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Abstract. We propose a high-level fault model, the coupling fault (CF) model, that aims to cover both functional
and timing faults in an integrated way. The basic properties of CFs and the corresponding tests are analyzed, focusing
on their relationship with other fault models and their test requirements. A test generation program COTEGE for CFs
is presented. Experiments with COTEGE are described which show that (reduced) coupling test sets can efficiently
cover standard stuck-at-0/1 faults in a variety of different realizations. The corresponding coupling delay tests detect

all robust path delay faults in any realization of a logic function.
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1. Introduction

Gate-level faults, such as the standard stuck-at line
(SSL) and path delay fault models, represent faulty
behavior associated with logic gates and their inter-
connections. Consequently, they are not well suited to
designs that contain higher-level modules whose im-
plementation details are unavailable. In such cases,
we need to check the faulty behavior of a module
with respect to the module’s overall specifications, and
high-level fault models can play an important role. In
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A shorter version of this paper was published in the Proceedings of
European Test Workshop, 2001. The single coupling fault (CF) and
coupling delay fault (CDF) models of the earlier paper are extended
here to the general CF and CDF models, and more analysis and
discussion are presented.

delay faults, fault modeling, functional faults, test generation

addition, high-level testing can be used to correct testa-
bility problems in early design stages [19], or to test
multiple implementations of a high-level design [14].
A module’s specification is typically in the form of
a Boolean expression, a truth table, a binary decision
diagram, or a behavioral Verilog code description.
Several higher-level fault models have been
proposed for realization-independent functional testing
of arbitrary combinational modules, including the cell
and pin fault models. A cell fault [20] implicitly models
all defects that alter a module’s specification and so pro-
vides a high degree of realization independence. This
model can only be applied to very small modules, how-
ever, because it requires an exhaustive test set compris-
ing all possible input vectors (patterns). For example, in
the case of the n-bit ADDER module shown in Fig. 1(a),
221+ tests are required to detect all cell faults. The pin
fault model considers stuck-at-0/1 faults occurring at
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Fig. 1. (a) An n-bit adder module. (b) High-level structure of a
carry-lookahead adder [14].

the module boundary, and has weak correlation with the
circuit’s physical faults. For ADDER, just two tests, the
all-0 and all-1 vectors, suffice to detect the 61 4-4 possi-
ble pin faults. The SSL model lies somewhere between
cell and pin faults, but is realization-dependent. To de-
tect all SSL faults in a two-level implementation (not a
practical design) of the n-input adder, 22! tests, that
is, exhaustive testing, is required. However, 2n 42 tests
are sufficient to detect SSL faults in various practical
adder implementations [2].

Another interesting approach to high-level testing
is based on the concept of a universal test set [1, 4].
It exploits the unateness (monotonicity) property of a
module’s variables, and is composed of functionally-
defined minimal true and maximal false tests. A
universal test set can detect both single and multiple
stuck-line (MSL) faults in realizations with minimal
restrictions on their structure [14]. The size of the uni-
versal test set is small for functions that are fully or
partially unate, but it becomes exhaustive for binate
functions. For example, the universal test set is exhaus-
tive for the ADDER module of Fig. 1(a) because the S
(sum) outputs are binate in all 2n + 1 input variables. If
a circuit is decomposed into suitable submodules and
universal test sets are applied to the submodules, as in
the RIBTEC technique [14], the resulting functional
tests achieve a high degree of realization independence
with O (n*) tests for some small k. The modular n-input
carry look-ahead adder shown in Fig. 1(b), for instance,
requires far fewer than 22'+! tests—it requires 44 tests
when n = 16.

Few high-level delay fault models have been pro-
posed so far. Pomeranz and Reddy [18] introduced the
gross and function-robust delay fault models. As we
show later in Section 4, the gross delay model covers
all path delay faults. However, it requires all adjacent
vector pairs as tests, which results in huge test sets (12"

tests for an n-input module). The function-robust delay
fault model covers all robust path delay faults. Using
the powerful functional fault coverage of a universal
test set, Sparmann et al. [24] proposed the universal
delay test set which, however, is only applicable to
unate functions. Psarakis et al. [21] studied delay test-
ing using what they call the realistic sequential cell
Sfault model (RS-CFM). Their approach targets non-
specific “sequential” faults such as stock-open faults
in special classes of circuits (hazard-free iterative logic
arrays). The RS-CFM model is not suitable for path
delay fault testing because it is defined for an iterative
logic array in which at most a single cell (or module)
is faulty.

Digital systems are susceptible to both functional
and timing faults due to increasing operating speeds
and decreasing process feature sizes. This paper pro-
poses a fault model, the coupling fault (CF) model, that
covers both functional and timing faults in an integrated
way, and is applicable to fairly large modules without
imposing significant design constraints. A CF models
(static) functional faults, but is motivated by (dynamic)
transition effects, and so is easily extendible to a de-
lay fault model. The corresponding coupling test sets
share some properties with universal test sets, but are
not necessarily exhaustive for binate functions. They
also achieve high SSL fault coverage for a wide range
of implementations. A pair of adjacent coupling tests
(CTs) constitutes a coupling delay test, so the combi-
national CF model naturally extends to the sequential
CF model. We show that coupling delay tests, which
happen to correspond to the single input change (SIC)
tests used in [21] and elsewhere, achieve high coverage
of path delay faults. We also show that the coupling
delay test set (CDTS) for a function z is a subset of
other high-level delay test sets for z, e.g. the gross and
function-robust delay test sets.

The size of a high-level test set is usually much larger
than that of a realization-dependent one to assure good
fault coverage for many realizations. Often this large
size limits the application of high-level test sets to a
small portion of a circuit. The interface region around
the intellectual property (IP) circuits in a system-on-
a-chip (SOC) is a good candidate for high-level de-
lay testing because its implementation details are not
known to either the SOC or the IP designers. For exam-
ple, consider a high-level combinational module CUT
at the interface of two IP circuits IP; and IP; in an
SOC C, as shown in Fig. 2. CUT is composed of two
modules, say M; and M,, which are included in IP;
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Fig. 2. A combinational module CUT at the
interface of two IP circuits IP; and /P in an
SOcC C.

and IP,, respectively. Note that none of the designers
of IP; and IP, knows the gate-level implementations of
CUT fully because M; (M) is a high-level module to
the designer of /P, (IP;). It is thus very hard to detect
faults in CUT using gate-level fault models. Design-
for-testability (DFT) techniques [7, 13] can be used
if the delay penalty due to DFT circuits is tolerable.
Otherwise, high-level testing approaches appear very
attractive if the scan design at IP circuit boundaries and
high-level descriptions of M;and M, are known, which
constitutes a very limited disclosure in the case of IPs.

Section 2 of this paper formalizes coupling faults
and tests. Functional testing is examined in Section 3,
while Section 4 considers delay testing. A coupling-test
generation program COTEGE is presented in Section
5. Finally in Section 6, some experimental results on
the fault coverage of coupling tests are presented.

