JOURNAL OF ELECTRONIC TESTING: Theory and Applications 11, 197-209 (1997)
(© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Testability Properties of Divergent Trees

R.D. (SHAWN) BLANTON
Center for Electronic Design Automation, ECE Department, Carnegie Mellon University,
Pittsburgh, PA 15213-3890
blanton@ece.cmu.edu

JOHN P. HAYES
Advanced Computer Architecture Laboratory, EECS Department, University of Michigan,
Ann Arbor, Ml 48109-2122
jhayes@eecs.umich.edu

Received March 20, 1996; Revised June 6, 1997

Editor: A. Paschalis

Abstract. The testability of a class of regular circuits called divergent trees is investigated under a functional faul
model. Divergent trees include such practical circuits as decoders and demultiplexers. We prove that uncontroll
divergent trees are testable with a fixed number of test patterns (C-testable) if and only if the module function |
surjective. Testable controlled trees are also surjective but require sensitizing vectors for error propagation. V
derive the conditions for testing controlled divergent trees with a test set whose size is proportional to the numb
of levelsp found in the tree (L-testability). By viewing a tree as overlapping arrays of various types, we also derive
conditions for a controlled divergent tree to be C-testable. Typical decoders/demultiplexers are shown to on
partially satisfy L- and C-testability conditions but a design modification that ensures L-testability is demonstratec

Keywords: fault detection, fault modeling, regular circuits, interactive logic arrays, structured circuits, test gen-
eration

1. Introduction erty is true for am-bit adder as well, that is, eight tests
are required for a ripple-carry adder regardless of the
It has long been recognized that regular logic cir- number of modules in the array, a property known as
cuits, which are constructed from identical modules C-testability [2].
that are interconnected in a uniform fashion, are easier The one-dimensional array adder of Fig. 1(a) is a
to test than irregular circuits. For example, the circuit special case of a type of regular circuit called a tree. In
of Fig. 1(a) is an 8-bit ripple-carry adder composed generalfreesare combinational logic circuits that have
of eight identical modules (full adders) connected as a at most one path between any two input/output ports.
one-dimensional array. Thisadderistestable forallsin- A path can contain single or multiple lines (buses).
gle stuck-line faults [1] with eight test patterns. These The modules or cells used to construct a tree circuit
eight tests also detect any fault that alters the function can have internal reconvergent fanout, but fanout is not
of any single module in the circuit. This testing prop- allowed among the modules. Figure 1(b) illustrates an
8-bit parity tree constructed from 2-bit EXCLUSIVE-
*This research was supported by the National Science Foundation OR modules. For this tree, the size of the buses that
under Grant No. MIP—9503463. interconnect the modules is one, and between any two

198 Blanton and Hayes

Dy

D,
D

2
gjj D— Parity
D6
D7j) YL
(0)

Fig. 1. Examples of regular tree circuits: (a) an 8-bit
ripple-carry adder and (b) an 8-bit parity circuit.

module ports there is only one path. One can easily seenumber of signal lines can increase, decrease or re-
how the one-dimensional array structure of the adder main the same as one moves from the primary inputs
results if the parity tree is restricted to a single module to outputs. The parity tree is an example of a tree that
per level. converges, while the decoder and demultiplexer trees
It is useful to extend the notion of a tree to make are examples of divergenttrees. The ripple-carry adder
a distinction between data and control inputs. A tree is a tree that neither diverges or converges.
with both data and control lines is calleccantrolled In general, regular circuits are easy to test because
tree The 3-to-8 decoder circuit constructed from 1-to- the testing requirements for the circuit's modules are
2 decoder (Dcd) modules and the demultiplexer circuit identical and the regular interconnections allow tests
constructed from 1-to-2 demultiplexer (Dmx) modules for one module to be used on other modules. They also
of Fig. 2 are examples of such a circuit. Tree circuits have other advantages. For example, because regular
can be convergent, divergent, or neither, that is, the circuits are made by connecting identical modules in

S G G
: presses ‘ greeee ‘
Dmx| DO q --------------------------- .' Ded| DO
: D, SR e Dy
{ I Dmx| beeemy I Ded ||
: ﬁi—LDmxi D2 ﬁH:DcdiDz
s 5 — Dy Gl § D
D—\Dmx| ; Dcd | ¢ :
an — D— " :
: : — D -] — D
Cheeeen 1 2 Dmx 4 : i 1 Dcd 4
B ——— E D
,Dmx: E-.T DCd .
' Upmx Do S ea— Ds
—D, —D,

(@) (b)

Fig. 2. Examples of divergent tree circuits: (a) a 1-to-8 demultiplexer and (b) a 1-to-8 decoder.

Testability Properties of Divergent Trees 199

a regular fashion, large circuits are easy to build and defined and illustrated. The testability of uncontrolled
have fewer design errors. The interconnection structure and controlled divergent trees is analyzed under this
of regular circuits is also ideal for layout in a VLS| fault model in Section 3. Section 4 presents conditions
environment. As a result, they are used a great deal infor testing divergent trees with very few test patterns,
large designs. For example, two-dimensional arrays while Section 5 describes design methods for ensuring
and trees in the form of storage arrays, decoders, andthat these conditions are satisfied. Finally, Section 6
multiplexers can be found in all memory designs. summarizes our results.

