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Abstract. This paper explores the design of efficient test sets and test-pattern generators for on-line BIST. The
target applications are high-performance, scalable datapath circuits for which fast and complete fault coverage
is required. Because of the presence of carry-lookahead, most existing BIST methods are unsuitable for these
applications. High-level models are used to identify potential test sets for a small version of the circuit to be tested.
Then a regular test set is extracted and a test generator TG is designed to meet the following goals: scalability, small
test set size, full fault coverage, and very low hardware overhead. TG takes the form of a twisted ring counter with
a small decoder array. We apply our technique to various datapath circuits including a carry-lookahead adder, an
arithmetic-logic unit, and a multiplier-adder.
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1. Introduction

The widespread use of core-based designs makes built-
in self-test (BIST) an increasingly attractive design op-
tion [1]. BIST is a design-for-testability technique that
places the testing functions physically with the circuit
under test (CUT). BIST has several advantages over
the alternative, external testing: (i) the ability to test in-
system and at-speed, (ii) reduced test application time,
(iii) less dependence on expensive test equipment, and
(iv) the ability to automatically test devices on-line or
in the field. On-line testing is especially important for
high-integrity applications such as automotive systems,
in which we are interested.

When BIST is employed, a VLSI system is par-
titioned into a number of CUTs. Each component
CUT is logically configured as shown in Fig. 1. In nor-
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mal mode, the CUT receives its inputsX from other
modules and performs the function for which it was
designed. In test mode, a test pattern generator cir-
cuit (TG) applies a sequence of test patternsS to the
CUT, and the test responses are evaluated by a response
monitor (RM). This paper concentrates on the design
of TG, although we also consider some relevant as-
pects of RM. In the most common type of BIST, test
responses are compacted in RM to form signatures.
The response signatures are compared with reference
signatures generated or stored on-chip, and the error
signal indicates any discrepancies detected. We as-
sume this type of response processing in the following
discussion.

Four primary parameters must be considered in
developing a BIST methodology:

• Fault Coverage: the fraction of faults of interest that
can be exposed by the test patterns produced by TG
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Fig. 1. Generic BIST scheme.

and detected by RM. Most RMs produce the same
signature for some faulty response sequences as for
the correct response, a property called aliasing. This
reduces fault coverage even if the tests produced by
TG provide full fault coverage. Safety-critical ap-
plications require very high fault coverage, typically
100% of the modeled faults.

• Test Set Size: the number of test patterns produced
by the TG. This parameter is linked to fault coverage:
generally, large test sets imply high fault coverage.
However, for on-line testing either at system start-up
or periodically during normal operation, test set size
must be kept small to minimize impact on system
resources and reduce error latency, that is, the time
elapsing before the effects of a fault are detected.

• Hardware Overhead: the extra hardware needed for
BIST. In most applications, high hardware overhead
is not acceptable because of its impact on circuit size,
packaging, power consumption, and cost.

• Performance Penalty: the impact on performance
of the normal circuit function, such as critical path
delays, due to the inclusion of BIST hardware. This
type of overhead is sometimes more important even
than hardware overhead.

We have been investigating the design of TGs in the
four-dimensional design space defined by the above
parameters with the goals of 100% fault coverage,
very small test sets, and low hardware overhead. The
specific CUTs we are targeting are high-speed data-
path circuits to which most existing BIST methods
are not applicable. Our CUTs areN-input, scalable,
combinational circuits with large values ofN (64 or
more). They also employ carry lookahead, a very
common structure in high-performance datapaths. It
is well known that such circuits have small determin-
istic test sets that can be computed fairly easily. For
example, it is shown in [2] that the standardn-bit carry-
lookahead adder (CLA) design, which hasN = 2n+1

inputs, has easily derived and provably minimal test
sets for all stuck-line faults; these test sets contain
N + 1 test patterns. Some low-cost, scalable TG de-
signs for datapath circuits based on C-testability (a
constant number of test patterns independent ofN)
are known [3, 4], but they do not apply when CLA is
used.

In this paper we describe a novel TG design method-
ology that addresses all the above issues, and illustrate
it with several examples including an adder, an ALU
and a multiplier-adder. The TG’s structure is based on
a twisted ring counter, and is tailored to generate a reg-
ular, deterministic test set of near-minimum size. Its
hardware overhead is low enough to suggest that the TG
can be incorporated into a standard cell or core design,
as has been done for RAMs [5], adders [6] and multi-
pliers [3]. For a modest increase in hardware overhead
and test set size, our method can also minimize the per-
formance penalty. The proposed approach covers the
major types of fast arithmetic circuits, and appears to
be generalizable to other CUT types as well.

The paper is organized as follows. Section 2 reviews
previous work on designing test generators. Section 3
describes the proposed approach to designing scalable
test sets and test generators. In Section 4 we apply our
approach to carry-lookahead adders, and apply it to
several other examples in Section 5. We present some
conclusions in Section 6.