2. Coupling Faults and Tests
Intuitively, a CF alters output values in response to

changes occurring on one or more inputs of a logic
function. The simplest case is a single CF which is

a—a | Module |[b—b’
M
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defined in terms of a single input/output signal pair. In
contrast, a general CF is defined in terms of multiple
inputs and a single output signal. Mainly single CFs
are considered in this paper, and “CF” means a single
CF unless otherwise noted.

Consider the module M in Fig. 3 which realises m
Boolean functions Z = {z1, z2, ..., 2} With n input
variables X = {x, x2, ..., x,}. The normal “coupling
relationship” between any x; in X and any z; in Z can
make z; change from b to its complement &', denoted
b — ', when x; undergoes the change a — ¢’ in
some input vector v applied to M; see Fig. 3(a). Any
change to this relationship is modeled by a CF denoted
by x; | z;. That is, when the transition @ — a’ occurs in
input x;, the fault x; | z; in M either makes z; stable at
bor b, or else produces the inverted transition b’ — b;
see Fig. 3(b). Each of these possible faulty behaviors is
revealed by some test vector that can propagate a signal
transition from x; to z; when M is fault-free. All such
vectors are represented by the Boolean difference of z;
with respect to x;, which is defined as follows.

de
dx,-

=Zj(x1,

@Zj(xh”"xj:la""xn) (1)
Any vector v making % = 1 can be affected by a CF
of the form x; | z;, leading to the following definition.

Definition 1 (Coupling Fault). A coupling fault x; | z;
from x; to z; in module M changes the value of z; for
" . . dz;
at least one input vector satisfying o=
Observe that this definition is realization-
independent and combinational (static); detection of a
CF requires a single test vector not a vector-pair.
We refer to the set of all test vectors for a CF set F
as its coupling test set (CTS). We also follow the com-
mon practice of using a Boolean function CTS¢(X) to

. b—b
a—a Module |[b” — b’
X === %
o M b —>b
. ¢ .
T
CFJ
(b)

Fig. 3. (a) A fault-free combinational module M, and (b) M with a coupling fault CF present.
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represent test sets, where CTSr(v) = 1 if and only if v
is a test for some fault in F. Each member of the CTS
thus corresponds to a minterm of CTSg(X). To detect
x; |z;, we need to apply all input vectors satisfying

% = 1. Therefore the set of all CTs for x; | z;is given
by
dz;
CTSy15,(X) = == @)
X

Each function z;(X) in Z has n CFs
xilzj,x212j,...,%,12;, so the CTS for all such
faults F in Z is

dz;
CTSF(X) = Z 2}: d—xj

The n-input identity function I, is composed of two
minterms separated by the maximum Hamming dis-
tance n. For example, I, = abcd + a'b'c’'d’ and
CTS, 1,(a, b, c, d) can be represented by

dl
20— bed +bdd (3)
da

Hence the corresponding CTS is {1111, 0111, 1000,
0000}. The complete CTS for I4 consists of the 10
vectors indicated by shading in Fig. 4.

The coupling test set CTSy, |, (X) is independent of
X; since % is independent of x;. This implies that if
vV=Xx.. .'x,-,lox,-H ...x, is a CT, so is the adjacent
CTv* = x;...x;—11x;41 ...x, obtained by comple-
menting x;. Note that v = x; - s and v* = x; - s, where
s satisfies Z—Z = 1. Thus, z;(v*) = Z/j(v) from the def-
inition of the Boolean difference. For example, abcd
is an adjacent CT to the CT a’bed for input a in .
Conversely, if two input vectors v and v* are adjacent

and yield different outputs, then v and v* are adjacent

Iz
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Fig. 4. The four-
input identity func-
tion Iy = abcd +
a’b’'c’d’ with coupling
tests shaded.

CTs. Clearly, all CTs lie on the boundary between the
0’s and 1’s in the K-map of the target function z;; see
Fig. 4. It also follows that the CTs completely define z ;.

A pair (v, v*) of adjacent CTs for input x; and output
z;j can serve to detect a delay fault that causes excessive
delay in propagating a signal transition on x; to z;. The
consecutive application of v and v* activates a signal
transition on x; which propagates through the module
to z;. As in conventional delay testing, we can check
for an associated path delay fault by monitoring z; after

applying (v, v*).

Definition 2 (Coupling Delay Fault). A module M
contains a coupling delay fault f = x; — z; from x;
to z; if a signal transition on x; fails to propagate to
z; within a specified time. The corresponding coupling
delay test set (CDTS) is the set of all adjacent CT pairs
(v, v*) of x; | 2 .

Suppose that the probability of a vector v of z being
a minterm (or maxterm) is 27!, Vector v has n adjacent
vectors. If v isnot a CT, all n adjacent vectors must pro-
duce the same output value z(v). The probability that v
isnota CTisthen (2-!)* = 27", that is, the probability
that a vector of z isa CT is 1 — 27" Since there are 2"
possible vectors, we conclude that the average size of
CTS;is2"-(1-27"")=2"—1.

Although the average size of a CTS is large, many
useful functions require small CTSs. The elementary
n-input (gate) functions, i.e. AND, NAND, OR, and
NOR, require n + 1 CTs which are identical to the
minimal SSL fault test sets. This implies that test gen-
eration for CFs reduces to the standard ATPG problem
when applied to gate-level circuits. Also, as shown in
Section 6, many arithmetic functions (adders, ALUs
and comparators) have CTSs of reasonable size.

Table 1 shows various coupling test sets for some el-
ementary (gate) functions, including the identity func-
tion. In the XOR case, the CTS is exhaustive; a two-
level XOR circuit (usually impractical) requires all in-
put vectors to detect all SSL faults. However, a practical
n-input XOR tree circuit requires only four tests for any
n [11]. In the case of the identity function I,,, the CTS
size increases linearly with n and is identical to the SSL
fault test set for a two-level sum-of-products (SOP) im-
plementation of I,,. Observe that the universal test set
for I, is exhaustive because I, is fully binate. Using the
Synopsys Design Compiler, we synthesized two differ-
ent implementations of the 20-input identity function
Iy as shown in Fig. 5; one is optimized for low area
and the other for high speed. The conventional ATPG
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Table 1. Coupling test sets and their sizes for some basic Boolean functions.
Test set size
Function Coupling Coupling Minimal SSL
(X1, ..oy Xp) CTS, test set delay test set fault test set
AND n=2 X1+ x2 3 4 3
n XoX3 ... Xy FX1X3 ... Xy XX X2 X n+1 2n n+1
+X1X2 ... Xp—1
OR n=2 x|+ x5 3 4 3
n X5 Xy XXXy XX LX) X, n+1 2n n+1
+x1xy.x -1
XOR n=2 1 4 8 4
1 2" n2" 4 (XOR tree)
Identity n=4 X2X3X4 + X5 X4X) + X1x3X4 + X[ x5x) 4+ X1X0%4 10 16 10 (SOP)
+x1x5x) 4 X1x2X3 + X[ X35
n X2X3 .. Xy XGXG X e XXX XXX 2n+2 4n 2n + 2 (SOP)
A
0 b
ToRn X
|
i{mﬁc ND:
|
—— A | ™
Yy . ot
@ ﬁﬁ@;
S i
1
—
o '!'