The testing properties of one-dimensional arrays
have been studied extensively [2-4]. In [2], the con- 2. Function and Structure
cept of C-testability was introduced, and conditions
required for arrays without vertical outputs to be C- An n-ary p-level divergent tred® (n, p) is constructed
testable are presented. In [3], necessary and sufficientfrom a set of identical modules arrangedprevels.
conditions for the C-testability of unilateral and bilat- Each moduleM;, has a single state input bu§, an
eral one-dimensional arrays with vertical outputs are optional level-control input bug,, andn state output

~

presented. The authors of [4] present similar testing buses denote&ﬁl, XIZ, ..., X{|; see Fig. 3(a). (The
conditions to those in [3] along with conditions for lo- subscripts, | will only be used when the correspond-
cating faulty modules within the array. The testability ing module name is ambiguous.) The word size for
of two-dimensional arrays has been similarly investi- X and eachX/ is n, and the word size o¥, is n,.
gated. For example, various sets of sufficient condi- Thus, the set of values that can be assigneX tis
tions for the C-testability of two-dimensional arrays Ix = {0, 1, ..., 2™ — 1}, where eachny-bit value is
are presented in [5-7]. In [8] and [9], C-testable two- denoted by a decimal number. Similarly, the set of val-
dimensional array designs for multiplier and divider ues assignable tg, is 1 = {0, 1,...,2"% — 1}. The
circuits respectively, are discussed. In [10], an auto- set of possible output values that can be produced at
matic test pattern generator called NCUBE for two- each state outpuX! is alsol x.
dimensional arrays is described. The testing character- Then state output function&! for 1 < j < n of
istics of systolic arrays have also been investigated in the divergent tree module can be described by a com-
[11, 12]. Systolic arrays are one- and two-dimensional posite truth table containing output columns labeled
arrays and trees with buffer memory added to the cir- X1, X2, ..., X". Each rowr, and columnX! entry
cuit's modules. specifies an input patteiip, = (vp, v1) and an out-
Some research has addressed the testability of con-put valuevg. Hereip, denotes a control valug and
vergent trees [13—18], but there appears to be no work a state input value;, while v, denotes the state out-
on divergent trees. In this paper, we examine the test- put value produced aX! whenip, is applied. Rowk
ing properties of divergent tree circuits like the de- of the truth table thus defines the fault-free mapping
coder and demultiplexers of Fig. 2. The rest of this denotedp, — vy at state outpuX! or, equivalently,
paper is organized as follows. Section 2 presents our X! (ipy) = vy.
notation for describing the function and structure of A controlled nary p-level divergent tre€€D(n, p)
divergent trees. The IP fault model adopted is then has a control input bug, for eachM; ; in levell, where

Control input

Z
/E/ nz= 1 o1 2
. S D s Xl Zi Xi) XI,| Xi,I
State input o : 00 0 0
X——D M,-, ! *~ " State outputs 01 1 0
=1 Dl x 10 | 0| O
nx= 1 11 0 1

@ (b)
Fig. 3. (a) A 1-to-2 demultiplexer modullf; | and (b) the truth table foM; .

200 Blanton and Hayes

1 < | < p. A controlled divergent tree iglobally
controlledif all Z, are connected together. A diver-
gent tree isuncontrolledif no Z; is present. If a di-
vergent tree haaP~' modules on every levdl then
the tree iscomplete otherwise it isncomplete Here,

an uncontrolled divergent tree modWg | with n=2
andny, = 1. Assume both the&X! and X2 outputs of
M; | implement the NOT function, which is defined by
column 12 of Fig. 4. The remaining columns repre-
sent all the possible faulty functions allowed by the IP

we only consider complete trees, but our results ap- fault model. For example, the faulty function of col-
ply to incomplete trees as well. Figure 3 illustrates our umn 11 is easily described by the multiple IP fault
notation for a module that represents a 1-to-2 demulti- F ={1— (0, 1)1,0 — (1,0)2,1 — (0, 1)?}. Notice
plexer. that columns 0, 4, 8, 13, 14, and 15 are the only faulty
We employ a special case of thgut pattern(IP) functions possible under the single stuck-line (SSL)
fault model [19]. The IP fault model assumes only a fault model. (Under the SSL fault model [1], a sin-
single module in the circuit can be faulty. All modules gle signal line in the circuit can either become perma-
are assumed to be combinational, and the function of a nently fixed (stuck) at a logical 1 or 0 value.) Thus, the
faulty module is assumed to remain combinational, that IP fault model is more general than the widely-used
is, no sequential behavior is allowed. No restriction is SSL model because it allows for many more faulty

placed on the type or size of the module, making it
possible to apply the IP model to circuits described at
different design levels.

A fault f; that affects outpukk can change the re-
sponse to an input patteipy; from v; to v] ; we denote
this change byp; — (vj, v})k and refer to it as a sin-
gle input patternfault, or simply as an IP fault. The
pair of distinct state value@y, v,) denoting the good
and faulty output values is therror corresponding to
the IP fault. The IP fault model allows a single module
to be affected by a single IP fault or a set of such faults
(amultiple IP faul) F = {f{, fo, ..., fg}. Itisimpor-
tant to note that a multiple IP fault is not restricted to a
single state outpuk.

The IP fault model can be customized for the testing
application of concern. For example, in the special

behaviors.

