfn) E ®) (29)
T —n—1/2

and (29) is just the negative of (28), since En—1/2(9) = E_n_1/2(6) (see (22)) , and
this in turn, by virtue of the definition (26), implies that f(n) = f(-n). On the
tacit assumption, then, that the +/ path of integration in (27) runs parallel to
the real axis, the poles of the integrand associated with the factor cot(ry) are
henceforth ignored.

It is not easy to account plausibly for the factor 4 cot(ry) in the integrand
of (27). The<y part is again suggested by comparison with the finite transform,
for which the inverse is a series with nth term of the form an(n +1/2) P (cosf).
But the presence of cot(ry) is more startling; about all that can be said is that
the poles of E

1/—1/2(

disturbance this factor causes in the asymptotic behavior for large|4/ |is annulled

6) are removed by the cos(ry) in the numerator, that the

by the sin(ry) in the denominator, and finally, as just established, the poles

associated with the sin(ry) can be left out of consideration.*

In the derivation given in the Appendix, the factor cot(ry) is accounted for by the
presence in the integrand of the factor 1/(W sinf), where W is the Wronskian (20).

14
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A last trivial remark; E 6) in (26) and E . 2((;7) in (27) are

(
._-V_l/z v - /
interchangeable.

As explained in the introduction, the procedure now is to verify the inverse

relation (27) in the case when F(0) is a step function.

3.2 The step function

Consider the case

F(6) = 0 forg< ¢ ,
(30)
1 for § > §
Then the transform (ZG)Wis
@
fy) = -;- S E /(9) singdg . (31)
=yY-1/2
p
But the differential equation (1) can be written
E (6) sing = - 21 d [sinG E' (9)] ,
-V-1/2 vi-1/4 6 —y-1)2
so that (31) gives
| . EL, _ /(@)
¥ -1/2\
f(y) = -+ sin s Imy < 0. 32
T p 2 _ 1/4 ‘y ( )

It is clear from (8) that the stipulation Im 9/ £ 0 is necessary in order to
make the integral in (31) converge at the upper limit. This means that the
Ypath of integration in (27) must be taken to lie below the real axis. It is

therefore to be verified that

00

-4 y) sin .

__S j___ﬁv Sl cotm) EL ) E 067, 40,63
-0

15
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represents the step function (30). This is accomplished by contour integration.
The argument is first given in broad terms and then amplified by some further
remarks.

Apart from the irrelevant poles at v = +1, +2, 43,...., the only
singularity of the integrand of (33) in the finite part of the complex 4 -plane
is a simple pole at ¥/ = -1/2, This is because the only singularities of

/(¢) E _ (6) / (v - 1/2) are simple poles at ¥ = 1/2 [ from the factor
1/(1/—1/2)] ,at ¥ =3/2,5/2, 7/2,.... [from the factor Ef_y_l/z(gb), which,
by virtue of (23), does not have a pole aty = 1/2 ] , and at ¥ = -1/2, -3/2, -5/2,
. [ from the factor Ey_l/z(e)] ; and all these poles are annulled by the factor

cot(ry). If, therefore, the path of integration can be closed by an infinite
semi-circle below the real axis, the result is zero; whereas, if it can be
closed by an infinite semi-circle above the real axis, the result is 2/r times
the residue of the integrand at the pole ¥ = -1/2,

Now the way in which the path of integration may be closed is determined

by the asymptotic form of the integrand as ] Y I —> . From (25), by taking

account in particular of the specification of /4 , it can be seen that, as | J/|->oo,

ey))

ysinf cot(ry) E' (¢ (9) ~ ——/ s1n¢

v - 1/4 V-1/2 s1n9
for any fixed arg<y in the range 0 & ' argV ' < =, and any fixed values of 6
and ¢ other than 0, +7, +27, +3m,.... By Jordan's lemma ( Whittaker and Watson

(1927), p. 115) the value of (33) is therefore unaltered by closing the path of

16
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integration with an infinite semi-circle, below the real axis when 6 ¢
and above the real axis when § > . Furthermore, from (13),

