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Summary

The two-dimensional problem of an E-polarized plane wave incident on
a perfectly conducting cylinder of almost circular cross section is treated, the
maximum deviation of the‘ perimeter of the cross section from a strict circle
being regarded mathematically as an infinitesimal quantity whose second and
higher powers are neglected.

In the body of thé paper the method of solution uses infinite Fourier
transform techniques, but an analysis involving a Watson transformation, more
traditional in this type of problem, is given in Appendix A. Various Bessel
function results are required, some of which are derived in appendices.

Attention is for the most part directed to the case in which the mean
radius is large compared to the wavelength, and the form of the solution then
appropriate is examined in some detail. In particular, initial terms of
asymptotic expansions in inverse powers of the mean radius to wavelength ratio
are obtained both for the ''specular' and for the 'creeping'' contributions to the
far field. It is shown that the former contribution is in agreement with that
derived by the Luneberg-Kline method, and the latter with the prescription

proposed by Keller,
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1. Introduction

Exact solutions of boundary value problems in the theory of wave diffraction
are available only for certain specific bodies of relatively simple shape, On the
other hand, various approximate methods have been proposed for treating bodies
of rather general shapes. In the cases when a) the linear dimensions of the
body are small compared with the wavelength, b) the body is convex and has a
radius of curvature everywhere large compared with the wavelength, it is probably
broadly true, at least for scalar waves, that there are approximate methods
which yield the initial terms of an expansion in powers of a definitive parameter,
Nevertheless, the theory c;f some aspects of these methods is as yet sufficiently
lacking in rigour for one to welcome the opportunity to test their predictions
against trustworthy res'ults obtained by other means, The object of the present
paper is to solve a new problem which has a degree of generality, and then to
check against the sqlutio.n methods that have been proposed for the case b)
mentioned above,

The solution obtained is for a time-harmonic electromagnetic E-polarized
plane wave incident on a perfectly conducting cylinder, the uniform cross section
of which is almost circular. The equation of the cross section of the

cylinder in the two-dimensional polar coordinates (r, 0) is

r=a+bf(6) , (1)
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where £(0) is a sufficiently smooth™ function of 6, of maximum modulus unity,
but otherwise arbitrary, and kb (k = 2r/wavelength) is a small parameter,
Powers of kb higher than the first are neglected in the analysis,

If ka>> 1, the method known as Luneberg-Kline (see Keller, Lewis and
Seckler (1956) for references and applications) and the formula proposed by
Keller (1956) should be valid, The result given by these in combination is
therefore also worked out, and checked against that already obtained, Agreement
is found to the extent expected,

Thus, it may be noted, a proposed solution which depends on one type of
approximation (based cN)n ka>>1) is verified in the case when another type of
approximation (based on kb<<1) can be made, A technique of this kind does not
seem previously to have been exploited in diffraction theory, where past checks
of approximate solutions have been made only against exact solutions,

The available exact solutions for cylindrical bodies without sharp edges are
limited to those with circular, elliptic or parabolic cross sections, Since
Keller's prescription is based on the exact solution for a circular cylinder, it
has been checked only by reference to elliptic and parabolic cylinders, The
present analysis is therefore thought to be of interest in providing further
evidence of the reliability of Keller's prescription, with a moderate degree of

generality furnished by the arbitrariness of the function £(6) in (1), Moreover

+
It seems hard to state precisely the necessary restrictions on f(6); some remarks
on this point are offered in § 8.
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the Bessel function analysis required does not go far beyond that used in the
circular cylinder problem, which is now familiar from much discussion; the
treatment is therefore somewhat less elaborate than one involving either Mathieu
or parabolic cylinder functions,

In the interests of clarity and brevity, the treatment in the paper is confined
to the simplest possible case of interest, namely that in which, With all other
parameters prescribed, kb is taken to be so small that the first two terms in a
power series expansion in kb give an adequate approximation, A second con-

cession to brevity is the limitation of the detailed discussion to points of obser-

vation in the far field. On the other hand, the analysis could be handled in
various less restricted ways, and it might well prove profitable subsequently

to carry out more extensive investigations on the lines indicated in § 8.

The plan of the paper is as follows, After settling the delicate m‘atter of
notation(§2), the solution correct to the linear term in kb is derived, with emphasis
on the form appropriate when ka is large ( §3) . The derivation uses infinite
Fourier integral transforms in a manner similar to that advocated by Clemmow
(1959) for the circular cylinder problem, Also given, in Appendix A, is an
alternative derivation based on the Watson (1918) technique; this is included for
the benefit of those who may prefer the more traditional approach, Then, in § 4,

the integral expression for the part of the far field associated with specular
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reflection is evaluated asymptotically for large ka by the method of steepest
descents ; and, in§5, the residue terms associated with the ''creeping-wave'' con-
tributions to the far field are simplified with the help of an unfamiliar Bessel
function relation obtained in Appendix B, and then asymptotically approximated
for large ka, The asymptotic result of §4 is shown in § 6 to agree with that given
by the Luneberg-Kline method, and the asymptotic result of §5 is shown in § 7

to agree with Keller's prescription, The paper ends with a discussion, in § 8,

of theA significance of the restrictive conditions which validate the analysis, and
examines the extent to which they can profitably be relaxed without making the

problem intractable,

2, Notation

Attention should be drawn to the use here of the particular Airy integrals
defined and fully tabulated by Miller (1946). There are good grounds for re-
garding these as the standard forms (see, for example, Jeffreys and Jeffreys
(1956) ), and consequently they are adopted here. Unfortunately, they have
hardly been used at all in the relevant literature on diffraction problems, with
the result that some unnecessary computation has been done, and a confusing

proliferation of notations exists.

The following is a list of the notations that will be used:
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exp(iwt) is the time factor, left understood.

k is the propagation constant, 27 divided by the wavelength,

r, 6 are the polar coordinates of a typical point of observation P; in general

-1< 0K m, but without loss of generality it is assumed that 0 <6<,

The direction of propagation of the incident plane wave is 6 = 0,

r', 0" are the polar coordinates of a typical point Q on the perimeter of the body,

so that equation (1) states
rr=a+hbf(e") . (2)

The configuration is shown in Figure 1,

Q is the "lower" of the two points on the perimeter of the body at which the tan-
gent is parallel to the diJ;ectio,n of propagation of the incident plane wave,

Q; is that one of the two points at which the tangent passes through P, reached
first in travelling counter-clockwise round the perimeter from Q.

s is the distance Q, P,

ré,, 6(’) , and ri s Gi are the respective coordinates of Qo and Q; .