2. Test Generator Design

A generic TG structure applicable to most BIST styles
is shown in Fig. 2 [7]. The sequence generator SG
produces anm-bit-wide sequence of patterns that can
be regarded as compressed or encoded test patterns,
and the decoder DC expands or decodes these patterns
into N-bit-wide tests, whereN is the number of inputs
to the CUT. Generally,m ≤ N, and the SG can be some
type of counter that produces all 2m m-bit patterns.

The most common TG design is a counter-like
circuit that generates pseudorandom sequences, typ-
ically a maximal-length linear feedback shift register
(LFSR) [8], a cellular automaton [9], or occasionally,

Fig. 2. Basic structure of a test generation circuit.
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a nonlinear feedback shift register [10]. These designs
basically consist of a sequence generator only, and have
m = N. The resulting TGs are extremely compact,
but they must often generate excessively long test se-
quence to achieve acceptable fault coverage. Some
CUTs, including the datapath circuits of interest, con-
tain hard-to-detect faults that are detected by only a
few test patternsThard. An N-bit LSFR can generate
a sequenceS that eventually includes 2N − 1 patterns
(essentially all possibilities), however, the probability
that the tests inThardwill appear early inS is low. Two
general approaches are known to makeS reasonably
short. Test points can be inserted in the CUT to im-
prove controllability and observability; this, however,
can result in a performance loss. Alternatively, some
determinism can be introduced intoS, for example, by
inserting “seed” tests for the hard faults. Such meth-
ods aim to preserve the cost advantages of LFSRs while
makingSmuch shorter. However, these objectives are
difficult to satisfy simultaneously. It can also be argued
that pseudorandom approaches represent “overkill” for
datapath CUTs, which, like RAMs [5], seem much bet-
ter suited to directed deterministic approaches.

Weighted random testing adds logic to a basic LFSR
to bias the pseudorandom sequence it generates so that
patterns from the desired test setT appear near the start
of S [8]. In a related method proposed by Dufaza and
Cambon [11], an LFSR is designed so thatT appears
as a square block at the beginning ofS. A test set must
usually be partitioned into many square blocks, and
the feedback function of the LFSR must be modified
after the generation of each block, making this method
complex and costly. The approach of Hellebrand et al.
[12, 13] modifies the seeds used by the LFSR, as well
as its feedback function. In other work, Touba and
McCluskey [14] describe mapping circuits that trans-
form pseudorandom patterns to make them cover hard
faults.

Another large group of TG design methods, loosely
called deterministic or nonrandom, attempt to embed
a complete testT of size P in a generated sequence
S. A straightforward way to do this is to storeT in
a ROM and address each stored test pattern using a
counter. SG is then adlog Pe-bit address counter and
the ROM serves as DC. Unfortunately, ROMs tend to
be too expensive for storing entire test sequences. Al-
ternatively, adlog Pe-state finite state machine (FSM)
that directly generatesT can be synthesized. How-
ever, the relatively large values ofP and N, and the

irregular structure ofT , are usually more than current
FSM synthesis programs can handle.

Several methods have been proposed that, like a
ROM-based TG, use a simple counter for SG and de-
sign a low-cost combinational circuit for DC to convert
the counter’s output patterns into the members ofT [15,
16]. Chen and Gupta [17] describe a test-width com-
pression technique that leads to a DC that is primarily a
wiring network. Chakrabarty et al. [7] explore the lim-
its of test-pattern encoding, and develop a method for
embeddingT into test sequences of reasonable length.

Some TG design methods strive for balance be-
tween the straightforward generation ofT using a ROM
or FSM, and the hardware efficiency of an LFSR or
counter. Perhaps the most straightforward way to do
this was suggested by Agarwal and Cerny [18]. Their
scheme directly combines the ROM and the pseudo-
random methods. The ROM provides a small number
of test patterns for hard-to-detect faults and the LFSR
provides the rest ofT .

None of the BIST methods discussed above explic-
itly addresses the scalability of the TG as the CUT is
scaled. Scalable TGs based on C-testability have been
described for iterative (bit-sliced) array circuits, such as
ripple-carry adders [6] and array multipliers [3]. How-
ever, no technique has been proposed to design de-
terministic TGs that can be systematically rescaled as
the size of a non-bit-sliced circuit, such as a CLA, is
changed.

This paper introduces a class of TGs where SG is
a compact (n + 1)-bit twisted ring counter and DC
is CUT-specific. The output of SG can be efficiently
decoded to produce a carefully crafted test sequenceS
that contains a complete test set for the CUT. As we will
see, both SG and DC have a simple, scalable structure
of the bit-sliced type.S is constructed heuristically to
match a DC design of the desired type, so we can view
this process as a kind of “co-design” of tests and their
test generation hardware.