-)}J—lan-li}z cot(ry) 1_53)/_1/2(0) = -7 P_I(G) = -7 , (35)

and from (24),
sinp E, () = -1;

so the residue of the integrand of (33) at the pole at % = -1/2 is /2. Hence

the required confirmation that (33) is zero for 6 < ;b and unity for 6 > ¢
A few comments on the proof just given should be made. First, the

asymptotic form (34) does not hold if either 6 or {b has one of the values

0, +m, 2w, +3m, .... hHowever, if ¢ (but not 8) has one of these values,

the argument can be carried through as before; for, from (19), if § = mm,

sinf EL, ) = R CEr

and (34) is replaced by (36)
L/4in -1/21p V(6 ’
‘U/*VSine

with the upper or lower sign according as to whether 0 < arg¥v < 7 or

Vsi ! ~ +
_ﬂ COt(ﬂ'y) E—V“1/2(¢) Ew_l/z(e) +J(_§—)

42 -1/4

-t & arg V< 0 respectively; the statements about the closure of the path of
integration therefore still hold, and the rest of the argument is unaffected.

The argument breaks down, of course, if 8 has one of the values
0, +m, +2m, +3m,... . It has already been pointed out that (27) has no meaning

for these values of 6.

17
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Secondly, the asymptotic form (25) does not hold if arg ¥ = +7. It
therefore fails to give the asymptotic form of the integrand of (33) at the
extremes of the original path of integration, since the path runs parallel to
the real axis. In order to establish strictly that the conditions for Jordan's
lemma are fulfilled, the general nature, at least, of this asymptotic behavior
must be found. The matter is not pursued here, but a more detailed in-
vestigation has been made which confirms the validity of the procedure.

Finally, it is instructive to evaluate (33) when 6 = . In (30), F(6) is not
defined there, because its value at that single point does not affect its trans-
form. But it can be shown that the representation (33) has the value 1/ 2 at
6= ¢, thus exhibiting another feature in common with the Fourier representation.

As a preliminary it is noted that, for any fixed value of arg+y in the range

0<|arg)/' <,

Ey-1/2(¢) E'—*y-1/2(¢) + E_v_1/2¢ ) -1/2 (¢) as,u/l —o . (37)
Hence )
0 0] 7/0013(7!'11) (¢ ) E (¢) E (¢) ¢) 0
1 ¥ E' .
g—oo v?-1/4 [ V-1/2 ’ ~V-1/2 -y -1/2 v-1/2 ]

For the path of integration can be closed by an infinite semi-circle, either
above or below the real axis; in the former case it encloses no singularities;
in the latter it encloses the two poles at 2/ = 1/2 and W = -1/2, the residues

of which cancel.
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The expression (33) when 6 = f) can therefore be written

(0 0]
- W_lnﬁg Yeot@y) w(y,p) dv , mv <0, (39
272 -Q0 V —1/4

where W(¥, §) is the Wronskian defined by (20). Using (21), it is seen that

(39) is
Q0
-4 v dv , Imv < 0 ,
2T 1}2_1/4
=00
(00)
= - i Y v , Im¥ >0 ,
2r »2-1/4
-0

i oy
= -1 —— dv ,
4 %7/—1/4

where the contour encloses both the poles in the anticlockwise sense. The
value is therefore 1/2.
To sum up, it has been shown that the Legendre transform of the step

function that is zero for § € @ and unity for 6 > f is
E' oy s®
v?-1/4

-4 sin @ s Imv < 0 ; (40)

and that the inverse representation (27), undefined at 6 = 0, +m, ¥2m, +3m,...

is otherwise the original step function with, in addition, the particular value
1/2 at 6 = §.
It may be remarked in passing that, by virtue of (19), the Legendre

transform of the step function that is zero for 6 < 0 and unity for & > 0 is

i 1
T 9-1/4

Imv<£0. (41)
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3.3 The rectangular pulse

It follows at once from the substraction of two step functions like (30)

that the Legendre transform of the rectangular pulse defined by

0 fore < ¢ ,
F(6) = 1 forp < <Y
0 for6 > y s
is
fv) = E' ) - sinf) E' )
ey _1/4) [Sm\}’ v 1/2“’ inf E', 1/2¢J

(42)

43)

and that the inverse representation (27), undefined at 6 =0, +m, +27, +37,....,

is otherwise the original rectangular pulse (42) with, in addition, the

particular value 1/2 at both 6 = and 6 =V,

It is remarked that f(4/) given by (43) is free of singularities throughout

the finite part of the complex</ -plane.