In this paper, we assume that a tree module can be
affected by any single or multiple IP fault (i.e., the cell
fault model). This means afaulty divergenttree module
can produce an erroneous output value at one or more of
its n state outputs for one or more input patterns. Since
error masking is not possible in a divergent tree (due
to the absence of reconvergence), the set of (single and
multiple) IP faults that affect a single state outpUt
for 1 < j < nare dominated by the set of all possible
IP faults. Thus, we need only to explicitly consider IP
faults that affect a single outptf(i forl<j <n.
Moreover, the set of all multiple IP faults that affect a
single state outpuk! dominate the set of all single IP
faults that affect the same outp¥t. Thus, adoption
of the cell fault model only requires us to consider the

case where all single and multiple IP faults are assumed set of all possible single IP faults that affect each state

possible, the IP model becomes equivalent to the well-
known cell fault model[20], where all modules are

output.
The number of possible single IP faults for an

required to be tested pseudo-exhaustively. This specialn-output divergent tree module isK (W — 1), where
case of the IP fault model is advantageous in situations K =2™*" and W =2"%. Note that this number of

where the implementation details of the circuit modules
are unknown.

The characteristics of the IP fault model are il-
lustrated by the following example. Figure 4 shows
truth tables for all 16 possible Boolean functions of

faults is much smaller than the“?* — 1 possible
faulty module functions. For example, the demulti-
plexer module of Fig. 3 has$2- 1 = 255 different func-
tional faults. The set of eight single IP faults for the
two state outputX® and X2 are shown in Fig. 5.

Input Output column:{)fl,)62)
X 0 1 2 3 4 5 6 7 8 9 10| 11| 12 | 13| 14 | 15
0 oojo0|0O0O|0O0|01|{01(01|01|10| 10| 10|10 12|12 |12]| 12
1 00| 01|10 11 |00| 01|10 11 |00|01|10|112|00]|01]|10]| 12

Fig. 4. The 16 possible Boolean functions of a 1-bit uncontrolled divergent tree module.

Testability Properties of Divergent Trees

XL P faults X2 IP faults Module D, Module D,

ZIX = (e vl | ZX = (v, vl X | Xt | x2 X | Xt | x2
1 2

00— (0, 1)1 00— (0 1)2 ol 3] o0 0] 0} 2
01— (1, 0)1 01— (0, 1)2 1] 1 1 11110
10— (0, 1)1 10— (O, l)2 21 2| 2 2| 2 3
11— (0,1) 11— (1,0) 3 0 0 3 3 1

Fig. 5. The eight IP faults for th&* and (@ (b)

X2 state outputs of the 1-to-2 demultiplexer

module of Fig. 3. Fig. 6. Truth tables for two uncontrolled di-

vergent modules: (a; which is not surjec-
tive and (b)D2 which is surjective.

3. Tree Testability
Theorem 1. Ann-ary p-level uncontrolled divergent
We now examine the testing properties of tree circuits. tree D(n, p) is testable if and only if M is surjective.
A tree istestablefor all single IP faults (and, therefore
testable under the cell fault model) if each module in Proof: First, we show that the surjective property is
the tree can have every possible module input pattern necessary. Assum@(n, p) is testable butv; | is not
applied to its inputs, and any resulting error can be surjective. Thenthereis a state valye | x that cannot
propagated to the tree’s output. For uncontrolled trees, be generated as an output value at some state oXifput
we derive both necessary and sufficient conditions for As aresultp; cannot be applied to the internal module
testability. We then extend our faultmodelto controlled M ; connected to)A(il. Hence,D(n, p) cannot be
tree circuits and derive the necessary and sufficient con-fully tested unles$;, is surjective.
ditions for controlled divergent tree testability. Now we show that the surjective property is suffi-
cient for testability. Assume the divergent tree module

Uncontrolled Trees. We begin by defining the sur- IS surjective. Then every state output function is surjec-
jective property for a divergent tree module and then tive, SO error propagation from the state inputb each
show how this property is both necessary and sufficient State outpuk is guaranteed. We now use induction on

for an uncontrolled divergent tree to be testable. the number of levelp to show that each module input
patternip; can be applied to all modules (n, p)

using 2~ test patterns. Obviously, all®2input pat-
terns can be applied to the 1-level trBgn, 1) with
2" tests. By the inductive hypothesis, assufa@sts
are sufficient for g p — 1)-level treeD(n, p — 1). A
p-level tree can be viewed aqg p — 1)-level tree with
an additional level of modules connected to the outputs
of D(n, p—1). D(n, p) is testable with the samé>2
Figure 6 shows two examples of binaity=2) di- testsused fob (n, p— 1) because the level-1 surjective
vergent tree modules. The module of Fig. 6(a) is not modules ofD(n, p — 1) produce all 2« input patterns
surjective because state value 3 is absent fronXthe for the new level-1 modules db(n, p). Thus by the
output column. The second module of Fig. 6(b) is sur- principle of induction, all uncontrolled divergent trees
jective because both the! andX2 outputcolumnscon- D(n, p) with p > 1 can have all module input patterns
tain all members of the sef = {0, 1, 2, 3}. Notice applied to every module with"2tests. O
that surjectivity in an uncontrolled divergent module
implies that the state output functions are information Example 1. Reconsider the truth tables for the diver-
lossless. This means that the output values producedgent tree modules of Fig. 6. ModulB; is not sur-
by a module uniquely determines the input value ap- jective and therefore does not satisfy the conditions
plied. This is true for the uncontrolled divergent tree of Theorem 1. Figure 7(a) shows how the state out-
module since it has the same number of signal lines for put value 3, which is missing fronX? in Fig. 6(a),
the state inpuX and each state outpitt! . prevents testability of a 3-level uncontrolled divergent

Definition 1. A divergent tree module isurjectiveif

the set of output values produced at eXchis I, for

1< j <n. In other words, there is at least one occur-
rence of every possible state output value in each output
column of the module’s truth table.

