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SUMMARY

This report is a reorganization and condensation of the theory
underlying the earlier work of other investigators in the measurement of
the Q@ of a resonant circuit, cavity, or antenna by the coupled impedance
method. In this method, impedance measurements at several frequencies
are taken on & coll which is coupled to an unknown resonant system, with-
out knowledge of the degree of coupling, and the Q of the unknown system

is computed from these measurements.

INTRODUCTION

It is sometimes desirable to obtain the Q of a resonant circuit,
an antenna, or a cavity resonator without making any physical connection
to it. This can be done by taking measurements at several frequencies
(at least two) on a coil or loop which is magnetically coupled to the cir-
cuit in question. It is not necessary to know the degree of coupling,
provided this i1s held constant during the measurements. A cavity resona-
tor or antenna can be represented by an equivalent circuit having the same
Q as that of the resonator or antenna; as far as the analysis is concerned,
this has the advantage that the Q can be expressed in terms of the values

of the elements in the equivalent circuit as well as in terms of the stored






and dissipated energies in the unknown distributed system.

CIRCUIT ANALYSIS

Consider the circuit of Fig. 1, where the unknown circuit is

represented by the elements Ly, R, and Cp. The loop equations are

]
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Ey 111 - Zmlp

(1)
0

- vy + 22l
These can be combined to show that the impedance Z = El/Il seen by the

source is . . . D,
2 = Zy - %y /% (2)

where Zl is the impedance of the primary circuit alone and the last term

is a coupled impedance

. . 2 *

Ze = ~Zy/Z (3)
In all these equations 2 is equal to +juM, so that

72 = PP (1)

The impedance Z, is the total series impedance of the unknown secondary

circuit:s .

Zy = Ry + 3%, (5)

where

X = ol - 1/aCp (6)

The coupled impedance given by (3) can be separated into real and

imaginary parts:

Zo = Re + JX, (7)
By substituting (4) and (5) in (3) and rationalizing the result, we obtain
2
Rc = 2"0 Me > R2 (8)
Ry™ + X5
xC = -0)21@ X2 = :—)-(—-2— RC (9)
Ry® + X7 Rp



The square of the magnitude of Z. is equal to the sum of the squares of (8)

and (9):
2 2
2 2, 2 . 9MR® + %0 (10)
Ze = Rc + Xo = 5 5.2
(RQ + X2 )
Beginning with this quantity written as an identity
w»th'(Ra2 + X22) ) wth(Reg + X5°) (1)
2 2 2.2
(R22 +vX22) (Ry” + X))
we then rearrange the terms to obtain
aﬁMhXQE . GFM#REE whtH(Ro? + X22) -6 (12)

2

(R + 2,7)% (RSP X%.5)? (B2 + %p2)2

We next complete the square of the last two terms by adding the term
o' /4Ry to both sides of the equation:
mthXQQ . w#MARQE i col‘M)*(Rg2 + Xae) . ot ) it
(R2 + X22)2 (R2 + X22)2 (Rp? + X22)2 4R22 4Ry2

This is then equivalent to

(13)

2 2 2 2
w2MaY o2 aPME M2
—_—a ___Efﬁﬁi__ - = - (14)
(s}
R22 + X2‘ 322 + X22 2Ry Ry
By comparison with (8) and {(9), we can see thst this is the same as
2 PYE 22 | 2 |
oM
[xc] + |R, - == =| = (15)
2R, 2R,

If o were constant, (15) would represent a family of circles in the plane

of Rc and X,., Actually, if the Q of the unknown circuit is sufficientl& high,
most of the significant change in R, and X, takes place at values of

quite close to the resonant value ¢,. Consequently, if (15) is rewritten

with w, in place of w, we have an equation



e

2 22 | 2 2y |2
[XCJ +|g, - & s I R (16)
2R2 2R2

which is approximately correct when Q is high and which has the anslytical
advantage of representing a family of true circles in the RC-Xc plane.

One of the family of circles described by (16) is shown in Fig. 2.
From inspection of the equation it is evident that all of the circles have
centers on the Rc axis and pass through the origin. For each circle there
is a point D where R, = R, ___ and X, = 0; by setting (9) equal to zero, we
find that at D

X, = O. (17)

For each circle there are two points where Rc = IXcl » located at the inter-
sections of the circle with the lines X. = #R.. These two points are
labelled A and B in Fig. 2. By placing

R, = |xc| (18)
in (9), we find that at A and B

X2 = + R2 (19)
Because the secondary is a simple resonant circuit, the usual resonant

circuit reletionships apply:

X2 = O when £ = fg
Xy = -Bpwhenf =f; ¥ f (1 - 1/2Q;) (20)
X, = 4R, vhen f =1fp T f(1 + 1/2Q5)
f
Qe = _S (21)
fo - fl

Because of (9), (17),and (19), we can identify the frequency f_ with
point D, the frequency f1 with point A, and the frequency f, with

point B. We then use (21) to find Q-
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FIG. | THE CIRCUIT USED IN THE MEASUREMENT, WITH THE
UNKNOWN RESONANT CIRCUIT AT THE RIGHT