3. Basic Method

We first examine the scalability of the target datapath
circuits and their test sets. A circuit or moduleM(n)

with the structure shown in Fig. 3 is loosely defined as
scalableif its output functionZ(n) is independent of
the numbern of its input data buses. Each such bus
is w bits wide, and there may also be av-bit control
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Fig. 3. General scalable circuit.

bus, wherew andv are constants independent ofn.
Bit-sliced arrays are special cases of scalable circuits
in which eachw-bit input data bus corresponds to a
slice or stage. Most datapath circuits compute a func-
tion Z(A(n), B(n)), whereA(n) = An−1 . . . A1A0 and
B(n) = Bn−1 . . . B1B0, and are scalable in the preced-
ing sense. They can be expressed in a recursive form
such as

Z(A(n + 1), B(n + 1)) = z[Z(A(n), B(n)), An, Bn]

For example, ifZ is addition, we can write

Zadd(A(n + 1), B(n + 1))

= Zadd(A(n), B(n)) + 2n × An + 2n × Bn

where the 2n factor accounts for the shifted position
of the new operandDn = (An, Bn). Similarly, a test
sequenceS(n) for a scalable circuitM(n) can be rep-
resented in recursive form.S(n) is considered to be
scalable if

S(A(n + 1), B(n + 1)) = s[S(A(n), B(n)), An, Bn]

As we will see, the test scaling functionss andS can
take a few regular, shift-like forms for the CUTs of
interest.

To introduce our method, we use the very simple
example of a ripple-carry incrementer shown in Fig. 4.
Here the carry-in lineC0 is set to 1 in normal oper-
ation, but is treated as a variable during testing. The
increment functionZinc can be expressed as

Zinc(A(n + 1)) = Zinc(A(n)) + 2n × An + C0 (1)

Whenn = 1, Eq. (1) reduces to the half-adder equation

Zinc(A(1)) = A0 + C0 (2)

and (2) is realized by a single half-adder. An(n + 1)-
bit incrementerMinc(n) is obtained by appending a
half-adder stage toMinc(n − 1). Figure 4 shows how
Minc(3) is scaled up to implementMinc(4).

A corresponding scaling of a test sequence
Sinc(n) for n = 3 to 4 is also shown in the figure.
Sinc(n) consists of 2n + 2 test patterns of the form
An−1An−2 . . . A0C0, each corresponding to a row in
the binary matrices of Fig. 4. These tests exhaustively
test all half-adder slices ofMinc(n) by applying the
four patterns{00, 01, 10, 11} to each half-adder and
propagating any errors to theZ outputs. For example,
the first test patternA3A2A1A0C0 = 00001 inSinc(4)

applies 00 to the top three half-adders, and 01 to the
bottom one. The next test 00011 applies 00 to the top
two half-adders, 01 to the third half-adder from top, and
11 to the bottom one, and so on. If a fault is detected
in, say, the bottom half-adder HA0 by some pattern,
an error bit appears either onZ0, or on HA0’s carry-
out line; in the latter case, the error will propagate to
outputZ1, provided the fault is confined to HA0. Thus
Sinc(n) detects 100% of all cell faults in the incrementer
and, by extension, all single stuck-line (SSL) faults in
Minc(n), independent of the internal implementation
of the half-adder stages. The members ofSinc(n) can
easily be shown to constitute a minimal complete test
with respect to cell or SSL faults. Note that, unlike a
ripple-carry adder, a ripple-carry incrementer such as
Minc(n) is not C-testable, and can easily be shown to
require at least 2n + 2 tests for 100% fault coverage.
This linear testing requirement is unusual in bit-sliced
circuits, but is typical of CLA designs.

Each test in the sequencesSinc(n) shown in Fig. 4
has been carefully chosen to be a shifted version of the
test above it. Moreover, the firstn + 1 tests have been
chosen to be bitwise complements of the secondn + 1
tests. (We will see later that these special properties of
S(n) can be satisfied in other, more general datapath
circuits.) The sequence of the 2(n + 1) test patterns
of S is exactly the state sequence of an(n + 1)-bit
twisted ring (TR) counter.1 This immediately suggests
that a suitable test generator TGinc(n) for Minc(n) is an
(n + 1)-bit TR counter, as shown in Fig. 4. Clearly
TGinc(n) is also a scalable circuit. Thus we have a TG
design conforming to the general model of Fig. 2, in
which SG is a TR counter and DC is vacuous.

Although at first glance, a TG like TGinc(4) seems
to embody a large amount of BIST overhead given
the small size ofMinc(4), we can argue that, in fact,
TGinc(4) is of near-minimal (if not minimal) cost.
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Fig. 4. Scalable incrementer and the corresponding test sequence and test generator (twisted
ring counter) for (a)n = 3 and (b)n = 4.