(@)

(b)

Fig. 5. Two gate-level realizations of the 20-input identity function /¢ synthesized for (a) high speed, and (b) low area.
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tool ATALANTA [16], generates 42 tests for both im-
plementations; these tests happen to be identical to the
CTs for 120.

2.1. General Coupling Faults and Tests

Consider the module M shown in Fig. 3 which real-
izes m Boolean functions Z = {z;, 22, ..., 2Zm} With
n input variables X = {x, x2,...,x,}. A general
CF X, |z; blocks the coupling between a set of in-
puts X; = {x;1, Xi2, ..., X} € X and an output z;
in M. Assume that z; changes b — b’ when a sub-
set X; of X changes from A = [ilp...[;,...I[; to
B = Ll ...l ...I;, where [, is either x;; or x/,. If
M has CF X; | z; then z; remains at b or ', or else it
changes ¥ — b when X; changes A — B. A general
CF and its test set are similarly defined as follows.

Definition 3 (General Coupling Fault). A general
coupling fault X; |z; from a set of inputs X; to an
output z; in module M changes the value of z; for at
least one input vector satisfying

_ 4 (4 i) =
¢= dx;y <dxi2 ( h (dxik))) =1 @

It follows that CTSx,|;; = G where CTSy, |, is the
CTS for X; | z;. A general CF X | z; is called a k-input
CF because X; is composed of k inputs. For example, a
single-input CF is a single CF. The CTS for all k-input
CFs of z; contains all minterms v and maxterms v* of
zj where v and v* are separated by Hamming distance
k. That s, the general CTS for z; contains all minterms
and maxterms separated by Hamming distances from 1
to n, which results in an exhaustive test set. Therefore,
general CFs can model any physical defect that changes
the function under test, like the cell fault model [20].
They provide strong realization independence but their
application is restricted to small functions.

Consider a minterm-maxterm pairt = (v, v*) where
v and v* are tests for X; | z; and they are different in
every inputof X;. Then can serve to detect a delay fault
that causes excessive delay in signals that propagate
fI'OIIl X i toz je

Definition 4 (General Coupling Delay Fault). A mod-
ule M contains a general coupling delay fault X;—z;
from X; to z; if any signal transitions on X;fail to prop-
agate to z; within a specified time.

1a | s L
1 b — z
L

Fig. 6. The application of a test t = {abc, a’bc’) to a gate-
level implementation of z = ab + c.

The corresponding general CDTS is the set of all
minterm-maxterm pairs (v, v*) where v and v* are tests
for X; | z; and they are different in every input of X;.
A general coupling delay fault (CDF) X;—z; is called
a k-input CDF. The CDTS for all k-input CDFs of z;
contains all minterm-maxterm pairs (v, v*) separated
by Hamming distance k. Thus, the general CDTS for z;
is composed of all possible adjacent and non-adjacent
minterm-maxterm pairs of z;.

A multiple-input CDT ¢ propagates signal transitions
through multiple input-output paths. Some single-input
CDFs may be detected by ¢ and thus some single-
input CDTs can be replaced by ¢. For example, con-
sider path delay faults in the implementation of func-
tion z = ab + c appearing in Fig. 6. A two-input
CDT ¢t = (abc, a’'bc’) propagates falling signal tran-
sitions on a and c¢ to z, and the latest signal transi-
tion on an input of OR gate will change z from 1 to 0.
Therefore, t detects slow-to-fall delay faults associated
with both paths adz and cz. Since two single CDTs
t, = {abc’,a’bc’y and 1, = (a’bc, a’bc’) also detect
these two faults, 7, and 7, can be eliminated from the
general CDTS of z. The relationship between single-
and multiple-input CDTs is discussed further in [25].

3. Properties of Coupling Tests

In this section, coupling tests are related to test sets for
SSL faults and high-level functional fault models. We
derive a design constraint that ensures full coverage of
SSL faults in a two-level circuit by the corresponding
CTS.

A sum of products (SOP) cover E of z is a set of impli-
cantsqi, qa, - .., qx of zsuchthatz = g1 +qo+- - - +qx.-
Eachimplicant g; corresponds to an AND gate in a two-
level AND-OR realization of z. An implicant g; of E
is relatively essential if the result of deleting ¢; from
E covers fewer minterms of z than E. A cover is non-
redundant if all implicants in the cover are relatively
essential. Consider an implicant g = [l ...[; ... [; in
a non-redundant cover E of z. Literal /; in g is a prime
literal [12] if the producttermr = I1l, ... Li—1liv1 .. . Ik



obtained by deleting /; from ¢ is not an implicant of z;
clearly, all literals in a prime implicant are prime. Anin-
put vector v is relatively essential [12]in g if g(v) = 1
but ¢ (v) = 0 for some other implicant g+ # ¢ in E.
A relatively essential implicant contains at least one
relatively essential vector. A cover corresponding to
a non-redundant SOP realization of z is composed of
relatively essential prime implicants.

We now specify a design constraint to ensure that
the CTS for z detects all SSL faults in any nonredun-
dant SOP realization C of z. Let E be the cover corre-
sponding to C. Although we only consider SOP covers
explicitly, the results hold for product-of-sums (POS)
covers by the duality principle.

Lemma 1. A test set T detects all SSL faults in a
non-redundant SOP circuit C if T includes

(1) At least one relatively essential vector v of every
prime implicant q in E, and

(2) At least one false vector w adjacent to a minterm
of q for every literal l; in q.

Proof: Let AND gate G in C realize g and let input
of G correspond to /;. The proof is done by showing that
v detects the fault i stuck-at-0 and w detects i stuck-
at-1. First, consider i stuck-at-0. Input v activates this
fault by setting all inputs of G to 1 and propagates an
error to z by setting the output of every other AND gate
G* # G to 0. Now consider i stuck-at-1. Since w is
adjacent to a minterm of ¢ at [;, w sets i to 0 (fault
activation) and all other inputs of G to 1. In addition,
w forces the output of G* to 0 because w is a maxterm.
That is, w activates i stuck-at-1 and propagates a faulty
value to z.