202 Blanton and Hayes

3120 0
0123 D,
L Dl
Lll
.E!I
3 camnil
he applied

@

p 0123
0123] 2 2031
DZ
2031
0123 i D
{ 2031 S
0123— D ot
2031
2031L il b —3210
DZ
| 3210
D
100 D oo

(b)

Fig. 7. Three-level uncontrolled divergent trees constructed from the modules defined in FigDa: gajl (b)D».

tree. ModuleD; is surjective and therefore satisfies
Theorem 1. Figure 7(b) shows th& 2= 22 = 4 test
patterns that completely test a 3-level uncontrolled di-
vergent tree constructed froBy, modules. These four
test patterns also test an arbitrarily large trep l&vels.

Controlled Trees. The testing of a controlled tree is
complicated by faults affecting the control input buses
Z1, Z5, ..., Zp. We assume that each control input bus
Z,1 <1 < p, can be affected by a set of “stuck-bus”
faults, each of which is denotef] /v,, wherev, € |,

is some control input value. éontrol inputfault Z, /v,
causes the control input bug of all modulesM; | in
level | to be permanently fixed at,. Because it af-
fects more than one module, the fakjy/ v, is not cov-
ered by our fault model. The inclusion of control input
faults also subsumes SSL faults on the lines making up
Z,. Thus, we define a controlled divergent tree to be
completely testable if each modul4 ; in the tree can
be tested for all its IP faults, and each lel/elan be
tested for all its control input faults of the for#) /v,.

A single-fault assumption is still made, in that only a
single functional fault affecting a module or a single
control input fault can occur.

We now turn our attention to the testability of
controlled divergent trees. We define the sensitizing
property for these trees and then present conditions for
testability.

Definition 2. A sensitizingrector for an errotv,, vy)

on state inpuk of a divergent tree module is a control
input valuevg € |7 such thatX! (vo, va) # XX(vo, vp)
forsomej #Kk. Inotherwordsyyis a control value that
causes at least two state outputs to produce different

values when the errai,, vp) is present on the state
input.

Theorem 2. An n-ary p-level controlled divergent
tree CD(n, p) istestable ifand only if M is surjective
and there exists a sensitizing vector for every possible
error (va, vp).

Here, we sketch the proof of Theorem 2. The sur-
jective condition, similar to Theorem 1, is necessary
and sulfficient for applying every input pattern to ev-
ery module in an arbitrarily large tree. The sensitizing
vector condition is required for propagating all possible
errors to an output from any module within the tree.

Figure 8 shows atruthtable for a 1-to-2 decoder mod-
ule function. A controlled divergent tree constructed
from these modules is indeed testable because the
errors(1, 0) and (0, 1) both have the sensitizing vec-
torsZ, = 1 andz, = 0, and eactX/ is surjective, that
is, the valuedx = {0, 1} appear in the output columns
X! and X2. Also note that any 1-bit, 1-ta-decoder
will always be testable under the functional fault model
since, by definition, each module output will be surjec-
tive and the required sensitizing vectors must exist.

zZ X | x| x2
o0 | 0| 1
01 | 1 1
10| 1] o0
11 | 1 1

Fig. 8. Truth table
for the 1-to-2 decoder
module.

4. Efficient Testing

We next examine two special properties called level-
testability and C-testability that greatly reduce the num-
ber of tests for a controlled divergent tree.

L-testability. Consider the problem of testing a tree
for all IP faults using the smallest possible test set.
The size of the required test set can be exponential in
the number of levels in the tree. For example, consider
the demultiplexer module defined in Fig. 3.fAlevel
demultiplexer constructed from these modules requires
2°-1 different test patterns just for the set of SSL faults
[15].

Atree islevel-testabléL-testable) if all -level mod-
ulesM;; can be simultaneously tested for any IP fault
ipy = (vk, v,’()i. Trees that are L-testable have a test
set whose size is bounded By- p, whereW is a con-
stant typically equal to the number of possible input
patterns.

Theorem 3. An n-ary p-level controlled divergent
tree CO(n, p) is L-testable if and only ifl) there is
a sensitizing vector for every errqw,, vp); (2) for
eachy € I there is an input pattern jpthat produces
vk at each state outpuk!, for 1 < j < n; and (3)
for each control value; € |7 there is av, € |z such
that subfunctionX! (Z; = vy) # XK(Z) = vy), for
somel < j,k <n.

The proof of Theorem 3 is similar to that of
Theorem 1. The sensitizing condition of Theorem 3
insures error propagation while condition (2) is re-
quired for simultaneously applying any given input
patternip, to all modules on any single level. This ca-
pability accompanied by the sensitizing condition (1)
allows all levelt (for anyl) modules to tested simul-
taneously for alh(2™ — 1) possible single IP faults.
Condition (3) is both necessary and sufficient for test-
ing control input faults.

Example 2. A truth table for a 1-to-2 decoder func-
tion different from Fig. 8 is shown in Fig. 9. This de-
coder module partially satisfies the conditions of The-
orem 3. Condition(1) is satisfied in that sensitizing
vectors exist for the error€, 1) and (1, 0). Condi-
tion (3) is satisfied as well in that the subfunctions
X1(Z, = 0) and X3(Z, = 1) are not equal, that is,
X1(Z, = 0) # X2(Z, = 1). But condition(2) is only
partially satisfied. This condition states that for each
vk € Ix ={0, 1} there must be an input patteipy that

Testability Properties of Divergent Trees 203

Z X | Xt | x2
00 | 1 0
01 1 1
10 | 0 1
11 1 1

Fig. 9. Truth table for
a 1-to-2 decoder mod-

ule.