Assuming 10 test patterns are required, any TG in
the style of Fig. 2 requires an SG of 10 states, im-
plying dlog210e = 4 flip-flops, plus an indeterminate
amount of logic to implement DC. Our design uses 5
flip-flops—one more than the minimum—plus a sin-
gle inverter. The fact that DC is vacuous in this par-
ticular case is consistent with a basic property of the
TR counter: it is almost fully decoded. In contrast,
a comparable(2n + 2)-state ring counter has 2n + 2
flip-flops and is fully decoded, whereas an ordinary
(binary) counter hasdlog2(2n + 2)e flip-flops but is
fully encoded. Thus we can hope to use TR counters
in TGs that require little decoding logic.

We can now outline our general approach to design-
ing TGs for scalable datapath circuits. We use high-

level information about the CUT to explore in a sys-
tematic, but still heuristic, fashion a large number of
its possible test sets to find one that has a regular,shift-
complement(SC) structure resembling that illustrated
by Sinc(n) in Fig 4. The main steps involved are as
follows:

1. Obtain a high-level, scalable model of the CUT
M(n).

2. Analyze this model using high-level functional anal-
ysis to derive a complete SSL-fault test setT(n) for
M(n) for some small value ofn. Use don’t cares in
the test patterns wherever feasible.

3. ConvertT(n) to an SC-style test sequenceS(n) as
far as possible.
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Fig. 5. General structure of TG(n) and its state behavior.

4. Synthesize a test generator TG(n) for S(n) in the
style of Fig. 5.

The test generator TG(n) adds to the TR counter of
Fig. 4(a) decoding arrayDCof identical combinational
cells DC0, DC1, . . . , DCn−1 that modify the counter’s
output as needed by a particular CUT. The array struc-
ture ofDC ensures the scalability of TG. There is also
a small mode-control FSM to allowDC to be modified
for complex cases like multifunction circuits. The only
inputs to the mode-control FSM are the signalsH and
L, which are active in the second half of states of the TR
counter and the last state, respectively. The state be-
havior of the TR counter and the mode-control FSM are
shown in Fig. 5; they have 2n + 2 andk states, respec-
tively, wherek is a fixed number independent ofn. The
total number of states for TG(n) is thusk(2n+2), which
approximates the number of tests in the test setT(n).

Our use of functional, high-level circuit models to
derive test sets (Steps 1 and 2 above) is based on the
work of Hansen and Hayes [2], who show that test gen-
eration for datapath circuits can be done efficiently at
the functional level while, at the same time, provid-
ing 100% coverage of low-level SSL faults for typical
implementations. The model required for Step 1 is
usually available for these types of circuits, since their

scalable nature is exploited in their specification and
carries through to high-level modeling during synthe-
sis as illustrated by our incrementer example (Fig. 4).
Step 3 is perhaps the most difficult to formalize. It re-
quires modifying and ordering the tests from Step 2 to
obtain a sequence of shifting test patterns that resemble
the output of the TR counter, but retain the full fault
coverage of the original tests.

In the remaining sections, we apply the preceding ap-
proach to derive similar, scalable test sets and test gen-
erators for the CLA and some other datapath circuits.

4. Carry-Lookahead Adder

The CLA is a key component of many high-speed
datapath circuits, including arithmetic-logic units and
multipliers. A high-level model of a genericn-bit
CLA MCLA(n), with the 4-bit 74283 [20] serving as
a model, was derived in [2] and is shown in Fig. 6.

Fig. 6. High-level model of then-bit CLA [2].
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It is composed of (i) a moduleMPGX(n) that real-
izes the functionsPi = Ai + Bi , Gi = Ai Bi , and
Xi = Ai ⊕ Bi , (ii) a carry-lookahead generator (CLG)
moduleMCLG(n) that computes all carry signals, and
(iii) an XOR word gate that computes the sum out-
puts. The CLG moduleMCLG(n) contains the adder’s
hard-to-detect faults, and so is the focus of the test-
generation process. Its testing requirements can be
satisfied by generating tests for the SSL faults on the
input lines of MCLG(n) that propagate the fault ef-
fects along the path toCn, which is the longest and
“hardest” fault-detection path. The resulting test set
TCLG(n) contains 2n + 2 tests and detects all faults in
the CLG logic. For example, whenn = 2, TCLG(2) =
{10101, 10110, 11000, 10100, 10001, 00111}, where
the test patterns are in the formP1G1P0G0C0. Hansen
and Hayes [2] have proven that such a test set detects
all SSL faults in typical implementations ofMCLG(n).
Their method induces high-level functional faults from
the SSL faults, and generatesTCLG(n) for a small set of
functional faults that cover all SSL faults. Because the
carry functions are unate, it can be shown thatTCLG(n)

is a “universal” test set in the sense of [21], hence it
covers all SSL faults in any inverter-free AND/OR im-
plementation ofMCLG(n).

Once the tests forMCLG(n) are known, they are
traced back to the primary inputs of theMCLA(n)

through the moduleMPGX(n); the resulting test sets
for n = 2, are shown in Table 1(a). The table gives
a condensed representation ofMCLG(2)’s test require-
ments withinMCLA(2), and specifies implicitly all pos-
sible sets of 6 tests (the minimum number) that cover
all SSL faults inMCLG(2). For example, the first row
in Table 1(a) defines the tests for the fault “C0 fails
to propagate 0 toC2,” which requiresC0 = 1 and
Ai Bi = 10 or 01 fori = 0 and 1. Hence the potential
tests for this fault are{10101, 10011, 01101, 01011}.