The configuration is shown in Figure 2,

t is the arc length along the perimeter of the body, measured from some fixed
point to Q.

p is the radius of curvature of the perimeter at Q.

to, t; are the respective values of t at Qy, Qg -

Py Py are the respective values of p at Q,,Q, .

T is the total length of the perimeter of the body.
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Ai(z), Bi(z) are the Airy integrals defined and tabulated by Miller (1946).

al s L= 1,2,3,..., are the zeros of Ai(z); they are negative real numbers,
tabulated by Miller (1946).

V[, ,,@ =1,2,3,..., are the zeros of H(z)

) (ka), qua function of v, which lie in

the lower half of the complex v plane,

For large ka,

Y3 2a,e 1
71[ ~ka+ T[(ka) -

(3)
223, 39 (ka)l/ 3

is an asymptotic approximation to Y, where in factffﬁis just -a y exp(-in/3) 2]’/3 s
but occurs sufficiently often to warrant designation by a separate symbol, The
approximation (3) is that given, in a different notation, by Franz (1954, equation

(A17b) ) An alternative derivation is noted in Appendix D,

m is a positive integer, which denotes the order of a Fourier component of £(6') .

3. The solution

In this section the solution, to the first order in kb, is obtained by the same

procedure as that applied by Clemmow (1959) to the circular cylinder. The
electromagnetic field is E-polarized, and U denotes the only non-zero component

of the electric field, namely that parallel to the cylinder parameters. U is a

solution of the scalar wave equation with Dirichlet boundary conditions on the

surface of the cylinder.

3.1 The general form

The incident field is the plane wave

Ul _ e-lkrcose , @)
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and the scattered field is takenin the form
0

i6
(2)(kr) e1 d dy , (5)

S
U-=- P(p) H,

-00
where P(y) is to be found, The boundary condition, U+ U®= 0 on the surface

(2), gives

@
S P(V)Hgi){k [a+bf(9,)]} REE e-ik[a+bf(ev)] cos 6' , 6)

-00
for all values of 9',

Equation (6) is now solved to the first order in kb, Explicitly, the results

Hf,){k [a+bf(9')]} = H(j)(ka) +kb(6') H(f,) (ka) + 0 [ (kb (7)
¢ OIS ) ik i(6r)cos 6 + 0 [b] (8)
are used+; and the notation
P(y): ——— [p(ka,») +kba(ka,»)] + 0 [(b)] (©)
@)
H)) (ka)

introduced, In (9), p(ka,») is known from the case b =0 when the cylinder is

strictly circular, and is determined by the equation

(0 ¢]

i9'v -ika cos 9’

plka,v)e'  dv=e ; (10) -

=00

+

The prime on the Hankel function in (7) indicates differentiation with respect to
the argument, and is used in a similar sense subsequently, No confusion with the
prime of 6' should arise ,
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it may be written formally

e—i(ka cos 0'+v9'")

p(ka,v) = L de' . (11)
2T

The terms of order kb in equation (6) then yield

o ()'
HV (ka) i0'v -ika cos 6'
@) pka,vHqka,»)p e - dy=-if(6")cosf' e
-0 HV (ka)

(12)
which is to be solved for g(ka, v ).

Now £(6') is periodic ir; ', of period 27, It can therefore be represented as
a Fourier series, and the later detailed discussion is in fact confined to a
consideration of a typical term in such a series, For the ge.nei‘al theory, however,
it is convenient, and may indeed be useful, to adopt once again a formal Fourier

integral representation, thus
©

i0'u
f(@')=f F(u) e dy . (13)

-00
The insertion in (12) of (13), together with the representation

©
iow -ikacos 6'
p'(ka,»)e  dy = -icosf' e (14)

~00

obtained by differentiating (10) with respect to ka, is then readily seen to give
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o @)
HV‘M (ka)
qka,v)= F(u)| p'(ka,v -u) - o p(ka,» -p) |dy . (15)
2
-0 H (ka)
VU

The scattered field is determined by the substitution of (15) and (9) into (5) .

3.2 The form suitable when ka is not large

The specific expression for q(ka, v ) resulting from (15) depends on the
specific representation adopted for the function p(ka, ) given by (11), For the
case when ka is not large the useful form of solution is that corresponding to the
classical series expansion for the circular cylinder, This is obtained by taking

the delta function re‘pfese.ntation
(09)

p(ka,v) = (-1)" 3, (ka) §(w-n) , (16)
n=-00 '

so that the incident field on r=a is expressed as a Fourier series, The formula
obtained by substituting (16) into (15) is simplified with the help of the expression

for the Bessel function Wronskian, and reads

0]

n
qka,p) = 21 ? ) I F(y-n) , (17)

mhka n=-00 Hi) (ka)

10
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3.3 The form suitable when ka is large

When ka is large the useful form of solution is obtained by taking the

formal representation (cf, Clemmow 1959)

(09)

- ;— iry 2imy
plka,v)=e JV(ka) e . (18)
n=-00
The formula obtained by substituting (18) into (15) is simplified with the help of

the Bessel function Wronskian, and reads

[00)

© -1 in(yu) .
2i : e 2imn(y -p)
alka,v)= 5~ F(u) » e du . (19)
" H( ) (ka) n=-00
g . v

3.4 The case £(6')=cos(m®6')

It has already been noted that £(6') can be represented as a Fourier series,
Since the theory is only being worked to a linear approximation, the expression
for q(ka, » ) can be obtained, in principle at least, by summing the contributions
arising from the individual terms in this Fourier series, The process of super-

position is evidenced in the mathematical formalism on writing

09)

Flu) = > A bd(um) (20)

m=-00

11
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which is equivalent to ©
im
f(g") = > Am e s (21)
m=-oo

and substituting (20) into (15) .

In the present paper the detailed discussior is confined to the case
£(6') = cos (m6') , where m is a positive integer, and can be regarded as
treating a typical term in the Fourier series represehtatio,n of a general dis-
tortion of the cylinder cross section from strict circularity, It is clear that results
thus established which can be stated in a form independent of m are effectively
established for a general small distortion.