IP faults IP faults Are the faults
affectingX® | affectingX? | L-testable?
01— (1,0)! | 01— (1,02 yes
11— (1,0 | 11— (1,0)? yes
00— (1,0)! | 00— (0, 1)2 no
10— (0, 1) | 10— (1,0 no

Fig. 10. L-testability of the IP faults of the 1-to-2
decoder function defined in Fig. 9.

producesy, at X! and X2. This is true fory, = 1

but not forv, = 0, that is, we have two input patterns,
namely(Z;, X) = (0, 0) and(0, 1), that produce 1 at
both state outputs but no input pattern that produces 0
at both state outputs.

Since the testability of control faults only depends
on conditions(1) and(3) of Theorem 3, we can con-
clude that a decoder of any size composed of the 1-to-2
decoder modules is testable for all control faults. We
can also state that all IP faults involving the state input
value 1 are L-testable, but the IP faults requiring the
state input value 0 are not. Figure 10 summarizes the
L-testability of IP faults in this case.

Example 3. RTRAM is a RAM architecture designed
to improve both testability and performance [21]. It
utilizes a complex decoder that has additional modes
of operation beyond the normal decode function.
Figure 11 shows the gate-level implementation of a de-
coder used in RTRAM. In [21], the authors show that
the decoder is stuck-fault testable with a test set whose
size is exponential in the number of levels. Analysis
of the decoder implementation indicates that its func-
tion completely meets the L-testability conditions of
Theorem 3. The decode function provides the sensitiz-
ing vectors and there exist many input patterns that
produ@ a 0 and a 1 aboth outputs; for example,
000000— 00 and 11011%> 11. This means that the

204 Blanton and Hayes

%

X

D
} - ["
MDI}X

Fig. 11 Gate-level implementation of the RTRAM decoder module [21].

27 = 128 IP faults of eachlevel decoder module are
testable with 64 patterns.

C-testability. A closer examination of the divergent
tree structure illustrated in Fig. 2 shows that it can be
viewed asnP~! arrays ofn differenttypes For each
array typej, the module inputX;, serves as the ar-
ray’'s state input while the control inpi#; serves as
the array’s vertical input; the outplﬁtij_I is the array’s
state output. Figure 12 shows a covering of the de-
multiplexer circuit of Fig. 2(a) with four arrays of two
different types. Obviously a binarmy (= 2) divergent
tree module has two array types whileraary output
module has array types. Viewing trees as overlapping
arrays allows the testing properties of array circuits to
be generalized to divergent trees.

g G 8
i |-|U'|l|:-: gtll
: D | i
i 5 -Dmx|, 2
:\._ F i I’ -Dj
D —Dmx - b=
r -.|-- H B g
f
¢ Dimx| D,
Dmx| _gile :
D
o D B
Somap 2

Fig. 12 A covering of a 3-level demulti-
plexer tree by four arrays of two different
types.

An IP fault is C-testablein an array of arbitrary
size if it can be tested witk test patterns, wherk
is some constant. Friedman [2] showed that an IP fault
ip; — (v, v}) is C-testable in a one-dimensional array
if there is a sequence of module input patterns that re-
generatefp, at an arbitrarily large number of modules
and can propagate the er(@g, v;) from each of those
modules. The following lemma gives a bound on test
set size when faults are C-testable in the arrays within
the divergent tree.

Lemmal. Ann-ary p-level controlled divergenttree
CD(n, p) can be tested with at most Rt test patterns
if each type-|j array is C-testablevherel < j < n.

Proof: If the conditions of the lemma are satisfied
then the module is surjective. Hence, any module in
CD(n, p) can have any input patteip, applied, and
thereforeCD(n, p) can be tested by testing each ar-
ray within the tree separately. Since each array type is
C-testable, the bound on the number of test patterns
is knP~1, where isk is some constant. Also note that
any control-input fault is covered by testing the arrays
contained in the tree. o

Because an error at the input of a divergent tree mod-
ule can be propagated to one or more of the module’s
n state outputs, the conditions for C-testability of ar-
rays within a controlled divergent tree are less restric-
tive than the single array case. Thus, determining array
C-testability for divergent trees should considerrall
state outputs. This point is illustrated in the following
example.

Example 4. Reconsider the demultiplexer module.
Its truth table and IP faults are shown again in

Testability Properties of Divergent Trees 205

- ~ XL IP faults X2 |P faults
Z X | Xt | x2 i :
ZX = (v,) | ZIX = (v, vp)!
gcll 2 8 00— (0, 1! 00— (0, 1)2
10 0 0 01— (1,01 01— (0, 1)2
11 0 1 10— (0, 1)t 10— (0, 1)2
11— (0, 1! 11— (1,0)?

(@

(b)

Fig. 13 (a) Truth table for the 1-to-2 demultiplexer module and (b) IP
faults for the 1-to-2 demultiplexer module.

Figs. 13(a) and (b), respectively. Inspection of the truth
table indicates that any control value appliedfawill
propagate any error to eith&* or X2. Thus, an IP
faultip; — (vi, v{)J is C-testable for a typg¢-array if

ip; can be repetitively applied along an array of tyjpe
The truth table reveals that all but two of the eight IP

faults are C-testable in their corresponding array types;

the two exceptions are 1% (0, 1)* and 01— (0, 1)2.