Table 1. Condensed representation of complete test sets in (a)MCLG(2) and (b)MPGX(2). (c) Specific test sequence for the CLA that
follow the SC style.

A1 B1 A0 B0 C0

{10, 01} {10, 01} 1

{10, 01} 00 1

00 11 1

{10, 01} {10, 01} 0

{10, 01} 11 0

11 00 0

(a)

A1 B1 A0 B0 C0

00 xx x

10 xx x

xx 01 x

xx 10 x

(b)

Test # A1 B1 A0 B0 C0

1 10 10 1

2 10 1

3 11 1

4 01 01 0

5 01 0

6 00 0

(c)

00

00

11

11

The second row specifies the test for the faults “A0 or B0

fails to propagate 1 toC2,” which requiresA0B0 = 00,
but Ai Bi = 10 or 01 as before to ensure error prop-
agation toC2. To test for all SSL faults in module
MPGX(n), each pair of bits Ai Bi must be exhaustively
tested. The tests forMCLG(n) guarantee the application
of 00 and 11 on eachAi Bi of MPGX(n), as we can see
from Table 1(a), for the case ofn = 2. Therefore, the
remaining requirement for testingMPGX(n) is to apply
01 and 10 to eachAi Bi , as shown in Table 1(b). The
n XOR gates that feed the sum outputZ are automat-
ically covered by the tests forMCLG(n) andMPGX(n),
and also provide non-blocking error propagation paths
for these modules.

Once we know the possible test sets forMCLA(n),
our next goal is to obtain a specific test sequence that
follows the SC style. Such a test sequence of size 6
is extracted in Table 1(c). This sequence is minimal
and complete for SSL faults in the CLA [2], as can be
verified by simulation. Tests 1, 2, and 3 are selected
to make the 00 pattern applied toAi Bi shift from right
to left, as the shading in the table shows. Tests 4,
5, and 6 are selected to be the complements of tests
1, 2, and 3, respectively. Hence these tests shift the
pattern 11 onAi Bi from right to left. The specific test
sequenceSCLA(2) in Table 1(c) can be easily extended
to a complete test sequenceSCLA(n) of size 2n + 2 for
anyn > 2. For example, Table 2 shows howSCLA(2)

is scaled up toSCLA(4) to obtain a complete SC-style
test sequence for the 74283 CLA.

A test generator TGCLA(n) for MCLA(n) can now
be synthesized fromSCLA(n) following the general
structure in Fig. 5. As in the incrementer example,
the sequence generator is an(n + 1)-bit TR counter.
Note, however, that the number of input lines has al-
most doubled fromN = n + 1 to N = 2n + 1.
The size ofSCLA(n) is 2n + 2, which is the number
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Table 2. Complete and minimal SC-style test sequence for the 74283 CLA and the corre-
sponding responses.

Input pattern Response

Test # A3 B3 A2 B2 A1 B1 A0 B0 C0 C4 Z3 Z2 Z1 Z0

1 1 0 1 0 1 0 1 0 1 1 0 0 0 0

2 1 0 1 0 1 0 0 0 1 0 1 1 1 1

3 1 0 1 0 0 0 1 1 1 0 1 1 1 1

4 1 0 0 0 1 1 1 1 1 0 1 1 1 1

5 0 0 1 1 1 1 1 1 1 0 1 1 1 1

6 0 1 0 1 0 1 0 1 0 0 1 1 1 1

7 0 1 0 1 0 1 1 1 0 1 0 0 0 0

8 0 1 0 1 1 1 0 0 0 1 0 0 0 0

9 0 1 1 1 0 0 0 0 0 1 0 0 0 0

10 1 1 0 0 0 0 0 0 0 1 0 0 0 0

Table 3. Mapping of the CLA test sequence to the TR counter’s output sequence.

TR counter outputs TG outputs (CLA test sequence)

Test # H Q4 Q3 Q3 Q2 Q2 Q1 Q1 Q0 A3 B3 A2 B2 A1 B1 A0 B0 C0

1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1

2 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1

3 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 1 1 1

4 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1

5 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0

7 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0

8 1 1 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0

9 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0

10 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

of states of the TR counter, so no mode-control FSM
is needed. Table 3 lists the CLA test sequence side by
side with the TR counter’s output sequence for the 4-bit
case; the truth table of a decoder cellDCi can be ex-
tracted directly, as shown in Fig. 7. The combinations
(H Qi +1Qi ) = {010, 101} never appear at the inputs of
the decoder cells, hence the outputs ofDCi are consid-
ered don’t care for these combinations. Furthermore,
the patterns(H Qi +1Qi ) = {011, 100} never appear at
the inputs of the high-order decoder cellDCn−1, how-
ever, we choose not to take advantage of this, since our
goal is to keep the decoder logic DC simple and regu-
lar. The carry-in signalC0 can be seen from Table 3 to

beC0 = H̄ . The resulting design for TGCLA(n) shown
in Fig. 7 requiresn + 1 flip-flops andn small logic
cells that form DC. The hardware overhead of TG, as
measured by transistor count in a standard CMOS im-
plementation, amounts to 35.8% for a 32-bit CLA. This
overhead decreases as the size of the CLA increases, a
characteristic of all our TGs.