Every false vector adjacent to a minterm is a CT, that
is, a CTS always satisfies condition (2) of Lemma 1.
To meet condition (1), a CTS must contain at least one
relatively essential vector from every prime implicant
g in E, which implies that g must have at least one
relatively essential vector (minterm) that is adjacent to
a false vector (maxterm). This leads to the following
sufficient condition for the CTS to detect all SSL faults
in a two-level circuit

Theorem 1. Let C be a non-redundant two-level cir-
cuit realizing an SOP cover E of z. The coupling test
set CTS 7 detects all SSL faults in C if every prime im-
plicant in E has at least one relatively essential vector
that is adjacent to a false vector.
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Fig. 7. Non-

redundant cover £ =
{ab',a'b,cd’,c'd,d'c’}
for the 4-input func-
tion (abcd +
abed + abddy
with coupling tests
shaded.

A two-level circuit that is testable for robust path
delay faults [8] satisfies the design constraint spec-
ified in Theorem 1. Although it appears to be un-
common, some functions have non-redundant covers
that fail to satisfy this constraint. For example, Iy
has some non-redundant POS covers that violate the
constraint although all minimal SOP and POS covers
satisfy it. Another example is shown in Fig. 7. Here
the non-redundant cover £ = (ab’, a’b, cd’, c'd, a’c")
is not fully testable by the function’s CTS. The
checked vector a’b’c’'d’ is an essential SSL test
for the two-level circuit realizing E but is not a
CT. However, there is another minimal POS cover
a@+b+d+d,a+b+c+d,a +b +c+d) for
this function that meets the foregoing constraint. We
also found a 6-input function all of whose non-
redundant covers violate this constraint:

z=abef +a'bef +cd'ef +c'def + acef
+cd'ef +cdef +c'de f+cde'f
+a'bcde f'+a'bcde f' +abcd'e f'

The coupling test set CTS for z has at least one rela-
tively essential vector from 11 out of 12 prime impli-
cants, which implies that most SSL faults are detected
by CTSz. In fact, CTS; detects 91 faults out of 92
possible (collapsed) faults in all eight possible SOP
realizations of z.

Most practical circuits are not SOP realizations. A
test-set preserving logic transformation [3] L for a
fault type F transforms a circuit N; to N, denoted
L(N;) = N, such that a test set for N; detects all
faults of type F in N,. Some important logic synthe-
sis techniques such as algebraic factorization and re-
substitution are test-set-preserving for SSL faults [22].
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Fig. 8. (a) A non-BIP implementation Cy of the function z = a’ + b’'d + ¢’d, and (b) the BIP
implementation Cjj of z obtained by removing gates and lines from Co.

Let C be a two-level realization of a function z that
meets the design constraint given in Theorem 1. Then,
the coupling test set for z also detects all SSL faults
in a multiple-level circuit derived from C by test-set-
preserving synthesis techniques. As will be seen in our
experimental results, the coupling test sets show high
SSL fault coverage for a wide range of multilevel im-
plementations.

CFs are also related to other existing fault mod-
els. Although pin faults are weak, as observed in Sec-
tion 1, pin fault tests sometimes detect hard-to-detect
(random-test resistant) faults. For example, the two all-
0 and all-1 pin fault tests for an n-bit adder sensitize
the long internal path from Cj, to Cqy used for carry
propagation. In general, we can rewrite (2) as

dz; | dz
(X) = x oL 4 S 5)

CTSX[ \z/ dx,- ! dxi

Since x; % represents all tests that detect x; stuck-at-0
via z; and x| d—;f represents all tests that detect x; stuck-
at-1 via z;, CTS,;, |;;(X) must contain all tests for the
SSL faults on x;. Hence CTS,, |;;(X) includes all tests
for pin faults.

Finally, we establish a relationship between coupling
tests and the universal test set (UTS) [1, 4] for unate
functions. The UTS covers all SSL faults in realizations
that meet minor and practical constraints on inversion
parity, such as the balanced inversion parity (BIP) con-
straint, and the slightly more restrictive unate-gate net-
work constraint [14]. A BIP network is a gate-level
circuit in which, whenever possible, all paths from any
input variable to an output have the same inversion
parity—the inversion parity of a path is N modulo 2,
where N is the total number of inversions on the path.

Consider a function z whose positive and negative
cofactors with respect to a variable x are respectively
denotedby z |, and z |, hence z =x -z |, +x"- 7| p.
Function z is positive unate in x if z|, 2 z|, and
negative unate if z|, € z|,. Otherwise, z is binate

in x. Function z is unate if all its variables are unate;
otherwise, z is binate. It is shown in [14] that any logic
function z can be realized such that all paths from a
unate variable of z have the same inversion parity, while
at least one path from a binate variable must have a
different inversion parity from other paths. BIP real-
izations cover a broad range of implementations and
tend to be minimal or near-minimal in gate count be-
cause any inversion that violates the BIP condition can
be easily removed without adding gates. The authors
of [14] report that all synthesized (gate-level) circuits
used in their experiments meet the BIP condition with
no design changes. For example, Fig. 8(a) is a non-BIP
implementation Cy of the function z = a’ + b'd + ¢'d
because there is an even inversion path afiz from a to z,
and z is negative unate in a. The BIP implementation
C; of z shown in Fig. 8(b) is obtained by removing the
line between a and f two redundant gates from Cj.

An input vector v; is greater than or equal to another
vector v;, denoted v; > vj;, if v; has 1 in every bit
position where v; does. For example, 1110 > 0100.
The minimal true vectors (v;) of z are input vectors
such that z(v;) = 1 forall v; > v;, but z(v;) = 0 for all
v; < v;. Maximal false vectors are defined similarly.
Expanded vectors contain all input literals, both true
and complemented, appearing in a function’s minimal
SOP expression [1]. For example, consider a function
z(a, b, ¢) = ab+ a’c’ that is binate in a, positive unate
in b, and negative unate in c. The expanded vector of
abc = 111 is aa’bc’ = 1010.

The UTS for a function z is composed of all its
maximal false and minimal true expanded vectors. It
is shown in [4] that the UTS is minimal in the sense
that no test set detects all SSL faults in a non-redundant
two-level realization of a positive unate function with
fewer tests than the UTS.

Theorem 2. The coupling test set CTS, for a unate
function z contains the universal test set UTS, for z,
that is, CTS, 2 UTS,.



Proof: Without loss of generality, assume that z is
positive unate in all its variables. Then the UTS for z is
composed of all maximal false and minimal true vec-
tors of z, and every minterm m of z must be expressible
as a product containing at least one uncomplemented
literal. Assume that m is a minimal true vector that has
no adjacent false vector. Then m is surrounded by true
vectors, so an adjacent true vector m* must be obtained
by complementing an uncomplemented literal from m.
Since z is positive unate, m > m*. This contradicts to
the assumption that m is a minimal true vector. There-
fore, m must have an adjacent false vector. Similarly,
every maximal false vector is also adjacent to at least
one true vector. All adjacent false and true vectors are
CTs, so all maximal false and minimal true vectors are
CTs. O

This resultimplies that the CTS detects all SSL faults
in BIP-type realizations of a unate function. Typically,
only small portions of useful circuits are unate. In the
case of binate functions, there is no obvious relation
between the CTS and the UTS. While the UTS is always
exhaustive for fully binate functions, the CTS can be
smaller, as demonstrated by the identity function 7,,.