Now f(6') = cos (m#@') is equivalent to

1
F(u)= 5 [8(um) +8 (u+m)] . @
When ka is not large, the appropriate expression for q(ka, ) is obtained by
substituting (22) into (17), This gives

. -n
aka, )= 5= > g [ dGmmpspm] . @3
H

2
n=-00 n (ka)

The excess of the field over that pertaining to the case b = 0, hereinafter called

the perturbation field, is therefore, from (9) and (5),

12
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. .m-n \m .
w- - 1(2) (2)1 * ((z)) H(z)(kr) " e
71'?- n=-o H n (ka) Hn_m(ka) Hn+m (ka) n

When ka is large the appropriate expression for q(ka, V) is obtained by

substituting (22) into (19) . This gives

(00}

.m+ 1. m 24
i -yiry 1 (=) ity
= +
q(ka: V) ,”.ka € (2) (2) € J
H (ka) H (ka)
V- Y+m n=-o
(25)
with the corresponding expression for the perturbation field
[0 CI) '_.E iry
wP- i e ’ 1 (7 | 2imy_ @)
" ra (2) 1@ e 1? e %
o Yw H, (ka) V—m( ) )Hm( )

(26)

It is perhaps worth remarking that some check on expressions (24) and (26)
is afforded by considering the two special cases m=0 and m=1 . In both these cases
the problem is in essence simply that of diffraction by a strictly circular cylinder:
for m=0 yields thebprecisely circular cross section r'= a+b; whilst m=1 yields
r'=a+bcos 0' , and to the linear approximation in b this is simply r'=a displaced a
distance b along the direction 6=0 , The solutions both for the cases m=0 and m=1
should therefore be deducible directly from that for a strictly circular cylinder,
It can be verified that they can be so obtained, though when m=1 the verification

is not entirely trivial,

13

1 (kr)e ®%ay
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3.5 The far field

The remainder of the paper is devoted to an examination of the pertur-
2
bation field, for large ka, in the radiation region, For kr—»oo, H(y)(kr) in

(26) is replaced by the asymptotic approximation

Lir Liry  -ikr
2 e

(2) 2
B (kr)~/ (2] e o S (27)
and then
1 @ ®
o J2 i CiT b e o ikr f . (_)m ei(0+27rn)2> i |
T 2 ay/(kr) n__oo H(Z)(ka) H(2> | (2) 1@ (ka)
-0 y+m

(28)

Apart from the case 6=0, which is not considered here, there is no loss of
generality in taking 0<6<w, and it is convenient from now on to assume that 6
lies in this rénge.

The nature of the terms in the summation over n in (28) can be distinguished
in a way made familiar by the corresponding circular cylinder analysis,

The term n=0, whose contribution to UP is

(00

_1. 3
N e T be ikr )1 1 4 " U
k @ @) ) ’
i a (kr) ) Hy () | D) H ()
(29)

corresponds to the specularly reflected ray of conventional geometrical optics,

The evaluation of (29) for large ka can be accomplished by the method of steepest

14
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descents; this is done in § 4,
The terms n=¥ 1, T2, £3, whose contribution to UP may, by a trivial

transformation, be written

00)

_1 . _s Q0
i T4 b e fher § 1 e
T a /(kr) 12 ka) | H® (ka) H® (Ka)
n=o U 4 Y -m V+m

(30)

-2imny [ -0y —i(Zw—G)V]

e +e

X e dV:

correspond to rays which have "crept'" round the body, The evaluation of (30)
can be accomplished by closing the path of integration in the complex ¥plane
with an infinite semi-circle below the real axis, and calculating the residues

of the enclosed poles, The details are worked out in § 5.

4. The "specular' contribution

In this section the contribution to U‘p corresponding to the specularly reflected
ray of conventional geometrical optics, namely (29), is worked out by evaluating

the integral
(0]
iy
° ay (31)

~0 H(f,)(ka) Hs) (ka)
-m

by the method of steepest descents, The method provides an asymptotic expansion

in inverse powers of ka, and the first two terms of this expansion are obtained

15
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explicitly, In § 6 it is shown that the result is in agreement with that derived by
the Luneberg-Kline technique,

It is convenient to introduce a new variable of integration a via the relation

¥y =kacos a , (32)
Then the Debye asymptotic form of the Hankel function is
15 r .
1Oy 2 o3 1 )y b2siMe 1 1 ]| “Hhalsineacose)
» m /(kasina) 24sind @ ka (ka)? ’

(33)
in which the terms shown explicitly are those whose retention is necessary to
preserve the required degree of approximation,

Then if
¥ -m = ka cos (@ + ozm), (34)

some trivial algebra shows that

1 2 1 1
o, = m 1 m cossaf +0 , (35)
sine ka 2sin®a (ka)? (ka)3

with the result that

ka [s in(oz+o:m)—(oz +am) cos(a+ am)]

2

m 1 1

=ka(sina-ecose+ma+ — — +0 s
alst ) 2sina  ka [(ka)2 :]

(36)
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1,
H(z)(ka)=/<3) AT 1 1+ 1(6-2sin’a)-12m(cos e +im sine)sine 1 +ol_1
l/ (ka sina) 24 sin’ o ka (ka)2

i [ka(sin @-( COS a)+m a']
X e

(37

Finally, using (33) and (37), it appears that when (31) is expressed in terms

of the variable of integration o, the integrand is

~ ikafcos o ima L _ . 9
sinae - -l kasinfae 1+ 6m (cosaHm s1.nc§)sma—1(5—2s1n a) 1
@) ( 2) ( ) 2 12sin’ o ka
H (ka) H ka ika
+ o[—i—} [ledl)
(ka)?
(38)
where
P(a) = 2(sine~acosa)+Hcos o . (39)
The saddle-point for the integral is therefore evidently at o= 6/2 , and with the
notation ' .
B=a- P ’ (40)
a1 _ 1
s = sin 2~9 s C = Cos 5-9 s (41)
it is adequate to write
ikad(e) 2ikas 6| ikas
e ¢()=e [ ik (3032— 4SB) a)? 2B]e 32, (42)
; Lime 1
si e %=g2 e 2 [1+(im 25 )8+ (Zim S+ - imz—Z) 32} (43)
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The procedure is now to substitute (42) and (43) into (38), to replace «
in the 1/(ka) term in the curly bracket on the right hand side of (38) by 6/2, and
to integrate over B from-c exp(ir/4) to exp(iﬂ/4). The result, after the col-

lection of some half dozen terms, is that the integral (31) is

1. 1, 32 1 2ika sin( L
= “gim 3im6 —(4m2-1)sin? (= ika sin(50)
; 7r/1r e &1 g2 [kasin(%G):l - Stm lésml (z0) L, )[ 1 2;’ e

16 sin® (3 6) ka L(ka)