For the symmetrical case ¢ = - \If, and with 0 < ¥ < 7, appeal to (17)

and (18) shows that (43) may be written

_ _ in§ g .
flv) = 1/25%1/4_ Pv_l/z(‘}’) ;

and since [BOP. (1953),p. 161, formula (19)]

A

o
—~—
Q .
@]
wn
<
S

—

I

- si d 1
siny/ d_\]f [1; ('1/+_2_) [cos ¥ P 1/2cos\}l

= -(‘l/—--) [coslI/P 13 (cos¥) -

expression (44) may in turn be written in either of the forms

20
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_ 1 L
i) = —— [cosy B (cosy) 1;}+1/<cosw>], (45)

y-1/2 V-1 2
= . 1 -
fly) = s cos Y I;j_l/z(cos‘l’) I?V_S/Z(COSW)]. (46)

3.4 The delta function

Here the case is considered in which the width of the rectangular pulse

becomes infinitesimal. This is achieved by taking, in (42),

Y=p+ 469

where § @ is infinitesimal. To the first order in § @ the transform (43) is then

i d [eind g
W= g P 8

(47)

-1 singE

7r sin {§ —'1/—1/2(¢) 50, from (1).
If now the area under the rectangular pulse is made unity, by changing the
height of the pulse from unity to 1/§ @, the following result is obtained: the
Legendre transform of the delta function, § (8 - §), is

= -1 i
f(v) - sin § E-‘z/-1/2(¢) , (48)

and the representation (27), undefined at 8 = 0, +m, +27, +37,...., otherwise

reproduces § (6 - ) A

——
If the delta function is conceived as the limit as € — 0 of a rectangular pulse
of width € and height 1/€ , it would seem desirable to specify a pulse height
of 1/2 €. at the points of discontinuity, so that the sum of two such rectangular
pulses, identical save that one is displaced a distance € relative to the other,
should in all respects reproduce a rectangular pulse of width 2€. It must be

allowed, however, that many text books admit no need for such a refinement in
the conception of a delta function.
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3.5 The general case

The confirmation of the transform relations (26) and (27) for the case
when F(6) is a delta function is now used in a purely formal way to give the

confirmation for the general case. A general function F(6) is written

(0.0]
F(o) = g F(P) §(6- ) df ; (49)

Q0

hence, from the result just proved for the transform (48), the representation
(27), undefined for 6 = 0, +r, +27, +37,...., otherwise yields the original

function if S (V)

fy) = :7:_ F(P) sinp E_ " /2(¢) ag . (50)

®
But (50) is just the transform (26), so the required confirmation has been

obtained.
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SECTION IV

THE LEGENDRE POLYNOMIAL SERIES

It is well known that, in general terms, for an even function H(6) of

period 27 the transform defined by

T
h(n) = % H(6) Pn (cosf) sin @ do , (51)
0
forn=20,1,2,3,..., yields the representation
0
H(0) = E (n+_;_) h(n) Pn (cosB) . (52)
n=0

It is instructive to test the transform relations (26) and (27) of the present
paper by recovering (51) and (52) from a consideration of the case when F(6)
is even and of period 27 in 6.

First, the even function G(6), which is H(0) for -r < 6 < 7 and zero for

|8] > 7, is considered. Its Legendre transform (26) is

T
= - 1_ i
gW) - S” G(0) E—'V—l/z(e) sin 6 d6

T
= 1 - - i
L So H(6) [E_v_l /2(9) E_H/ 2( e)] sin 6 do

T
= g H(6) P (cosf) sin 6 do , from (17) . (53)
0 V-1/2

Again, the Legendre transform of G(6 - 2n7) is

~ 0 @ot)r . (54)
- ~;— % () gAY

G(6 - 2nm) E (6) sin g do =

glv) ,
(2n-D7 “V-1/2

forn=0, +1, +2, +3,..., using (8).
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Hence the transform of

e

G(9 - 2n7) (55)
n=0
'8 © . iTy
g(v) Z: (R eV e g¥) | my<o, (56)
n=0 2 cos(my)

the stipulation that the imaginary part of ¢/ be negative being necessary in

order to make the series converge; and similarly the transform of

-0
). Gl6-2m) (57)
n=-1

is

ity
e Tgy) Imvy >0 . (58)
2 cos(ry)
But H(0) is obtained by adding (55) and (57). Its representation (27) is
therefore . ity )
L ve g ot (rv) E ,(6) dv , (59)
2 % cos (ry) V-1/2

where the contour runs first from -w to co parallel to and below the real axis,
and then from oo to -oo parallel to and above the real axis.