Theorem 2 also implies that a CTS may contain some
unnecessary or redundant tests for BIP-type realiza-
tions. From the definition of a UTS, any true (false)
expanded vector that is greater (less) than some other
true (false) expanded vector is an unnecessary test for
BIP circuits, regardless of the function’s unateness. Let
a CT v be true if v is a true vector and false if v is a
false vector. The expanded form of a CT is called an
expanded CT. Then for BIP circuits, a CTS can be re-
duced by removing all true expanded CTs greater than
other true expanded CTs, and all false expanded CTs
less than other false expanded CTs.

Definition 5 (Reduced Coupling Test Set). The re-
duced CTS for a function z is the set of minimal true
and maximal false expanded CTs of z.

As will be seen in Section 6, reduced CTSs are used in
our experiments, and they show high SSL fault cover-
age for a wide range of practical implementations.

4. Properties of Coupling Delay Tests

Path-based models are widely accepted as realistic
models of delay faults in gate-level logic circuits. The
conventional path delay model [23] associates faults
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with single paths. On the other hand, some approaches
[9, 12] associate delay faults with both single and mul-
tiple paths. In this section, we relate the coupling delay
fault model to the conventional path [23] and so-called
primitive [12] delay fault models.

A single path p is an alternating sequence of lines
and gates from a primary input to a primary output.
Consider a gate G lying on p. Aninputi of G is called
an on-path input of p if i is on p; otherwise, i is an off-
path input. A multiple path P is a set of single-paths
that share the same primary output [12]. A (single)
path delay fault f, =1p (I p) increases circuit de-
lay beyond some acceptable threshold when a signal
transition is propagated through p, and causes a rising
(falling) transition at the primary output of p. Tests for
path delay faults are divided into two main categories:
robust and non-robust. The application of a robust test
t for f, will cause an incorrect output to be measured
in the presence of f),, independent of the delays in the
rest of the circuit under test; f), is then called a robust
(path) delay fault. All other tests are non-robust and
the corresponding faults are non-robust delay faults.
A path p is static sensitized by a vector v if v sets
all off-path inputs of p to non-controlling values. If
t = (v, v2) is a test for f,,p is static sensitized by v,
and a proper signal transition is initiated at the input
of p.

For example, t, = (a’b, ab) is a robust test for fault
ladgh in the circuit of Fig. 9(a). The signal edge with
an arrow represents the signal transition propagated
through the path under test. As can be seen in Fig. 9(a),
there are two possible output waveforms. In either case,
if fault | adgh is present, t, detects the fault because the
sampling time will precede the edge with the arrow, and
the sampling value is 1 rather than the expected value 0.
On the other hand, ¢, is also a non-robust test for a fault
Jadfh as shown in Fig. 9(b). If the output is sampled
at time #; or t3, the fault is detected. However, if the
output is sampled at time t,, the fault is not detected.
The glitch at the output 4 exists under the assumption
that paths acfh and adgh are fault-free. If either of these
two paths is faulty, no falling edge at & can be prop-
agated through the path under test adfh and thus #, is
invalidated.

The on- and off-path signal conditions for robust
and non-robust delay tests are summarized in Table 2,
which is adapted from tables in [5] and [17]. Accord-
ing to these conditions, a robust test causes a signal
transition whose initial and final values are different
at on-path inputs and thus at the path output. That is,
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Fig. 9. A realization of the 2-input XOR function. Test {(a’b, ab) is (a) a robust test for | adgh

and (b) a non-robust test for | adfh.

two vectors in a robust test must yield different output
values.

A non-robust test ¢ is said to be validatable non-
robust (VNR) if and only if there exists a set of tests T
including 7 such that no element in 7 is a robust test
for the target fault f,, and the correct response to T
implies that f,, is not present in the circuit under test
[12]. Robust and VNR tests guarantee detection of the
target fault, while non-robust tests do not. Both robust
and non-robust delay faults are called singly-testable
(ST) faults in [9]. An ST-dependent fault is a path delay
fault that does not cause excessive delay in the absence
of a certain ST fault [9]. Thus, an ST-dependent fault
does not need to be tested.

Itis well-known that every detectable path delay fault
has a single input change (SIC) test ¢ [9, 23] in which
the two input vectors of ¢ differ only in a single input
variable.

Lemma 2. The set Tsic of all SIC tests is necessary
and sufficient to detect all (single) path delay faults in
any realization of a function z.

Table 2. Delay test classification in gate-level circuits. (cv and
ncv denote controlling and non-controlling values, respectively.
X denotes don’t care values including glitches).

On-path Input

Off-path input cv — X — ncv ncv — X — cv
X — ncv Robust Non-robust
Stable ncv Robust Robust

Proof: Sufficiency: By way of contradiction, assume
that a path delay fault f, =1p or |p only has a
multiple-input-change test + = (v, v). This implies
that at least one input x; in # changes, where x; is not
the primary input of p. Let b; and b, denote the values
of x; in v; and vy, respectively, where b, = b|. Then, v,
must set all off-path inputs to non-controlling values.
If b, makes every off-path input have a non-controlling
value, the test t* = (v{, v) is also a test for f;, where
v} is obtained by replacing b, with b in v,. Similarly,
we can make all other inputs except for the primary
input of p stable. That is, f, has an SIC test, which is
contradictory to the initial assumption. So, every path
delay fault has an SIC test and thus Tgjc detects all path
delay faults in any realization of z.

Necessity: This part of the proof follows from the
fact that the sum-of-minterms realization of z requires
all SIC tests to detect all target faults. O

Note that the necessary test set for gross delay faults
is the set Ts;c of all SIC tests [19]. The CDTS T¢pris the
set of SIC tests of which the two vectors yield different
outputs, that is, Tepr C Tsic. Also the test set Tgg for
function-robust delay faults contains all SIC tests that
yield different outputs [19], that is, Tcpr < Trr-

Theorem 3. The CDTS for a function z detects all
robust path delay faults in any realization of z.