(44)

In order to evaluate (29), the integral identical with (31) except that m replaces
-m is also required, It is, of course, obtained immediately from (44) on replacing
m by -m,

The explicit expressions for (29) are distinguished according as to whether m is
odd or even, If m is odd , the perturbation part of the far field associated with

specular reflection is

lim—

32
2"V /z[sin<-;-9)]

sin(%m@)

L 8-(m®-Dsin’(30) 1 [ 1
{(kr)

2ika sin(% 0) -ikr
x f(ka){ 1-i 3 2J :
16 sin® (10) ka (ka)

(45)
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If m is even, the corresponding expression is

-

| 19
(-) 2 ikb /2 [sin (3 G)jl cos (%—m@)

2 vein L
. 8~(4m?-1)sin’(3 6) 1 +o[1

2ikasin(36)  -ikr
e
X/(ka 1-i 3 2] e
16 sin° (£6)  ka (ka)

/(kr)

(46)

5. The ''creeping'' contribution

Attention is now turned to expression (30), which is the contribution to Up
associated with '"ray paths" which in part lie along the perimeter of the cylinder
cross section (see Figure 2),

The only singularities, in the complex » -plane, of the integrand in (30) are
simple poles associated with the zeros of Hv(ka), Hv-m(ka) and H L +m(ka) qua
functions of v. A straightforward method for evaluating the integral in (30) is
therefore to close the path of integration with an infinite semi-circle below the
real axis (recalling that 0<6<7), the result being 27i times the sum of the residues
of all the poles in the lower half of the complex v plane, It is only necessary to
write down explicitly the contribution to (30) associated with, say, the 'counter-
clockwise rays", one of which is shown diagrammatically in Figure 2; that is,

the part of (30) arising from the term exp(-i 6) in the last factor of the integrand,

The contribution of the "clockwise rays", arising from the term exp[ -i( ZF‘G)VJ in
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the last factor of the integrand, can then be deduced simply by writing 27-6 for 6.
The poles of H(z)(ka) in the lower half of the‘ complex y plane are Yy s
£=1,2,3,..., with a functional dependence on ka of which the most convenient
expression is the form (3), By the procedure just described, it therefore
appears, after some simple rearrangement, that the perturbation part of the far

field associated with the counter-clockwise creeping rays is

—zv/(a)eli7r i B o I Za) Z‘O L
T 2 /(kr) n {iliH( )(ka)]}

2
n=o0 [-=1
dv | ”
V=VL
] 6 —. _-
) 1+(—)m elm . (—)m+e im@ . 11)1 (6+27m) -
(2) (2) )
Hy[m(ka) %L m (ka)

It is now convenient to appeal to Appendix B for the relation

Hiii_rm (ka) = g(*m, v , ka) Hf;’(ka) , (48)

where g(tm,  , ka) is a polynomial in 1/(ka) of degree m-1, given by (B15) or
(B17) respectively according as to whether m is even or odd, The Hankel function

Wronskian in turn enables (48) to be written

@) 4 4 1
=-—g(Im,y, k
If)[:m ka g(Im,», ka) _(T—_H;% -~ . (49)

The perturbation part of the far field associated with the counter-clockwise
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creeping rays is therefore
1 ik = (k

-=1iT "1 r a

(De > >
2 (kl‘) (2
L=1 (ka)
V=))£
m im6 -im6 | -iy, (6+2mn)
M) e ()7 e * . (50

g(-m,v,ka)  gm,y, ka)

The expression (50) for the linear term in kb is exact, The final step is to
simplify it by the use of asymptotic expansions for large ka of the terms in the
double summation, The results are given explicitly only for m even ,

It is shown in Appendix C, equation (C11), that

1 +1 1 1
,ka)= )T, —— 2-1)— +0 , (01
g(fm a)=fm{ 1+ (m )ﬁ(m)z/3 -5 m(m )ka1 [ka)%J (51)

where ’Z:Z are the numbers defined in (3), The factor in square brackets in the

terms in the double summation of (50) is therefore, for m even,

2i

1, 5. 1 - 1, 2. ._ 1 1
_ﬁl_lil_ '§(m2 1)22 W:} sin(m@)+ 3(m 1) [lﬂos(me):’ e + O{WS—] . (62)
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It is shown in Appendix D that

(1) .
HVL (ka) ) lﬂ/6 ]_/3 . 2 ’EL 1
= - 247;3 e (ka) [Bl(a‘z)jl 1+ + O[( J 9

_d | @)
I [HV (ka):l
V=¥

where Ai(z), Bi(z) are the Airy integrals tabulated by Miller (1946), and Ai(az) =0,
The perturbation part of the far field associated with the counter-clockwise

creeping rays is therefore, for large ka and m even,

14 n 517r/12 e—il;r 1/3 (0.4] [00) | 1 1
-)2 kb ka § § , i 1+3 7 t0
e i L Lo s B [(ka>4/3}

| -1y (6+2m
_1_273_] sin(m6)- é‘(mz_l)[lﬂzos(me)] é+ O['—l‘z/— . i)y (6+2mm)
ka ” ;

(54)
where for consistency the asymptotic approximation to ;i should also be invoked,
indeed to one term beyond those given explicitly in (3),

The main object of retaining explicitly in (54) so many inverse powers of ka-

is not numerical accuracy, They are retained, and displayed as they are, in

Xpart from the notation, the first term in the asymptotic expansion (53) is a standard
result in the relevant literature of diffraction theory; the authors are unable to find

a reference for the second term, The proof in Appendix D appeals to the Bessel
function expansions given by Olver (1954), which have not apparently been used before
in this connection,
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order to yield as full a check on the creeping ray theory as the problem and method
aliow. In fact, the whole of (54) is given by Keller's prescription, Since the
prescription is in a sense just the first term in an asymptotic development, the
extent of the agréement is, perhaps, at first sight rather surprising, The way

in which it comes about is shown in detail in § 7.