But note that all internal tree modules (all modules not
on the output levep) are tested for these two faults
when the other six faults are tested. For example,
testing theX2-type arrays for 11> (1, 0)2, also tests
each internal module for the fault £ (0, 1)X. The
number ofp-level modules not tested for this fault is
equal to the number of modules not contained in an
array of typeX?2, that is, 2-2. Thus, an additional

2P-2 tests are needed to cover these modules. Simi-

larly, any internal module fault 03> (0, 1) is detected
by test patterns for the fault 0% (1,0)'. Hence,
an additional 2-2 separate tests are required for the
p-level modules and the fault 6% (0, 1)2. Thus,

a test set for gp-level demultiplexer is bounded by
2.2P2146.2P"1 = 7.2P~1 For the 3-level demulti-
plexer of Fig. 12, the bound is-4 = 28 tests.

In Section 3, we found that an uncontrolled diver-

array is C-testable fot < j < nandallinput patterns
simultaneously applied to a given level | have identical
control values.

The proof of Theorem 4 is very similar to the con-
vergent tree case proven in [18] and is therefore not
presented here.

Example 5. In Example 4, we found that any pattern
of control values will propagate errors to the demulti-
plexer tree outputs. Thus any set of input patterns that
can be repetitively applied along each of the two ar-
ray types that have identical control values will be
C-testable. Input patterns 10 and 00 are two patterns
that satisfy these conditions. Thus four of the possible
eight IP faults associated with the demultiplexer mod-
ule (also any of the decoder modules) are C-testable.
The two test patterns that test for the fallg® —

(0, 1), 00— (0,1)2, 10— (0, 1), 10— (0, 1)%} are
shown in Fig. 14. The second test pattern shown in
Fig. 14 illustrates error propagation for a faulty mod-
ule (shaded) affected by the IP fault-89(0, 1).

5. Design for Testability

The conditions of Theorem 3 suggest how to introduce

gent tree that is testable is also C-testable. This is in | .testability into divergent tree circuits. Theorem 3
contrast to a controlled divergent tree which can easily states that a controlled divergent tree is L-testable if
be testable without being C-testable. But under cer- the required sensitizing vectors exist, and for each state

tain conditions a controlled divergent tree is C-testable.
First, the arrays within a divergent tree must all be

C-testable if the divergent tree is to be C-testable. Sec-

ond, alll-level modules (for 1= | < p) must have the

same control value applied when the divergent tree is

valuevi € Ix thereis aninput patteip; that produces
vy at each state outp!. By adding a single control
line or utilizing an unused control valug € 1z, the
conditions of Theorem 3 can be easily satisfied.

being tested. These conditions are formally stated in Example 6. Consider testing a 1-to-1024 decoder im-

the following theorem.

Theorem 4. An n-ary p-level controlled divergent
tree CO(n, p) is C-testable if and only if each type-j

plemented as a 9-level controlled divergent tree of 1-
to-2 decoder modules; large decoders of this sort are
commonly found in memory chips. The decoder has
to be exhaustively tested to detect all SSL faults [15],

206 Blanton and Hayes

0
-~ DI:I'-II 0
Dmnx i
0] 0 Dimx g
0 Dmx i)
L : ;
i 0
i 0 Dmx 0
i :
0 0
D
mx 0

=—1}
Dhmix

1)

] 0
|
o
mx o
Dimx
0 |2
Cmx o
5 oy
L
: Ko
Dimx
o b
Dmx. 0

Fig. 14. Test patterns for the C-testable IP faults of the demultiplexer module.

hence a 1-t0-1024 decoder requirés2 1024 test pat-
terns. The 1-to-2 decoder module does have the re-
quired sensitizing vectors for L-testability, but is not
L-testable because the state value 1 can only be ap-
plied to one module at a time in any level. This implies
that only one module per level can be tested for a fault
that requires the state value 1 for fault sensitization.

Adding a single control lindlestto the 1-to-2 de-
coder module allows its function to be altered so that
a 1 can be simultaneously generated at bothXhe
and X2 state outputs. This modification results in the
state table shown in Fig. 15. Notice that the input pat-
tern (Test Z;, X) = (1, 1, 1) produces 1 at both state
outputs. A decoder built from these L-testable decoder
modules require§Vptests, wher&V = 8 is the num-
ber of test patterns required by a single module. Hence,
a 1-t0-1024 decoder composed of L-testable modules
requires 9 8 = 72 test patterns, a reduction of nearly
93%. The delay associated with a 9-level decoder may
be unacceptable for some applications. This delay can
be reduced while preserving testability by using larger
decoder modules, which can be made L-testable in the
same way.

A gate-level implementation of the unmodified de-
coder function is shown in Fig. 16(a). A gate-level

SN
femreannaaas 3 %2

(b)

Fig. 16. Gate-level implementa-
tions of (a) the unmodified and (b)
L-testable decoder modules.

implementation of the L-testable decoder function is
shown in Fig. 16(b). Notice, that L-testability is
achieved by simply replacing the NOT gate of
Fig. 16(a) with an EXCLUSIVE-NOR gate. The

Test 4
00 01 10 11

X 0|00 10 00 01
1|{dd dd dd 11

Fig. 15
testable 1-to-2 decoder.

Truth table of the L-

L-testable decoder design presented here is similar to
the ad hoc design presented in [15]. Here, a gate in the
original decoder implementation is replaced with an
EXCLUSIVE-NOR gate, introducing somewhat less
overhead then the additional EXCLUSIVE-OR gate
used in [15].