Our TGs, like the underlying TR counters, produce
two sets of complementary test patterns. Such tests
naturally tend to detect many faults because they tog-
gle all primary inputs and outputs, as well as many
internal signals. Ann-bit adder also has the interest-
ing property thatAplus B plusCin = CoutS implies
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Fig. 7. Scalable hardware test generator and response monitor for ann-bit
CLA.

Āplus B̄ plusC̄in = C̄outS̄, whereplus denotes addi-
tion modulo 2n. Hence the adder’s outputs are com-
plemented whenever a test is complemented, implying
that there are only two distinct responses, 100. . . 0 and
011. . . 1 , to all the tests in TGCLA(n), as can be seen
from Table 2. Consequently, a simple, low-cost and
scalable RM can be easily designed for the CLA adder
as depicted in Fig. 7. This example shows that some of
the benefits of scalable, regular tests carry over to RM
design.

5. Other Examples

In this section, we extend the approach developed in
the preceding sections to the design of a TR-counter-
based TG for an arithmetic logic unit and two circuits
involving multiplication.

Arithmetic Logic Unit. We first consider ann-bit
ALU MALU (n) that employs the standard design repre-
sented by the 4-bit 74181 [20]. This ALU is basically
a CLA with additional circuits that implement all 16
possible logic functions of the formf (A, B). A high-
level model for the 74181 is shown in Fig. 8 [2], and
consists of a CLG moduleM2, a function select module

Fig. 8. High-level model for the 74181 ALU [2].



P1: MVG/NTA

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL549-12-Alasaad February 12, 1998 14:26

120 Al-Asaad, Hayes and Murray

M1, and several word gates. Following the approach
of the previous section, the tests needed for the CLG
moduleM2 are traced back to the ALU’s primary in-
puts. During this process, the signal values applied to
the function-select control busS are chosen to satisfy
the testing needs forM1 as well. An obvious choice
is to makeS select the add(S3S2S1S0 = 1001) and
subtract(S3S2S1S0 = 0110) modes of the ALU. How-
ever, we found by trial and error that the assignments
S3S2S1S0 = 1010 and 0101 lead to a TG design with
less overhead. The testing needs for the word gates in
the high-level model of the ALU must be also consid-
ered. The final test sequenceSALU (n) has an SC struc-
ture that closely resembles that of the CLA. Table 4
showsSALU (4); note how the tests exhibit the same
shifting property as before for the patternsAi Bi = 11
and Ai Bi = 00. Moreover, tests 1 : 20 are the com-
plements of tests 21 : 40. The test sequenceSALU (4) is
not minimal, however, since 12 tests are sufficient to
detect all SSL faults in the 74181 [2].SALU (4) can be
easily extended toSALU (n) with a near-minimal size of
8n + 8.

A test generator TGALU (n) for MALU (n) is shown in
Fig. 9, which again follows the general test generator
model of Fig. 5. Since the test sequence size is 8n + 8
and the general test generator hask(2n + 2) states, the
mode-select FSM of TGALU (n) hask = 4 states. The

Fig. 9. Test generator for ann-bit 74181-style ALU.

state table of the mode-select FSM and the truth table
of the decoder cell are shown in Fig. 9. The decoder
cell DCi turns to be extremely simple in this case—a
single inverter. The overall test generator TGALU (n) re-
quiresn + 3 flip-flops,n inverters, and a small amount
of combinational logic whose size is independent ofn.
The hardware overhead decreases as the number of in-
putsn of the ALU increases, and it amounts to 11.4%
for a 32-bit ALU.

Multiply-Add Unit. Our next example introduces an-
other important arithmetic operation, multiplication.
The high-level model and some implementation de-
tails of the targetn × n-bit multiply-add unit (MAU)
MMAU (n) are shown in Fig. 10. The MAU is composed
of a cascaded sequence of carry-save adders followed
by a CLA in the last stage. This design is faster than
a normal multiply-add unit where the last stage is a
ripple-carry adder [22, 23].

Following our general methodology, we first analyze
a small version of MAU, in this case, the 4-bit case.
Again the tests for the CLA (Table 2) are traced back
to the primary inputs through the cell array. The pri-
mary input signals are selected to preserve the shifting
structure of the CLA tests. The resulting MAU tests do
not test the cell array completely—two SSL faults per
cell remain undetected. These undetected faults require
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Table 4. Complete and near-minimal SC-style test sequence for the 74181 ALU .