6. Luneberg-Kline theory

The purpose of this section is to recover, by the Luneberg-Kline procedure,
expressions (45) and (46) for the perturbation part of the far field associated with
specular reflection,

For the two-dimensional scalar wave equation the procedure may be stated

as follows (see, for example, Keller, Lewis and Seckler, 1956), The ""specular"

part of the total scattered field is written in the form™
[09)
-ik v (r,6) _
e WZ —— (55)
o (-ik)
where
2
IV’P‘ =1 (56)
2
2V VP+vV =0, (57)
2V VY+v, VY= -7 v _,n=123,... . (58)

—
In the literature the Luneberg -Kline procedure is usually presented with the
assumption of a time dependence exp(-iwt), In the application here of previous theory
the sign of i is therefore changed,
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In terms of the distance S along the specularly reflected ray, from the
caustic (reflected ray envelope) to the point r, 6 in the illuminated region,

equations (56), (57) and (58) are equivalent to

W =Y(S,) + 88, (59)

vo(8)=v, (8 )/ [6()/G(3, ] ,
v, (8)=v,(So) /[6()/G(S,)] - —J / [6(8)/G(0)] /" v, _, (o) do,

n= 1,2,3,,..,

(60)

~

y

where 8 is the value of S at the point of intersection (', 6")of the ray with the
perimeter of the diffracting body, and G(S) is the curvature of the reflected wave
front at r, 0,

For an incident plane wave, and with r, 6 in the far field,

S psm( 0 , (61)

o~

l\.>|r-—A

where p is the radius of curvature of the perimeter at r', 6'; and

G(s) = 1/s . (62)

If the incident wave is (4); the boundary condition that the total field vanish

on the perimeter of the diffracting body gives

P (Sy) = r'cos 6", (63)
VoS = -1 , (64)
vy (Sg) =0 n=1,2,3,... . (65)
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Hence, from (59),
P = S-S, +r'cos 0" ; (66)
and from (60),
v (8= - (lisy/9) (67)

Now in order to check (55) against (45) and (46) it is only necessary to
distinguish v, of all the v,), from its unperturbed (b=0) value, For since the
theory of § 3 shows that the perturbation part of the solution is linear in kb, any
length d typical of the body, which is associated with the k in any term in the

summation in (55), may be taken in the form

d=a+boO() , (68)

where the order term refers to the order in ka; whence

1 1 1
N +kb O . (69)
k™ (ka) [(ka)]f1+1 }

Furthermore, itis easy to establish that, if second and higher powers of kb are

neglected,
6'= 3 + 1 0 -kb msin[:l m( +9)] 1 (70)
2772 2w ka
N T 1 1
p= a{l kb(m“-1) cos [2 m(7r+9)] T } , (71)

and, for a point in the far field,

S-S=r-a sin@-@) -b sin(%()) cos [—ém(ﬂe):] -mcos (—%(? sin [%m(ﬂe)] . (72)
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Hence, from (66),
P =r-2a sin(% 6)-2b sin(% 6) cos [%m (7r+9)]; (73)
and, from (67) and (61),
1. 1 2 1 1 1
vo(S)= - /[E sm(.lz_ 9)] /(ka) 1- Ekb(m -1)cos {5 m(7r+9)] Ta ‘7(———)— . (74)
kr

The substitution into (55) of the expressions (73) and (74), together with

the unperturbed (b=0) value of v4(S), namely (Keller, Lewis and Seckler, 1956)

3ain2 (L
V1(S)=/I:-;— sin (% 9)} 83 sin 3( 2.9) 1 , (75)
16 sin° (L 6) - l/(ar)

gives
; 3/2 1 .
-ikb / 2 [s in( > 9)] cos [Z m(7r+9ﬂ

o1 ,
8—(4mz-1)sin2(-§- 0 1 o 1 ] eZlkasm('z—Q) oikr
16 sinB(% 0) ka (ka)? j V(kl‘) )

(76)

x|/ (ka){ 1-i

Evidently (76) agrees with (45) when m is odd, and with (46) when m is even.

7. Creeping ray theory

In the notation of § 2 (with particular reference to Figure 2), the prescription
for the far field associated with the counter-clockwise creeping rays which it is the

purpose of this section to check is
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" y [00) ©
_ -iks 1 2

nin 2 e y K po/6 011/6 ; S [Bﬂag J
5 A \
2 /6 (kS) n=0 »Z—’:l

1
1+ 0 —1k totn T
x{ 1+ L—k—p)—%—} exp tl n + s (77)

to

where d is some length typical of the body, This differs from what Keller {1956)
has proposed only in notation and by the inclusion of an order term which makes
the statement precise,

The expression (77) is now evaluated for the problem in hand, with the
simplification that seco.nc; and higher powers of kb are neglected, For the sake

of brevity, only the case when m is even is considered, In particular, this implies

S
90— ST . (78)

1
Im
2 ;—) sin(m6) . (79)

With the help of (78) and (79), the following results may be obtained with

some straightforward algebra:

13 s 1 Im
k/3 pO/G p1/6 =(ka)1/3{1_( -) 2 ékb m?-1) [1+cos(m0)] Tj;} (80)
t,nT
. - Lo ad dt
exp -ik {tl t0+,nT+ (_lf --—'-275-}
{ (kp)

0]
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Im 1 1 1 1
=<1-(-) 2 ikb | = -m-5 (m- m)/zje —7—2 J sin(mo)
" ] (ka) 3
x expl -ika|l+ T;/ (6+2m) (81)
(ka)'3
~iks  -ikr Im
e =e [1—(—)2 ikbmsin(m@):, . (82)

Furthermore, the argument in§ 6 leading to (69) is equally applicable here,

The expression in curly brackets in (77) containing d is therefore

1 1
1+ ol——| +xb O , (83)
' { (ka)l/ 3J [(ka)/*/3 J

where it should be stressed that everything included in the part of (83) independent

of b is identical with the corresponding part of the solution for the case of the
circular cylinder b = 0,

Thus, although no appeal has been made to any general knowledge of the order
term in d in (77), the form which it takes under the particular conditions of the
problem in hand is, in fact, adequate for present purposes, For the substitution
of (80) - (83) into (77) leads at.once to a linear term in kb identical with (54), the
part of (83) independent of b accounting both for the first expression in curly
brackets in (54) and for the third and subsequent terms of the asymptotic expansion

of v in inverse powers of ka,
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8. Discussion

In this section some attempt is made first to discuss the possibilities and
limitations of the theory as it has been presented, and secondly to examine the
extent to which the restrictions validating the analysis can profitably be eased.
It seems difficult to be precise, particularly in the latter task, and some of the
remarks offered are conjectural.