Proof: Consider a robust path delay fault f, =1p
(4 p) in a realization of z. Then fz must have an SIC
testtg = (v1, vp) where vy and v, differ only in p’s pri-
mary input. Note that 7z propagates a signal transition
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Fig. 10. (a) A 2-level BIP realization of z = ac’ + a’c + bc, (b) a multi-level BIP realization of z, (¢) coupling
delay test set Tp(z) for z, and (d) path delay faults and their tests (in parentheses) for realization (b).

through p and causes a rising (falling) transition on the
path output. Test ¢ is robust, so v; and v, must always
yield different outputs. Since 7z is an SIC test and v,
and v, yield different output values, 7z is a coupling
delay test. Therefore the CDTS for z detects fx O

It is worth noting that, in practical designs, the
CDTS contains many non-robust tests. For example,
Fig. 10 shows two realizations of the 3-input func-
tion z = ac’ + a’c + bc and the coupling delay test
set Tp(z). In the 2-level realization of Fig. 10(a), all
12 path delay faults are robust and are detected by
Tp(z). In the multi-level realization of Fig. 10(b), there
are nine robust and four non-robust (NR) path de-
lay faults with two redundant and one ST-dependent
faults. All of these faults are detected by Tp(z) as
shown in Fig. 10(d). Although it is not necessary to
test the ST-dependent fault 1ciz, Tp(z) has a test tg =
(010,011) that propagates a rising signal transition
through path ciz to z, which may detect a fault in other
realizations.

We now extend the result of Theorem 3 to transition
faults and stuck-open faults. A (single) transition fault
f =t ({])onaline !/ in a circuit C causes excessive
delays so that a rising (falling) signal transition on /
fails to propagate to any output z;. Let P; be a partial
path from [ to z;. A transition fault test # = (v, v,) for
f is composed of two input vectors v; and v, where
v, static sensitizes P; and ¢ initiates a proper signal
transition, that is a rising (falling) signal transition, on

[. To make ¢ robust, all on- and off-path inputs of P,
must meet the conditions given in Table 2. This implies
that v; and v, must yield different outputs if # is robust.
Similarly to Lemma 2, we can prove that a robust tran-
sition fault has an SIC test. Because two vectors v; and
v, in a robust test # = (v, vp) yield different outputs,
we can easily show that the CDTS of a function module
M detects all robust transition faults in any realization
of M.

Theorem 4. The CDTS of a function z detects all
robust transition faults in any realization of z.

Consider arobust test ¢ for a path delay fault f =1 p.
Then, ¢ is a robust test for a transition fault asso-
ciated with a line / on p. For example, robust test
t; = (010, 110) for path delay fault tadgz in Fig. 10(b)
is also a robust test for transition faults 1a, 1d, | g, and
1z. The robust path delay tests (1, t, t4, ts, tg, 17, 3,
110, t12) in Fig. 10(d) robustly detect all transition faults
except te in Fig. 10(b). The transition fault }e is ro-
bustly detected by two CDTs t;3 and #;; as can be seen
in Fig. 11.

A stuck-open fault f at a transistor ¢r of a gate G
in a CMOS logic circuit can adversely affect the delay
of G in that a signal transition through #r can fail to
propagate to an output z; through a partial path P; in
the required time. Thus a test ¢ for f is also composed
of two input vectors. To make ¢ robust, all on- and
off-path inputs of P, must meet the conditions given in
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Fig. 11. Demonstration that transition fault 1 e in Fig. 10(b) is robustly detected by two CDTs; (a) 13 = ((101, 001)) and (b)

t11 = ((101, 100)).

Table 2. This implies that v; and v, must yield different
outputs if 7 is robust. As in the above discussion on the
transition fault coverage of CDTSs, we can easily show
that every stuck-open fault in a functional module M
has an SIC test, and thus the CDTS of M detects all
robust stuck-open faults in any realization of M.

Theorem 5. The CDTS of a function z detects all
robust stuck-open faults in any realization of z.

Next we derive a sufficient condition for a CDTS
to detect primitive delay faults in two-level circuits. A
multiple-path delay fault [12] Fp =1 P (] P) repre-
sents the condition in which every single path p € P
has a fault 1 p ({ p). Multiple path P is static sensitized
by a vector v if v sets all side inputs of P to noncontrol-
ling values. Fp is primitive if P is static sensitizable,
and there is no sub-path of P that is similarly static
sensitizable. Primitive delay faults include both robust
and non-robust (single and multiple) path delay faults.
If all primitive delay faults in a circuit C have either a
robust or a VNR test, these tests form a necessary and
sufficient test set to guarantee that C performs correctly
at or below the test clock frequency [12].

We restrict our discussion to single-output circuits
here. As defined in Section 3, a literal / in an impli-
cant g of a function z is prime if the result of deleting
[ from ¢ is no longer an implicant of z. Consider a
non-redundant two-level single-output circuit C real-
izing a cover E of z. Then, there are only two types
of primitive delay faults according to [12]: f; =|P,
where multiple-path P starts from a primary input as-
sociated with a prime literal /; in an implicant ¢ € E,
and f> =7 p, where p is asingle pathin P,i.e., p € P.
Let vy = lijly...1; ..., be an input vector such that
q(v) = land vy = Lil,...1] .. .1, be the result of re-
placing literal /; with I/ from v,. It is shown in [12]
that the vector-pair f,, = (v, v;) robustly detects f;

when E(v;) = 0. It is also shown that #;, = (v, vy) is
a robust or a VNR test for f, when v, is a relatively
essential vector of g and E(v;) = 0. In other words, 7,
is composed of a true vector v, and the adjacent false
vector vy; thus vy and v, form a CT pair. If C meets
the conditions of Theorem 1, there exists at least one
relatively essential vector v in animplicant g € E that
is adjacent to a false vector vy, so that (v, vy) detects
f>. Note that v; and v, are adjacent CTs.

Theorem 6. Consider a non-redundant two-level cir-
cuit C realizing a cover E of a single-output function
z. The CDTS for z contains a robust or a VNR test for
every primitive delay fault in C if and only if each im-
plicant in E has a relatively essential vector adjacent
to a false vector.

The synthesis techniques algebraic factorization and
resubstitution preserve primitive fault testability and
primitive fault test sets [12]. Using this fact, we can
extend Theorem 6 to multiple-level circuits. Hence, the
coupling delay test set for z also detects all primitive
delay faults in a multi-level circuit derived from C by
using algebraic factorization and resubstitution.

5. Coupling Test Generation

COTEGE (COupling TEst GEnerator) is a test genera-
tion program for coupling faults that we developed for
combinational modular circuits whose functional be-
havior is specified hierarchically as in RIBTEC [14].
Asillustrated in Fig. 12, the combinational circuit of in-
terest C can be a sub-circuit (e.g. an adder) of a sequen-
tial circuit partitioned by registers, and each circuit C
is further partitioned into modules, e.g. a carry module
of an adder. The CTS for each module is computed by
COTEGE with respect to the module boundaries. Then
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Fig. 12. Hierarchical specification of a circuit.
c880 reduced CTS CTSF is obtained from CTS by remov-
Control Parity ) ing all non-maximal false and non-minimal true CTs.
— checker Partty Then for each module CT #;; € CTSE, a high-level
Data B ATPG technique HL-PODEM [14] computes the test
Oum“t——>DataF pt defined at inputs of the circuit under test C. The
Control1 mux fault simulation step removes any untested CFs that
Data A are detected by ptr. After all CFs are detected, reverse-
Cii Cout order fault simulation is performed for test compaction
Control ] Control2 [ 25 Contro purposes.
The procedure HL-PODEM regards module input

Fig. 13. Modular design of the c880 benchmark, an 8-bit ALU
[14].

a test set T for C is generated with respect to the in-
puts of C by using high-level techniques [14] based on
PODEM [10]. Thus while T is dependent on the mod-
ular interconnection structure of C, it is independent
of each module’s internal realization. Note that some
CTs for an embedded module m may not be applicable
by T because the inputs of m depend on the functions
of preceding modules. For example, Fig. 13 shows the
modular structure of an ISCAS-85 benchmark circuit
¢880 used in our experiments. Circuit c880 is an 8-bit
ALU, and is partitioned into various modules including
carry, control, and parity-check modules.