Since I-)V—1 / 2(cosf)), as a function of */, is free of singularities throughout
the finite part of the complex ¥ -plane, so also is g(¥), from (53); and the only
relevant singularities of the integrand of (59) are simple poles at ¥ =-1/2,-3/2,
-—5/ 2,.... From an evaluation of the residues of these poles the expression
(59) is evidently

g (n+71—) h(n) Pn (cosB) ,

1

h(n) = g(—n——z—) =

where T ’
g H(6) Pn (cos@) sinf d6 , from (53).

0
Thus (51) and (52) are recovered.
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APPENDIX

In the main body of the paper the transform relations (26), (27) are
stated and then verified. The purpose of this Appendix is to indicate a
methodical derivation of the relations. The mathematical procedure adopted
is that set out by Marcuvitz (1951), and is evidently quite formal. Pre-
sumably, as Marcuvitz indicates, a rigorous proof could be constructed,
for example, on the basis of the method expounded by Titchmarsh (1946).

Equation (1) is rewritten

a%” (sinG%)+7xsin9U =0 , (A1)

where

x=v7- (A2)

1
4
A Green's function G(6,§), which satisfies the inhomogeneous equation

d : dG : = - -
5 (s1n65é_)+A81n9G §6 -9, (A3)

is constructed in terms of the two independent solutions E (6), E (6)
V-1/2 -V-1/2
of the homogeneous equation (Al).

If the condition Im ¥ > 0 is imposed,

) — 0 as @ — -

2

E (6
-Y-1/2

E (6) —»0 as f —> o ,

V—1/2
and a representation of the Green's function is [cf. Marcuvitz (1951) p. 290,

equations (3.13), (3.14) ]
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Ey -1/2(9) Ev—l/z(y))

: foro <¢ , (A4)
G(9,¢) — W sin 6
E_,_ En_ /.(0) .
Y 1/455) y-1/2 for 0> 9 (A5)
W sin 6

where W is the Wronskian defined by (20). Hence, from (21),

1

0.0 = = cot(ry) E—V—l/z(e) Ey—1/2(¢) for6< ¢, (A6)
1
— cot(ry) E_y_1 /2(¢) % oy 2(9) for 6 > ¢ . (AT)

The representation [cf. Marcuvitz (1951) p. 287, equation (3. 8)]

8_(9_‘@ - _ﬁ § G(Q’Q)) dx , (A8)

sin
where the contour of integration is closed anti-clockwise round all the
singularities of G(8, §) in the complex A-plane, is now used.

From the discussion of E’V (6) given in s 2 it is evident that the

1/2
singularities of G(6, §)) in the complex A-plane are a branch point at A = - 1/4
and simple poles at X = - 1/4 +1n2, n =1,2,3,....

In order to keep the imaginary part of 9 = J (A+1 / 4) positive the branch

cut is taken to run, in effect, along the real A axis to + . The substitution

of (A7) into (A8) then gives, for 6> 0,

§o-9) — i t E 0 d A9
-p - L %cow OB, P

where the contour of integration is shown in Figure A-1.
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poles

branch point

3/4, 33/4

*—————-———————-—-————

branch cut

Figure A-1. The path of integration in the complex A-plane
for the integral in (A9).
Now change the variable of integration from A to v . Then (A9) gives,

for 6 > §, © :
0-0) = 1 ( yeottr) E (O E (B av, (a10)
sin § ™ Yy-1f2 V-1/2
_m . .
where the path of integration runs above the real axis.

For 6 <, the substitution of (A6) into (A8) leads to (A10), except for the
interchange of 6 and ¢ in the integrand. However, as noted in § 3.1, there is
freedom to translate the 4 path of integration across the real axis. A reversal
of the sign of ¥ therefore shows that (A10) is equally valid for 6 < §.

The representation of § (6—¢) given by (27) and (48) is thus derived, and

the transform relations (26), (27) may now be inferred in the manner of § 3.5.
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