The theory as it stands is clearly capable of treating aspects of the problem
other than those explicitly considered; the calculation of the near field, for
example, or the development of the case when ka is not large, Also, of course,
in principle a ‘perturbati”‘o‘n on other ''canonical' problems should be tractable,
though only the analysis for diffraction by an almost spherical body is likely to
be not appreciably harder than that for the almost circular cylinder,

The assumption most likely to lead to a convincing justification of the theory
is that kb is a mathematically infinitesimal quantity, However, even with this
assumption, which largely evades the question as to whether in given practical
circumstances the theory will be useful, the proof of the general validity of
the theory is not absolutely clear cut, The reason is that various of the linear
Taylor expansion approximations in kb depend on other parameters which take
values up to infinity; such parameters are))i.n‘(7) and m in (70), for example,

To meet this situation the following plausible argument is offered. If the
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integrations or summations involving 7/ and m are convergent, they may be
truncated at some stage (which is independent of kb) without sensible error,

Thus ¥ and m may be regarded as having maximum values, and the linear Taylor
expansion approximations are unquestionably valid, This argument implies that
the analysis holds for any 'distortion'' function f(6') which has a convergent Fourier
series representation,

The importance of the diffraction problem, though, rests mainly in its

ability to provide answers to practical situations. From this point of view it

is not of much interest to take kb small enough to validate the analysis; rather,
given a problem in which tile specified kb is prima facie small, it must be de-
cided whether or not the analysis is valid, in the sense of being capable of yield-
ing an acceptable numerical approximation to the true solution, The question
turns, in fact, on the accuracy of the linearization in kb, when kb and the other
parameters of the problem are prescribed. This point is now considered.

Apart from kb, the dimensionless parameters which completely specify the
problem when £(0') = cos (m0') are ka and m, ‘It would seem, therefore, that the
accuracy of the linear Taylor expansions used in the analysis must be investigated
in terms of the values of kb, ka and m, Two types of these Taylor exbansions may
be distinguished; namely, on the one hand (7) and (8) which are basic to the derivation
of the solution in§ 3, and on the other hand expansions which are introduced sub-

sequently in the course of simplifying the solution, and checking it against results
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derived by alternative methods. The former are evidently fundamental, since
without them no progress at all can be made on the present lines, The latter, in
contrast, are quite unimportant; indeed, as explained in a moment, considerable
interest attaches to situations in which they are not valid, Attention is therefore
concentrated on (7), the validity of (8) being assured by kb<< 1,

If ka is large, (7) looks fairly innocuous; but it must be remembered that
the significant values of » certainly involve m, If, then, the possibility of m
increasing indefinitely be envisaged, which a priori is likely to cause trouble,
(7) must be looked at for indefinitely large v, In this case, each differentiation

g)(ka) with respect to ka brings in a factor of order v /(ka) . The suggestion

of H
is, therefore, that the maximum permissible value of m for which (7) holds is

given roughly by the criterion

m
kb ka <1, (84)

or
b<«<a/m . (85)

The significance of (85) can be directly stated in words, thus; the amplitude of
the "ripple" representing the distortion of the cross section of the cylinder from
a strict circle must be much less than its Wavelength.} This seems a reasonable
criterion, and leads to some rather interesting consequences which are now

considered.
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The conditions
kh<<1, ka>>1, b<<a/m, (86)
obviously permit
b
L M= 0(1). (87)

This implies that the solution of § 3 can hold in cases when the radius of curvature
of the perimeter differs at some points appreciably from a, and might even, for
example become negative, that is the cylinder might have concavities, This
latter possibility is particularly interesting, in that it falls outside the scope
of the Keller theory used in §7, Indeed, there is even a peculiar feature of the
Keller theory in its apparent failure for quite simple large convex cylinders
if their cross sections have points at which the curvature is zero, Consider
for example the plane wave exp(-ikx) incident on the body

xtryt=at | (88)
Keller theory gives an inﬁnité result because Py is infinite, A similar
pecularity exists in the statements made in § 4 of a paper by Jones (1957) about
the total scattering cross sections of general bodies, Jones claims that his
formulae (16) and (17) are valid if (his) kp;, kp, are both large., For the body

(88) they are infinite, and Jones' (16) and (17) then lead respectively to infinite

and negative infinite cross sections, Recent work by Franz+, in which a further

+Re‘ported at the 1959 URSI-Toronto Symposium on Electromagnetic Wave Theory,
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term is added to the Keller prescription, also runs into trouble for the
body (88). An investigation of diffraction by large bodies with convex
surfaces having points at which the curvature is zero therefore seems to
be required, and it looks as though this could be done by the perturbation

analysis of § 3.
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Appendix A

The purpose of this appendix is first to derive the perturbation field by
the classical method, using a Fourier series in 6, and then to apply what is
commonly known as the Watson transformation, The procedure is offered as
an alternative to that of §3, on more traditional lines, and arrives at the same
- forms of solution,
The incident plane wave (4) is written in the Fourier series representation

09)

. n .
ul= (i) J_(kr)e™0 . (A1)

and the scattered field, neglecting second and higher powers of kb, in the

corresponding representation

s =, n Iy (ka) @) ind
v°= - Z(—l) —— (+kbe ) H (kr) ™0 (A2)
=%  H (ka) !

with coefficients c, as yet unknown, If b is set zero in (A2), the solution for the
circular cylinder r'=a, with boundary condition ult US=0, is obviously recovered,

The c,, are determined by the boundary condition Ul+U8=0 on the perimeter (2).
If (7) is substituted into (A2), and the companion result for Jn(kr') into (A1), the

linear term in kb gives
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© LY @)
: ' H (ka) . '
Z (—i)nc‘rl Jn(ka)eme = (0" Z(—i)’n J;I(ka)—Jn(ka) _n o
n=-0 n=-00 ' H(z) (ka)
n
(A3)
= n
_ _2_1__ f(@') ("1) ei.'[l@'
~7ka .

== H (ka)

If £(6") itself has the Fourier series representation (21), it is easy to see

that (A3) gives

9 iIl+1 - (_.)m
¢, = — 2y . (A4)
ms=-00 (2) n-m
mka J (ka) H ) (ka)
This is equivalent to what would be obtained by substituting (20) into (17).
For the special case of interest, £(6') = cos (m6'), (A4) gives
N+ m
n” : (2)1 * (z)(-) ’ (43)
mka J, (ka) Hn-m (ka) Hn+m(ka)
and the perturbation field is
LY - m
o _ib . 1 (=) ) inf
uP= -2 + H = (kr) e (A6)
H® (ka 2) (2) n ’
ma Ly H (ka) Hn_m(ka) H, (ka)

which is identical to (24) .