We show next how our DFT approach can enhance
the testability of a practical circuit. A set of registers
called aregister file is often used in processor datapaths

Testability Properties of Divergent Trees 207

A

write read
T T T
ST, S1, S 50

|
°>J
|

=

&

H Dmx| | | |Mux
Dmx:[l J: Mux
Dmx| | " |Mux
Dmx| | Mux
Dmx:[J: Mux
| 8 | |Mux

Dmx
. |

Mux—Data out

Data in —{Dmx|

e

|
= R | R

w

—
|
|
[——

x| X

Fig. 17. A register file containing eight registers.

for data storage. It is typically implemented by arrays with this fault model is easy since each module only
of D-type latches, with one or more I/O access ports has two states. Its next-state function can be tested
connected to uni- or bidirectional lines [22]. The ex- by verifying tha a 0 and 1 can be written into each
ample in Fig. 17 contains eight registers, and uses mul- latch with present states of either 0 or 1. Since the data
tiplexer and demultiplexer trees to implement separate values applied to each latch are independent, the next-

inputand output ports. The regist@rwith address = state function of all latches can be tested in parallel.
AreagCan be read out through the multiplexer tree while, Thus, registers are C-testable for this extension of our
atthe same time, the regis®y with addresg = Auwite fault model.

can be written into using the demultiplexer tree. When the multiplexer, demultiplexer, and registers

Using a similar DFT technique described in[18, 23], are combined to form aregister file as shownin Fig. 17,
the multiplexer part of Fig. 17 can be made L-testable. the testability of these circuits under the functional fault
To address the testability of the registers, we must again model is preserved, but testing is limited to a single reg-
extend our fault model to sequential array circuits. In ister at a time. Suppose we use an L-testable demulti-
general, a sequential module is a finite-state machine plexer and multiplexer circuit in Fig. 17. The demul-
whose memory outputs are all primary or serve as in- tiplexer cannot be “L-tested” because its data outputs
puts to a neighboring module. To extend our functional cannot be simultaneously observed, that is, each data
fault model, we assume a sequential module can changeoutput must be written into a single register at a time.
its next-state (transition) function to any other, as long Similarly for the multiplexer, applying a single L-test
asthe number of memory states does notincrease. Thugequires eight separate writes into the register file. The
testing a sequential array requires that the next-stateL-testability characteristics of these modified trees can
function of each module be verified. be preserved when combined to form a register file if

We will only consider the simplest case where the all registers can be written into simultaneously, that
sequential modules are D latches [3]. Testing aregisteris, all can be clocked at the same time. Figure 18

non o n
Broadcast ~ data data data data
Enable j: ok clk ok IR
Clock el Rﬁ clr F clr ﬁclr
Reset l ! l
Ql Q2 Q3 QN

Fig. 18 An N-bit register viewed as a one-dimensional array of D-type latches.

208 Blanton and Hayes

shows a signal calleBroadcastwhich is used to by- 5.
pass the gated enablEr{ablg signal of the register.

If connected to registeRy, Ry, ..., Ry, Broadcashl-
lows the simultaneous writing of all registers. With this
feature, the registers simply act as transparent buffers
between the divergent and convergent tree structures, 7.
hence they do not affect fault sensitization or error prop-
agation. Furthermore, since all registers can be written
into simultaneously, they can all be tested in parallel.
If each register has the same test pattern applied, than
any single error resulting from a faulty register module 9.
will be propagated to the multiplexer outputs since the
multiplexer is L-testable. Thus, the modified register
file is L-testable.

6. Conclusion

We have investigated a class of regular circuits called
divergent trees which include such practical circuits as *
decoders and demultiplexers. Because of their regular

structure, the testability of divergent tree circuits of ar- 13

bitrary size can be determined solely from the tree mod-
ule’s function. Uncontrolled divergent trees are testable

with a fixed number of test patterns (C-testable) if and #

only if the module function is surjective. Testable con-

trolled trees also have to be surjective but sensitizing 15,

vectors are required for error propagation. Controlled
divergent trees can also be L-testable or C-testable
if other conditions are satisfied. We found that de-
coders/demultiplexers only partially satisfy the re-

quirements for L- and C-testability but can be modified 17

to enhance their testability. Complete L-testability of
a demultiplexer was achieved using gate replacement
in the original gate-level design. The utility of the
L-testable demultiplexer was further illustrated in the
design of a small register file.

References

1. M. Abramovici, M.A. Breuer, and A.D. FriedmaBjgital Sys-
tems Testing and Testable DesitfiEE Press, Piscataway, NJ,
1990.
2. A.D. Friedman, “Easily Testable lIterative System#ZEE
Transactions on Computersol. 22, No. 12, pp. 1061-1064,
Dec. 1973.
3. T. Sridhar and J.P. Hayes, “Design of Easily Testable Bit-sliced
Systems,"IEEE Transactions on Computergol. 30, No. 11,
pp. 842-854, Nov. 1981.

. R. Parthasarathy and S. Reddy, “A Testable Design of Itera-
tive Logic Arrays,”|IEEE Transactions on Circuits and Systems
Vol. 28, No. 11, pp. 1037-1045, Nov. 1981.

11.

2.

16.

18.

19.

20.

W. Cheng and J.H. Patel, “Testing in Two-dimensional Iterative
Logic Arrays,” Proc. of the 16th International Symposium on
Fault-Tolerant ComputingOct. 1986, pp. 76-81.

6. H. Elhuni, A. Vergis, and L. Kinney, “C-Testability of Two-

dimensional lterative Arrays|EEE Transactions on Computer-
Aided DesignVol. 5, No. 4, pp. 573-581, Oct. 1986.

C. Wu and P. Cappello, “Easily Testable Iterative Logic Arrays,”
IEEE Transactions on Computeigol. 39, No. 5, pp. 640-652,
May 1990.