COTEGE reads behavioral Verilog code defining a
target circuit in sum-of-products form and generates a
test output file which can be directly used by a conven-
tional SSL fault simulator FSIM [16]. Fig. 14 gives a
pseudocode description of COTEGE. The CTS CTS;
for each type of module M, is generated by procedure
CT gen() whose pseudocode is shown in Fig. 15. The

values of #;; and faulty responses r;; at the outputs of
module M, as objectives in the standard PODEM al-
gorithm, and computes an input vector pt that applies
t;j and propagates the faulty responses to a primary
output. CT #; is uncontrollable if no input vector of C
applies #;; to M. Since M; usually has multiple out-
puts and #;; can be a CT for the CF between another
input-output pair, there can be several possible faulty
responses r;; for #;;. CT t;; is unobservable if the faulty
value at the target module output z; cannot be propa-
gated to a primary output of C for at least one of all
those faulty responses.

For every CT #; that is uncontrollable and/or un-
observable, HL-PODEM keeps replacing #;; with a set
Tc of covered CTs by t;; according to the universal
test method of RIBTEC [14] until there exists no such
Tc. Two vectors t, and 1, are said to be comparable if
either 7, > t, or t, < t,,; otherwise, they are incompa-
rable. Let e, denote the expanded vector of #,. If #;; is a
true vector, T¢ is the largest set e of incomparable ex-
panded true CTs that contains aCT e, < e, for any true
expanded CT ej, > ¢;;. That is, every expanded CT e,
greater than ¢;; has an expanded CT ¢, < e;,. Hence, it
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22: return T and S¢r;
23: } /I end of COTEGE();

1: procedure COTEGE(C) { /I C = circuit and My, = module

2: /I x;= module input, z; = module output, and t; = module coupling test for CF xj|z;.

3: for each type of modules My

4: CTSy = CTgen(z));/l CTSyis the CTS for My

5: CTSkN = CTSk - {all maximal false and minimal true CTs};

6: CcT18 R =CTS, - cTSM:1 CTS,R: reduced CTS for My

7 Sjo = all pairs { (tj, ry) } for each CT ¢; and faulty response rjin CTSkR;

8: end

9: while (S, is not empty) begin

10: Select a pair (tj, ry) from S;o

11: S/o= S/o-(t,‘j, I‘,‘j);

12: /I HL-PODEM determines whether tjjis observable and controllable with the faulty output rij
13: /I pt = test defined at inputs of C

14: pt = HL-PODEM( (t;;, ry) );

15: if (pt exists) then

16: T =T\ {pt};/] The final test set

17: Scr = Scr Y {xilz}i/l Scr = Set of detected CFs

18: FaultSimulate (pt, S)p);/l Remove other pair from S, that are covered by pt
19: end

20: end

21: Reverse-Order-FaultSimulate(T);// Test set compaction

Fig. 14. Pseudocode for the COTEGE program which computes a high-level test set for a modular circuit based on the

coupling fault model.

24: procedure CTgen() {
25: for each product term P;of a SOP B

34: return CTSC;
35: } // end of CTgen();

26: { GT(k), GF(k) } = build_G(P);/l GT(k): Set of true vectors that have k 1's.

27: 11 GF(K): Set of false vectors that have k 1's.

28: for0< k< n-1 //n: the number of inputs of B

29: Vit €GT(K); Viar r eGP (k+1);

30: if Vit and Vj. s have one-bit difference then CTSC = CTSC U {Vj, Vyuq 4/l CTSC: the CTS
31 Vire G (K); Viar ¢ € GT(k+1);

32: if Vi rand Vi.y,¢ have one-bit difference then CTSC = CTSC U (Vi p, Viar i

33: end

Fig. 15. Pseudocode of CTy,,() which generates all CTs for a given logic function.

is not necessary to apply ey, if all tests in T¢ are applied
to a BIP network for stuck-at fault detection. Similarly,
if #;; is a false vector, T¢ is the largest set ¢ of incom-
parable expanded false CTs that contains a CT ¢, > ¢,
for any false expanded CT e), < ¢;;. For example, con-
sider the 3-input function z whose expanded truth table
is shown in Table 3. All eight input vectors are CTs and
the reduced CTS for z is composed of the four shaded
tests. If (expanded) test 0101 is either uncontrollable
or unobservable, then 7¢ = {0111} replaces 0101.
Computing tests via the Boolean difference is known
to be hard. In Larrabee’s ATPG method [15], for ex-
ample, the Boolean difference is used only for a small
number of hard-to-detect faults after random tests are

Table 3. Expanded truth table of the function z =
ab+a'c.

Input vector  Expanded vector

abc aa'bc’ z

000 0101 1 Min. true CT
001 0100 0

010 0111 1

011 0110 0 Max. false CT
100 1001 0 Max. false CT
101 1000 0

110 1011 1

111 1010 1 Min. true CT
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generated to detect easy-to-detect faults. The represen-
tation and manipulation of Boolean functions can be
implemented in several ways: sum-of-products, con-
junctive normal form, or binary decision diagrams
(BDDs). As we show in [25], the complexity of com-
puting the Boolean difference can be greatly reduced
by using BDDs. However, in the current version of
COTEGE, the CT generation procedure CT gen() ex-
haustively searches for CTs by using the properties of
adjacent CTs. In other words, all vector pairs sepa-
rated by Hamming distance 1 are examined if they
have different outputs. If so, the two vectors are added
to the CTS. The size of a function that can be effi-
ciently handled by COTEGE is also restricted by test
set size. In our experiments, we limit the number of
module inputs to at most 20. Note that some functions
still have too many tests with 20 inputs. For exam-
ple, the XOR function with 20 inputs has an exhaus-
tive set of 220 tests, so we limit XOR modules to 6
inputs.