Since (A6) is poorly convergent for large ka, the Watson (1918) transform ation
is applied, The first step is to replace the summation in (A6) by an integral over a

contour surrounding the poles aty= 0, t 1, fz, ... Of sin(ry). Explicitly
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1.
‘ m 2 1my _m _
U“zﬂag -0 G o | B ¢ ®av, o
Cl+Cszm(7T»)Hy (ka) Hy . (ka) H Y +m(ka)

where C; and C, are lines parallel to the real ¥ axis, running respectively above
it from right to left and below it from left to right, Ify is replaced by -y in the

integral over C;, (AT) gives

m —iry m
uP= _bi 5 e? L + 2 ) Hﬁf)(kr) cos(¥) dv ,
H
)

sin(my )H(Z )(ka) H(z) (ka) z_zm (ka)

V -
9 Y-m (A8)

where use is made of the fact that exp(- —;— iﬁy)Hf)(kr) is_an even function of v,
and the path C, is retained on the presumption that 0 <6< 7,

When the point of observation r; 6 is in the shadow region of geometrical
optics, the integral in (A8) can be evaluated by closing the path of integration
by an infinite semi-circle in the lower half of the complex y plane, and evaluating
the residues of the poles of the integrand which are thereby enclosed; these poles

(2) (2) (2)

being, of course,at the zeros of H,,"(ka), Hy_m(ka), and Hy+m(ka).

Y
But when r, 0 is in the illuminated region of geometrical optics, a transformation

of the integral in (A8) is necessary before the residue representation is appropriate

(see, for example, Franz , 1954), This case is now considered,
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With the decomposition

cos(v0)= e—im)cos [(G-W)U] +iei(6_”)v sin(7y) (A9)

(A8) becomes
1.
P piH -5y 1 M .

- - — S "22) 7 + (2() ) Hﬁf) (kr) €' dy

02 H ¥ (ka) | H »_m(ka) Hv +m(ka)

(A10)
m -—iTy m
bi 2 1 -
- ﬂla S = @ @ + (2)( ) Hg)(kr)cos[(e-ﬂ)v] dv

X sin(ry )H )y (ka) Hy_m(ka) H 1)_Hn(ka)

Since the first integral in (A10) does not contain 1/sin(7w), the path of
integration C, may be replaced by the realy axis from -oo to + oo . Its contribution
to U.p is thus identical to the n=0 term in (26); or to (29) for the far field case when
H](,z)(kr) is replaced by its asymptotic form (27),

Again, since the path C, lies in the lower half of the complex y plane, the

factor 1/sin(ry) in the integrand of the second integral in (A10) may be replaced

by the expansion

[00] .
-ir(2n+1) v
1 =ZiZeﬂ(n) . (A1)
sin(r p) =5

The corresponding contribution to UP is thus identified with (26) with the n=0 term

excluded; or with (30) for the far field case,
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Appendix B
The object of this appendix is to show that, if m is a positive or negative

+

integer, any cylinder function Z (z) can be expressed in the form

Y+m

Z)) sy (2100, 2,2) Z ) (2) +glm, V), 2) Z),(2) (B1)
where h(m, v, z) and g(m, v, z) are polynomials in 1/ z, and to find the specific
forms of these polynomials.

That the form of (B1) is correct can be seen from the relations

m
d ) _ V-m i |
(E) [Z ZJZ)]_ Z Zy_m(z) (m—o) 1:2: 3-0- ) ) (BZ)
d mre _y _ Y- i}
(Ea—Z) [Z Zp(z)] - ( ) .Z m Zv+m(Z) (m O’ 1’2’ 3.. o) (BS)

by carrying out the differentiations indicated on the left hand sides, at each stage

reducing the second derivative by means of Bessel's equation
u 1 V2
Zy=—ZZV_Q_;§_>Z))o (B4)

This procedure shows readily enough that h(m,V,z) and g(m, v, z) are polynomials
in 1/z of degree not exceeding |m| , but does not seem suited to deriving their
explicit forms,

Further information can be obtained by taking Z yto be J.,, and substituting

y’

into (B1) its expansion as a power series in z, This shows that h(m,},z) and

g(m,V,z) must be respectively of the same and opposite parity as m: or more

+Throughout this appendix the prime denotes differentiation with respect to z,
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specifically, if |m| is odd, h(m,v,z) is 1/z times a polynomial in l/z2 and
g(m,V,z) is a polynomial in 1/7?, whereas if m is even the statement holds if
h(m, ¥, z) and g(m,V , z) are interchanged,

Explicit expressions for h(m, V,z) and g(m, ¥, z) can be derived in the
following way, Substitute the right hand side of (B1) into Bessel's equation of
order VY +m, and eliminate Z; by means of (B4), The resultis

Py Zy+py Zy=0, (B5)

where p,, py are polynomials in 1/z, This implies p; = Py = 0; or explicitly

L2
b+ Ly _2<1_yi)g, -ml2vim) po 2Y o (B6)
Z z2)° 72 23
gu+2h1_%gr+.l_—lﬁfw—m)g:0 R (B7)
Z
If the operator
1 d
-1 B8
§ 72 d(1/z2) (B8)

is introduced, (B6) and (B7) are
2 2
2 IR PO | ot
§ h+z€ 3 )Sg 7 m(2y+m)h " g=0 (B9)
52g+ Sg—th+i—E—m(zu+m{l g=0 , (B10)

Then the elimination of h from (B9) and (B10) gives, after some algebra,

[606- e (s - )5 m) g i) (5 @-‘;-u)}g S0, (e
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Now (B11) is a hypergeometric equation; and in fact implies, that by virtue

of what has already been stated about the polynomial nature of g, if|m|is odd

m-1 mh m+2y+i _ mt2y-1 g 1) (B12)

g=Cl4F1(- 9 * g °? 2 ] 2 vg 2 z2
where C, is independent of z,

If lml is even it is convenient to use the equation for zg corresponding to

(B11). This turns out to be

{5(5+§>+;§<&+ M) (§-D2ys+ IR (g 20im }(g)- . (B13)

which implies

1 1 1 1 3.1
g=Cy = 4F1(2 m+l, - ST+l, SmEMH, -z m-vH; 3 - ;2—) ) (B14)

where C, is independent of z,

The function h can be found by integrating (B7) with respect to z, the arbitrary
constant of integration being fixed by substitution into (B6),

It then only remains to determine C; and C, . This is done by specifying Z » as
f)) in (B1), multiplying the equation by vz exp(iz), and considering the limit as
Z->0 , |