FIG. 2 THE CIRCLE IN THE R.-X. PLANE AS
REPRESENTED BY (16)
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MEASUREMENT PROCEDURE

Based on the foregoing analysis, the measurement procedure con-
the following steps:

At each of several frequencies near resonance,

a. measure the impedance z = él/il,

b. measure él alone, by reducing M to zero, and

¢c. subtract to obtain éc‘

Plot éc in the complex impedance plane, as in Fig. 3 or Fig. 4,

a. identify the frequency f, where Xc = O and R, = R, max, and
b. 1identify the frequencies fl and fo at points A and B where

the curve intersects the lines X, = +R..

Obtain Qy from (21).

SIMPLIFIED MEASUREMENT PROCEDURE

It is evident from Fig. 2 that the points A and B previously defined

by (18) could have been defined instead as points where Re = 0.5 Ro pay-

In the case where it is known that Rl (see Fig. 1) is negligible in

comparison with R,, it may be assumed that the resistive component of

the measured impedance Z is equal to Rc' In this case, reactance values may

be ignored entirely, and the frequencies fj and fp may be defined simply as

the frequencies where the resistive component of the measured impedance is

equal to half its maximum value. The simplified measurement procedure then

becomes:

l. At each of several frequencigs, measure the resistive com-
ponent of the impedance 2 = E,/I;.

2. Plot a curve of this resistance versus frequency and identify
the frequencies f; and f, where the resistance is equal to half
of its maximum value.

3. Obtain Qp from (21).
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NUMERICAL EXAMPLES

Figure 3 shows two curves calculated for particular cases where
Qo = 10 (dashed curve) and Qp = 100 (solid curve). The calculations are
based on the exact equation (15) rather than the true circle equation (16),
so that the circles are somewhat distorted. The values of M and Rp have
been selected so that the circles have the same diameters. The same
curves are redrawn in the reflection-coefficient plane in Fig. 4; the re-
lation between the two coordinate systems is such that & circle in one
coordinate set transforms into a circle in the other. The lines Xg = +R,
in Fig. 3 transform into arcs of circles in Fig. k4.

In plotting the points in Fig. 3 and Fig. 4 from (8) and (9), it

is convenient first to rewrite these equations in terms of a/wb and Qo.

Since wy 1s the value of @ for which Xp = 0, we use (6) to obtain

oLy, = 1l/w,C, (22)
In terms of the equivalent circuit values, Qy may be defined as

% = olo/Ry = 1l/oCoRy (23)
We may then rewrite (6) as

Xy = oLmy/0, - Oy/ogmly = QpRa(w/oy - wo/w) (24)
If (24) is substituted for X, in (8) and (9) R, and X, can then be written
as - 2P (/o)

C X 2 (25)

Ro 1+ [ape/ey - wo/w)]
X, = -Qpla/o, - oy/o) R, (26)

For simplicity, the curves in Fig. 3 and Fig. 4 are plotted with
w02M2/R2 set equal to unity. In the case Qp = 100, the following table

gives the computed values of Ry and Xc used in plotting:
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m/mb 0.98 0.985 0.99 0.995 1.0 1.005 1.01 1.015 1.02
Re 0.057 0.097 0.196 0.495 1.0 0.505 0.206 0.104 0.062
Xo 40.226 +0.291  +40.392 +0.495 0 ~-0.505 -0.410 -0.310 -0.245
In the case Qo = 10, the computed values are
o/w, 0.8 0.85 0.9 0.95 1.0 1.05 1.1 1.15 1.2
R, 0.030 0.062 0.149  0.437 1.0 0.564 0.261 0.140 0.100
X, +0.135 +0.202  +0.313 +0.450 0 -0.550 -0.498 -0.407 -0.366

Upon inspection of Fig.3 or Fig. 4, we note that the frequency

dispersion is about 10 times as great for one curve as it is for the other,
as would be expected from the difference in Q. We note further that the
points corresponding to the frequencies fo(1 + 1/2Q) for the @ = 100 curve
fall almost exactly on the intersections with the X, = :}Rc lines, while for
the Q = 10 curve there seems to be a slight displacement. The reason for
this displacement is that the frequencies fo(1 + 1/2Q) given by (20) are not
exact, the error becoming larger as Q becomes smaller.

In connection with the half-maximum resistance points mentioned in
the simplified measurement procedure, we note that there is close agreement
between these and the frequencies fo(l - 1/2Q) for the Q = 100 curve, but that
there is & considerable discrepancy in the case of the Q = 10 curve. This
discrepancy is caused by the substitution of @, for ® in (15) to obtain
(16). However, since the frequency displacement is in the same direction
and by about the same amount at both A and B, the error in using (21) is
ghite small, so that the simplified measurement procedure is still quite

accurate for values of Q as small as 10.
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FIG 4 THE CIRCLES OF FIG 3
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