8. A. Takach and N. Jha, “Easily Testable Gate-level and DCVS

Multipliers,” IEEE Transactions on Computer-Aided Design
Vol. 10, No. 7, pp. 932-942, July 1991.

Q. Tong and N. Jha, “Design of C-Testable DCVS Binary Array
Dividers,” IEEE Journal of Solid-State Circuit§ol. 26, No. 2,
pp. 134-141, Feb. 1991.

10. A. Chatterjee and J. Abraham, “NCUBE: An Automatic Test

Generation Program for Iterative Logic Array$toc. of In-
ternational Conference on Computer-Aided Desigov. 1988,

pp. 428-431.

H. Elhuni and L. Kinney, “Techniques for Testing Hex Con-
nected Systolic ArraysProc. 1986 International Test Confer-
ence Sept. 1986, pp. 1024-1033.

J.H. Kim, “On the Design of Easily Testable and Reconfigurable
Systolic Arrays,Proc. International Conference on Systolic Ar-
rays 1988, pp. 1024-1033.

W.T. ChengTesting and Error Detection in Iterative Logic Ar-
rays, Ph.D. thesis, University of lllinois at Urbana-Champaign,
1985.

J. Abraham and D. Gajski, “Design of Testable Structures De-
fined by Simple Loops,"IEEE Transactions on Computers
Vol. 30, No. 11, pp. 875-883, Nov. 1981.

D. Bhattacharya and J.P. Hayes, “Designing for High-level Test
Generation,”IEEE Transactions on Computer-Aided Design
Vol. 9, No. 7, pp. 752-766, July 1990.

F. Lombardi and D. Sciuto, “Constant Testability of Combina-
tional Cellular Tree StructuresJournal of Electronic Testing:
Theory and Applicationd/ol. 3, No. 5, pp. 139-148, May 1992.
R.D. Blanton and J.P. Hayes, “Efficient Testing of Tree Circuits,”
Proc. of the 23rd International Symposium on Fault-Tolerant
Computing June 1993, pp. 176-185.

R.D. Blanton and J.P. Hayes, “Testability of Convergent Tree
Circuits,” IEEE Transactions on Computersol. 45, No. 8,

pp. 950-963, Aug. 1996.

R.D. Blanton and J.P. Hayes, “Properties of the Input Pattern
Fault Model,"Proc. of 1997 International Conference on Com-
puter DesignOct. 1997.

W.H. Kautz, “Testing for Faults in Cellular Logic Array®toc.

8th Symposium on Switching Automata The@867, pp. 161—
174.

. D.K. Pradhan and N.R. Kamath, “RTRAM: Reconfigurable

Testable Multi-bit RAM Design,’Proc. of 1988 International
Test ConferengeSept. 1988, pp. 263-278.

. Texas Instrument¥;TL Data BookVol. 2, Dallas, Texas, 1985.
. R.D. BlantonDesign and Testing of Regular CircuitBh.D.

thesis, University of Michigan, 1995.

Shawn Blantonis an assistant professor in the Department of Electri-
cal and Computer Engineering at Carnegie Mellon University where
he is a member of the Center for Electronic Design Automation
and principal investigator of the SEMATECH Design for Testability

Cost Model Project. He received the Bachelor’s degree in engineer-
ing from Calvin College in 1987, a Master’'s degree in Electrical
Engineering in 1989 from the University of Arizona, and a Ph.D.
degree in Computer Science and Engineering from the University
of Michigan, Ann Arbor in 1994. His research interests include the
computer-aided design of VLSI circuits and systems; fault-tolerant
computing and diagnosis; verification and testing; and computer ar-
chitecture. He has worked on the design and test of complex digital
systems with General Motors Research Laboratories, AT&T Bell
Laboratories, and Intel. Dr. Blanton is the recipient of National Sci-
ence Foundation Career Award and is a member of IEEE and ACM.

John P. Hayesis Professor of Electrical Engineering and Com-
puter Science at the University of Michigan, Ann Arbor, where

Testability Properties of Divergent Trees 209

at the University of lllinois, he participated in the design of the
ILLIAC 11l computer. In 1970 he joined the Operations Research
Group at the Shell Benelux Computing Center in The Hague, where
he worked on mathematical programming. From 1972 to 1982
Dr. Hayes was a faculty member of the Departments of Electrical
Engineering-Systems and Computer Science of the University of
Southern California, Los Angeles. He joined the University of Michi-
ganin 1982. He was the founding director of the University of Michi-
gan’s Advanced Computer Architecture Laboratory. He was Tech-
nical Program Chairman of the 1977 International Conference on
Fault-Tolerant Computing, Los Angeles, and the 1991 International
Computer Architecture Symposium, Toronto. Dr. Hayes is the author
of numerous technical papers and five books, inclutiiggarchical
Modeling for VLSI Circuit TestingKluwer, 1990; coauthored with

he teaches and does research in the areas of computer architectureD. Bhattacharya)introduction to Digital Logic Design(Addison-

computer-aided design, verification and testing; VLSI design; and

Wesley, 1993), an€Computer Architecture and Organizati¢Brd

fault-tolerant embedded systems. He received the B.E. degree from ed., McGraw-Hill, 1998). He has served as editor of various techni-

the National University of Ireland, Dublin, in 1965, and the M.S. and
Ph.D. degrees from the University of lllinois, Urbana-Champaign,
in 1967 and 1970, respectively, all in Electrical Engineering. While

cal journals, including théEEE Transactions on Parallel and Dis-
tributed Systemand theJournal of Electronic TestingDr. Hayes is
a Fellow of IEEE and a member of ACM and Sigma Xi.