The final formulae are, for I ml even

1 1

1
m
gm, v, z)=(-)? %m(m+2y)-;— 4F1 (2 m+l, Zm+1 —m+v+1 -5 m- V+1: 3. —__1_) ,

)2’ Z2

(B15)
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h(m, v, z)= %[—g'(m,v, z)+ % g(m,y ,Zﬂ

1
el 1 1. 1 J1 o1
+(-)2 4F1(2m, z-m,zmﬂ), >m V7, ——Zz) s (B 16)
and for |m| odd
oy A(m+1) (_ m-l m+ mey+  mi2y-l 1 1
g(m,y,Z)—( )2 4F1 2 H 2 3 2 > 2 229 Z2 2 (B 17)

h(m, v,2)- 3 [-g'(m, v, 20+ S glm, v, )|

+(_)§<m—1) D mezy)t p(Cmd mAmd o m-l 3 1
2 Z4F1< > 0 5 5 +), > V’Z 2 ) (B 18)
In particular, form =1,
g(l,v,z)= -1 , (B19)
W1, p,z) = —’;— ; (B20)
form = 2,
82, ¥, 2)= -2(+1) & (B21)
h(2,¥,2)- ~1+2V(40) & (B22)
for m = 3,
g(3,V,z)=1—4(V+1)()/+Z)‘zlz' s (B23)
h(3,¥,2)= -(3v+4) L +avp+1)(v42) é , (B24)

The formulae (B19) to (B24) have been verified by an independent method.
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Appendix C

The purpose of this appendix is to obtain the initial terms of the asymp-

totic expansion for large ka of

Hézim(ka) / Hf;) (ka) (C1)

where Y, is a zero of H(ﬁ)(ka) qua function of vy, m is an even positive or negative
integer, and the prime denotes differentiation of the Hankel function with respect
to its argument,

Ifin (B1)V = 12 , Z = ka, it appears that

(2) _ (2)'
H ka) = ,
(ka) = g(m vy

Y, ,ka) H
¥+m £

(ka) . (C2)

But according to Appendix B, with 2n introduced for convenience in place of m,

n Zn(l{e +n) 3 1
(- l - RV . (C3
g(2n, Y, ,ka)=(-) 4F1 l+n,1 n,1+)2+n,1 R ] (C3)

ka 2 (ka)’

Since [cf. (3)] s

) s 1
’ﬁ‘ ka +’fz(ka) +0[@3—:l , (C4)

the only serious problem is the determination of the asymptotic form of the 4F1

function in (C3) (hereinafter simply written  F.) when {}2 is given by (C4),

471
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Now it can be shown that+

b . 2p 2pn 1
1+ ¥, +n) (1- y,-n) =(- ;
(+f’€+n)p< Y n),p =)y [H vy +0( ’22)}, (CH)
so that
= (kn),, (1-n), (”z & 2p 1
F = E + =2 40 ,
41 3 (3/2 ka) {+ 7 ( 122)1 (c6)

or, using (C4)

F‘F(1+n1n§1) k24 ;= F(z+n2n§1) o|— (C)
41 271 2 ka)?3  ka | 2°1 2 (ka) 13
But (Erdélyi 1953, pp 3, 104)

1/2 (3/2): o (C8)

(1+n I-n; = ,1)
2 27 (- ) (- -0y
5 (3/2): (- 5/~2 n
F (24n,2-n; = 1 = (- s
5 1( 0,25 %5 1) = (- Lo (--——n) (-) (C9)

so that (C7) gives

nt| 4 Te n . 1
F.=(- I+ 7 (n?-1 T to| —zm . 10
JF70 (el )[(ka)ZS ka] [(ka) /Sjl 10

Finally, the substitution of (C10) and (C4) into (C3),and the replacement of n

by %m, give

T
g(m, v, ,ka)= -m{ 1+ %(mz—l) lz/g + = +0 —1—4— . (C11)
4 (ka) 2ka (ka) 3

+
The notation is (a)o=1,(a)n=a(a+1)(a+2). .. (a+n-1) for n=1,2,3,..
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Appendix D

The purpose of this appendix is to obtain the initial terms of the asymp-

totic expansion for large ka of the function

H;)(ka) / { < [H(j)(kaﬂ} , (1)
V=Y

2
where 1))2 is a zero of H)(/)(ka) qua function of p.
It can be shown, either from the Sommerfeld integral representation of

the Hankel functions, or from recurrence relations, that

dl@g. ] . wipel @ 3 L@ .
E[Hv(ka)]--Hv(kaHGHV (ka)—z(-)— H, (ka)+ s (D2)

where the primes denote differentiation of the Hankel functions with respect to
their argument,
Then if in (D2) Bessel's equation (B4) is used to express all Hankel

()

2 1
function derivatives on the right hand side in terms of H S (ka) and H( )

iy (ka), and

if, further, v is set equal to 12 , the result is

2
d @) 1 O +2
S]] b
(ka)

v =y
2T vy ess Yy 24
3 £ !
e Hfka). (D3
40 [ (ka)? (ka)* } - (0¥

The substitution of (C 4) into (D3) now gives, with the help of the Hankel function
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Wronskian,
d [.@ ] 4 % [ 1 1 1
— |H. (k = 1- +0 . D4
{dV 4 ( a)} wka 3(ka)2/3 (ka)45/3 H(;) (ka) ( )
V=1je L
Furthermore
1Y (ka) = 23, (a) (D5)
s £
and accord‘mg to Olver (1954, equation 4. 24)
-inf6
3, (ka) = £ Bila) — o=+ 0| = | (D6)
£ 243 (ka)3 (ka)!3

where Ai(z), Bi(z) are the Airy integrals tabulated by Miller (1946), and
Ai(a ﬁ) =0,

From (D4), (D5), and (D6) the expression (D1) is evidently

_ in/6  1/3 [ , T, 1
- e (ka) Bi(ay)| {1+ —*=+ +0 , (D7)
2 4/3 I:J 3(ka) I:(ka) ;g]

which is the required form,
Finally, it may be noted in parenthesis that another result due to Olver (1954,

combining equations 424, 4.26), namely

413 inf3 :
@, 27 e 23w inf3 1
HV (ka)= _WB__ Ai(- VY / ;e ) + O[—‘;?/g] s (D8)
where
32 3
; =5 (¢ -tanh o) , (D9)
cosh o= y/(ka) , (D10)

leads rather easily to (3) from the approximate solution of
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_ ))2/3 ; eirr/3

=y, (D11)

for y in terms of ka when ka is large,
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