Test # A3 B3 A2 B2 A1 B1 A0 B0 C0 M S3 S2 S1 S0

1 0 1 0 1 0 1 0 1 1 0 1 0 1 0

2 0 1 0 1 0 1 0 0 1 0 1 0 1 0

3 0 1 0 1 0 0 1 0 1 0 1 0 1 0

4 0 1 0 0 1 0 1 0 1 0 1 0 1 0

5 0 0 1 0 1 0 1 0 1 0 1 0 1 0

6 1 0 1 0 1 0 1 0 0 0 1 0 1 0

7 1 0 1 0 1 0 1 1 0 0 1 0 1 0

8 1 0 1 0 1 1 0 1 0 0 1 0 1 0

9 1 0 1 1 0 1 0 1 0 0 1 0 1 0

10 1 1 0 1 0 1 0 1 0 0 1 0 1 0

11 0 1 0 1 0 1 0 1 1 1 1 0 1 0

12 0 1 0 1 0 1 0 0 1 1 1 0 1 0

13 0 1 0 1 0 0 1 0 1 1 1 0 1 0

14 0 1 0 0 1 0 1 0 1 1 1 0 1 0

15 0 0 1 0 1 0 1 0 1 1 1 0 1 0

16 1 0 1 0 1 0 1 0 0 1 1 0 1 0

17 1 0 1 0 1 0 1 1 0 1 1 0 1 0

18 1 0 1 0 1 1 0 1 0 1 1 0 1 0

19 1 0 1 1 0 1 0 1 0 1 1 0 1 0

20 1 1 0 1 0 1 0 1 0 1 1 0 1 0

21 0 1 0 1 0 1 0 1 1 0 0 1 0 1

22 0 1 0 1 0 1 0 0 1 0 0 1 0 1

23 0 1 0 1 0 0 1 0 1 0 0 1 0 1

24 0 1 0 0 1 0 1 0 1 0 0 1 0 1

25 0 0 1 0 1 0 1 0 1 0 0 1 0 1

26 1 0 1 0 1 0 1 0 0 0 0 1 0 1

27 1 0 1 0 1 0 1 1 0 0 0 1 0 1

28 1 0 1 0 1 1 0 1 0 0 0 1 0 1

29 1 0 1 1 0 1 0 1 0 0 0 1 0 1

30 1 1 0 1 0 1 0 1 0 0 0 1 0 1

31 0 1 0 1 0 1 0 1 1 1 0 1 0 1

32 0 1 0 1 0 1 0 0 1 1 0 1 0 1

33 0 1 0 1 0 0 1 0 1 1 0 1 0 1

34 0 1 0 0 1 0 1 0 1 1 0 1 0 1

35 0 0 1 0 1 0 1 0 1 1 0 1 0 1

36 1 0 1 0 1 0 1 0 0 1 0 1 0 1

37 1 0 1 0 1 0 1 1 0 1 0 1 0 1

38 1 0 1 0 1 1 0 1 0 1 0 1 0 1

39 1 0 1 1 0 1 0 1 0 1 0 1 0 1

40 1 1 0 1 0 1 0 1 0 1 0 1 0 1
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Fig. 10. High-level model for the multiply-add unit.

Fig. 11. Test generator for ann × n-bit multiply-add unit.

two extra tests, leading to a complete test set of size 12.
Once the possible test sets are determined, a sequence
that has the desired SC structure is constructed. Table 5
shows a possible test sequenceSMAU (4) of size 20 for
MMAU (4). This test sequence can be easily extended
to MMAU (n) with a resultant test set of size 4n + 4.

A test generator TGMAU (n) for MMAU (n) in the target
style is shown in Fig. 11. Since the test sequence size
is 4n + 4 and the general test generator TG(n) has
k(2n + 2) states, the mode-select FSM hask = 2 states
(one flip-flop). The state table of the mode-select FSM
and the truth table forDCi are shown in Fig. 11. The
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Table 5. Complete and near-minimal SC-style test sequence for the multiply-add
unit.

Test # A3 B3C3 S7 S3 A2 B2C S6 S2 A1 B1C1 S5 S1 A0 B0C0 S4 S0 Cin

1 11100 11100 11100 11100 1

2 11100 11100 11100 11000 1

3 11100 11100 11000 11101 1

4 11100 11000 11101 11101 1

5 11000 11101 11101 11101 1

6 00011 00011 00011 00011 0

7 00011 00011 00011 00111 0

8 00011 00011 00111 00010 0

9 00011 00111 00010 00010 0

10 00111 00010 00010 00010 0

11 10100 10100 10100 10100 1

12 10100 10100 10100 10000 1

13 10100 10100 10000 10101 1

14 10100 10000 10101 10101 1

15 10000 10101 10101 10101 1

16 01011 01011 01011 01011 0

17 01011 01011 01011 01111 0

18 01011 01011 01111 01010 0

19 01011 01111 01010 01010 0

20 01111 01010 01010 01010 0

2

hardware overhead of TGMAU (n) is estimated to be only
0.8% for a 32× 32-bit multiply-add unit.