6. Experimental Results

We applied COTEGE to some representative and fairly
big combinational circuits on a 400 MHz SUN Ultra5
workstation. The test circuits for the experiments in-
clude two ISCAS-85 benchmarks (c880 and ¢7552),
three datapath circuits (a 16-bit carry lookahead adder
CLA, a 16-bit ALU, and a 16-bit magnitude compara-
tor), and two fully binate circuits (the 20-input iden-
tity function /¢ and a 12-bit address comparator). The
ISCAS-85 and datapath circuits have the module struc-

ture used in [14], and are composed of modules con-
taining as many as 17 inputs and 8 outputs. The two
binate circuits are viewed as single modules. Fig. 13
shows the modular design we used for c880.

Table 4 compares the size of the reduced CTS gen-
erated by COTEGE to that of the UTS generated by
RIBTEC for each example circuit. As can be seen, the
size differences between the CTSs and UTSs are negli-
gible for the CLA, ALU, magnitude comparator, c880,
and c¢7552. These circuits have highly unate modules,
so their UTSs are also quite small. As expected, for
the two fully binate functions the CTS is much smaller
than the UTS, which is, of course, exhaustive. We also
generated test sets for SSL faults using a conventional
(non-hierarchical) ATPG tool ATALANTA [16] and
two different gate-level implementations of each cir-
cuit; these implementations were synthesized either for
low area or high speed by the Synopsys Design Com-
piler. As Table 4 shows, the ratio of the size of the CTS
to that of the SSL test set ranges from 1 to 8. Interest-
ingly, the CTS and SSL test sets for /5y are identical for
both implementations.

Conventional SSL fault simulation was performed
on the synthesized implementations of each circuit with
the above test sets. Note that we do not restrict the syn-
thesis techniques to test-set preserving ones. Table 5
summarizes the results. For example, the coupling and
universal test sets achieve 100% fault coverage for the
16-bit CLA circuit optimized for low area (listed un-
der Area) and high speed (listed under Speed). The test
set generated by ATALANTA for the low-area design
achieves 100% fault coverage, but it misses 39 faults
in the high-speed design, which results in 93% fault

Table 4. Size of the test sets generated by COTEGE, RIBTEC and ATALANTA (CPU time is in seconds.).

ATALANTA (A)
COTEGE (C) RIBTEC (R) T Low-area realization High-speed realization
est set

CPU  Number CPU  Number size CPU  Number Ratio CPU Number Ratio

Circuits time of tests time of tests ratio C/R  time of tests C/A time of tests C/A
16-bit CLA 282 48 1,254 48 1 0.05 24 2.0 0.13 30 1.6
16-bit ALU 2.28 87 4.32 88 0.99 0.05 31 2.8 0.83 35 2.5
16-bit comparator 16.3 110 12.0 114 0.96 0.38 52 2.1 0.32 69 1.6
c880 597 208 410 226 0.92 0.15 46 4.5 0.17 64 33
c7552 1,162 209 1,159 213 0.98 0.35 52 4.0 0.92 65 32
20-input identity 27.7 42 - 220 0.0004 0.03 42 1.0 0.03 42 1.0

function

12-bit address 5.40 390 - 216 0.006 0.07 48 8.1  0.08 53 7.4

comparator (16 inputs)
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Fig. 16. SSL fault coverage of pseudorandom test sets for 10 different realizations of the

address comparator.

coverage. As can be seen from Table 5, both the cou-
pling and universal test sets detect all SSL faults in
all gate-level implementations, while the realization-
dependent SSL test sets for one design miss some faults
in the other design. Note that the CTSs for the two bi-
nate functions detect all SSL faults in all gate-level
implementations with fewer tests than the UTSs. Also,
note that the high-level test sets (coupling and univer-
sal test sets) for the 16-bit magnitude comparator detect
some hard-to-detect faults in the low-area design which
the conventional ATPG tool (ATALANTA) aborts. In
general, the SSL fault coverage of the high-level test
sets is better than that of the realization-dependent test
sets.

Pseudorandom testing can also provide a high degree
of realization independence at the cost of a very large
number of tests. Fig. 16 shows the SSL fault coverage
of (pseudo) random test sets for 10 different imple-
mentations of the 12-bit address comparator. The fault
coverage figures of the random test sets for all imple-
mentations are almost the same, as expected. The SSL
fault coverage of 390 random vectors is 20 to 30% in
all cases. To achieve coverage above 90%, more than
20K random test vectors are required; to achieve 100%
fault coverage, more than 61K random vectors were re-

quired. Thus we need a near-exhaustive random test set
to achieve 100% SSL fault coverage for any realization
of the address comparator, while 390 CT vectors pro-
vide 100% SSL fault coverage for all the realizations
considered.

The coupling delay test sets for two fully binate func-
tions (I and the 12-bit address comparator) and four
ISCAS-89 benchmark circuits were generated and the
results are shown in Table 6. Each circuit is regarded
as a single module in this experiment. For the two bi-
nate functions, the low-area implementations used in
previous experiments are used to compute the number
of paths and path delay faults. The number of path de-
lay faults is the maximum number of path delay tests.
The number of coupling delay tests was found to be
from one to 65 times larger than that of the path de-
lay tests. We propose a hierarchical coupling delay test
generation method and a fault model in [25] to address
this test-set size problem. Nevertheless, the size of the
coupling delay test sets is much less than that of the
corresponding gross delay test set, that is, the set of all
SIC tests. (Recall that the number of SIC tests for an
n-input function is n - 2".) The coupling delay tests also
have the advantage of detecting all robust path delay
faults in any realization.
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Table 6. Coupling delay test generation results for two fully binate functions and four ISCAS-89 benchmark circuits.

Coupling delay testing

No. of  No. of path No. of gross
Circuit Description inputs  delay faults  No. of faults  No. of tests ~ CPU time delay tests
I 20-input identity 20 80 80 80 10.89sec  20.9 x 10°
addrcomp  12-bit address comparator 16 142 790 790 1.09 sec 1.05 x 10°
5298 Traffic light controller 17 462 1856 672 0.3 sec  2.23 x 10°
5400 24 896 83,202 51,870 54.86 sec 403 x 10°
s386 Controller 13 414 6,000 3,084 1.15sec  0.106 x 10°
$1494 14 1,952 186,398 55,830 316.54sec  0.229 x 10°

7. Conclusions

A high-level fault model called the coupling fault
(CF) model has been proposed to address some test-
ing problems that cannot be efficiently handled at the
gate level. The basic properties of CFs and their tests
have been explored, one of which is the ability to
cover both functional and delay faults in a uniform and
realization-independent manner. A test generation pro-
gram COTEGE has been developed for CF detection.
Our experiments with COTEGE show that (reduced)
coupling test sets efficiently cover standard, low-level
faults in a variety of realizations using fewer tests than
other high-level test sets. The corresponding coupling
delay tests (CDTs) detect all robust path delay faults in
any realization of a function. CDT sets tend to be larger
than typical path delay test sets, but their size can be
reduced by employing hierarchical methods [25].
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