Booth Multiplier. Our technique can be applied with
some minor modifications, to a fast Booth multiplier
that is composed of a cascaded sequence of carry-save
adders followed by a final stage consisting of a 2n-bit
CLA [22]. Our design is faster than the usual Booth
multiplier where the last stage is a ripple-carry adder;
test generation has been studied before only for the
slower, ripple-carry design [3]. We have been able to
derive a complete scalable test sequence of size 4n+14
for the CLA-based Booth multiplier. The correspond-
ing test generator TG(n) contains a TR counter with
n + 1 flip-flops and a 10-state mode-control FSM with
5 flip-flops. The hardware overhead is estimated to be
5.3% for a 32× 32-bit multiplier.

6. Discussion

We have presented a new approach to the design
of scalable hardware test generators for BIST, and

illustrated it for several practical datapath circuits. The
resulting test generators produce complete and ex-
tremely small test sets; they are of minimal or near-
minimal size for all examples covered. Small test sets
of this kind are essential for the on-line use of BIST,
especially in applications requiring fast arithmetic tech-
niques like carry-lookahead, for which previously pro-
posed BIST schemes are not well suited. The TGs
proposed here also have low hardware overhead, and
are easily expandable to test much larger versions of
the same target CUT.

Table 6 summarizes the results obtained for the scal-
able TGs we have designed so far. The first part of the
table contains the results for the circuits discussed in
Sections 4 and 5. The average hardware overhead for
the ALU, MAU, and Booth multiplier withn = 32 is
around 6%. The table also indicates how the overhead
decreases asn increases from 4 to 32. The overhead
for the MAU shrinks by 90%, and the average decrease
for all the circuits is 61%.

When applying BIST in a system, designers usually
try to take advantage of existing flip-flops and logic
already present in or around the CUT. For a typical
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Table 6. Summary of the scalable test generator examples.

Hardware overhead %

Circuit(s)
SSL fault
coverage

Regular test
set size n = 4 n = 8 n = 16 n = 32

Carry-lookahead adder (CLA) 100% 2n + 2 45.5 40.1 36.9 35.8

Arithmetic-logic unit (ALU) 100% 8n + 8 23.2 16.1 12.9 11.4

Multiply-add unit (MAU) 100% 4n + 4 7.8 3.5 1.6 0.8

Booth multiplier 100% 4n + 14 32.9 18.0 9.9 5.3

Combination of ALU, MAU, and register

Separate TGs 9.8 5.7 3.3 1.8
100% 8n + 8

Combined TGs 6.2 3.6 2.1 1.1

datapath in, say, a digital signal processing circuit, all
the data inputs to ALUs or multipliers come from a
small register file. These registers can be designed to
be reconfigured into TR counters like that in Fig. 5, thus
eliminating the need for special flip-flops in SG. Sim-
ilar schemes have been proposed in prior techniques
such as BILBO [8]. Moreover, it may be possible to
share the resulting SGs among several CUTs. Multi-
plexing logic will then be needed to select the DCs
for individual CUTs during test mode but circumvent
them during normal operation. For a small additional
increase in circuit complexity, time-multiplexing can
be used to select the DCs in test mode, while avoiding
the performance penalty associated with multiplexers.

In some cases, it may be feasible to share the en-
tire TG. To illustrate this possibility, consider ann-bit
ALU, an n × n-bit MAU, and a register file connected
to a common bus. A single, reconfigurable TG attached
to the bus can test both arithmetic units. The results
of this approach are summarized in Table 6 for various
values ofn, and suggest that replacing separate TGs for
the ALU and MAU by a single combined TG reduces
overhead by about a third.

Our TG designs shed some light on the following in-
teresting, but difficult question: How much overhead
is necessary for built-in test generation? As we noted
in the incrementer case, the size of the TGinc(4) must
be close to minimal for any TG that is required to pro-
duce a complete test sequence of near-minimal length.
The same argument applies to TGCLA(4), since it has 5
flip-flops in SG and a small amount of combinational
logic in DC; any test generator G(4) producing the same
number of tests (12) must contain at least 4 flip-flops in
its SG. In general, the overhead of a TR-counter-based
design TG(n) scales up linearly and slowly withn. The
number of flip- flops in some other test generator G(n)

may increase logarithmically withn, but the combi-
national part of G(n) is likely to scale up at a faster
rate than that of TG(n). This suggest that even if the
overhead of TG(n) is considered high, it may not be
possible to do better using other BIST techniques under
similar overall assumptions. If the constraints on test
sequence length are relaxed, simpler TGs for datapath
circuits may be possible, but such designs have yet to
be demonstrated.

Note

1. This well-known circuit is also called a switch-tail, Johnson or
Moebius counter [19].
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