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Abstract. We propose a low-cost method for testing logic circuits, termed balance testing, which is particularly 
suited to built-in self testing. Conceptually related to ones counting and syndrome testing, it detects faults by 
checking the difference between the number of ones and the number of zeros in the test response sequence. A key 
advantage of balance testing is that the testability of various fault types can be easily analyzed. We present a novel 
analysis technique which leads to necessary and sufficient conditions for the balance testability of the standard single 
stuck-line (SSL) faults. This analysis can be easily extended to multiple stuck-line and bridging faults. Balance 
testing also forms the basis for design for balance testability (DFBT), a systematic DFT technique that achieves 
full coverage of SSL faults. It places the unit under test in a low-cost framework circuit that guarantees complete 
balance testability. Unlike most existing DFT techniques, DFBT requires only one additional control input and 
no redesign of the underlying circuit is necessary. We present experimental results on applying balance testing 
to the ISCAS 85 benchmark circuits, which show that very high fault coverage is obtained for large circuits even 
with reduced deterministic test sets. This coverage can always be made 100% either by adding tests or applying 
DFBT. 
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1. Introduction 

Built-in self testing (BIST) techniques aim to reduce 
testing cost and improve test quality by means of on- 
chip test generation and response verification circuitry 

*This research was supported by the National Science Foundation 
under Grant No. MIP-9200526. Parts of this paper were published 
in preliminary form in Proc. 23rd Syrup. Fault-Tolerant Computing, 
Toulouse, June 1993, and in Proc. 31st Design Automation Confi 
San Diego, June 1994. 

[1]. Response observation in BIST is usually done by 
saving the test outcome in a compressed form called a 
signature. A circuit is tested by comparing the observed 
signature with the correct fault-free signature. The pro- 
cess of reducing the complete test response to a sig- 
nature is referred to asresponse compression. Some 
well-known compression methods are ones counting 
[2], parity checking [3], transition coum ing [2], syn- 
drome testing [4], and signature analysis [5]. 

A problem with most compression techniques is that 
it is difficult or impractical to determine precisely the 
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fraction of faults of interest that are detected or covered. 
The calculation of fault coverage in compression test- 
ing is especially difficult since the coverage depends 
not only on the test set, but also on the compression 
technique employed. The relationship between the 
compression function and fault detection is complex 
and poorly understood. Compression techniques are 
analyzed using error models which, although useful for 
comparing the different methods, provide little general 
information about the fault coverage. Furthermore, ev- 
ery circuit under test has a different fault-free signature 
that has to be computed and stored. 

We propose a new testing technique termed balance 

testing, which provides high fault coverage and is easy 
to implement; it is therefore particularly attractive for 
BIST. The motivation for balance testing arises from 
balanced functions, a class of Boolean functions that 
we have identified and analyzed [6]. Faults are detected 
by checking the test response for the balance property 
by means of a counter at the output of the circuit under 
test. 

Balance testing offers several advantages over ex- 
isting compression techniques. It is relatively easy to 
specify necessary and sufficient conditions for the de- 
tectability of single stuck-line (SSL) faults. These con- 
ditions, which can be easily extended to multiple stuck- 
line (MSL) and bridging faults, are useful because they 
enable the designer to identify the faults that remain 
undetected by balance testing. This is a significant ad- 
vance over previous BIST techniques, for which little 
can be said about the conditions under which a fault 
is detectable. Our analysis also obviates the need for 
error models that are unrelated to physical faults and 
are usually difficult to validate. To deal with balance- 
untestable faults, we develop a systematic design for 
testability (DFT) method that guarantees full coverage 
of SSL faults. Finally, the fault-free signature for bal- 
ance testing is always the all-0 pattern, so there is no 
need to compute and store different fault-free signa- 
tures. 

The organization of the paper is as follows. Section 2 
describes balanced functions and introduces balance 
testing. In Section 3, we derive necessary and suf- 
ficient conditions for the balance testability of SSL, 
MSL and bridging faults. Section 4 describes the new 
DFT technique to eliminate balance-untestable faults. 
Finally, in Section 5, we discuss some applications of 
balance testing to large, multiple-output circuits, and 
present experimental results for the ISCAS 85 bench- 
marks. 

2. Balanced Functions and Testing 

Boolean functions that are true for exactly half their 
input combinations and false for the other half are 
called balanced [6]. Consider an exclusive-or gate 
with n inputs that realizes the odd parity function 
f ( x l ,  x2 . . . . .  Xn) = xl @ x2 @ . . .  @ x~. The output 
of f is 1 when the number of l 's  applied to the gate is 
odd; this clearly occurs in half the possible cases, im- 
plying that f is balanced. A surprisingly large number 
of other common functions are also balanced, includ- 
ing the sum and carry functions of an adder, the 2n-to-1 
multiplexer function, and the next-state function of D 
and JK flip-flops. Let f ( x l ,  x2 . . . . .  x~) = f ( X )  be a 
Boolean function in n variables. We call X a true vector 

of f if f ( X )  = 1, and a false vector if f ( X )  = 0. Let 
I f 11 denote the number of true vectors in f ,  and let ]fl  ~ 
denote the number of false vectors in f .  An n-variable 
Boolean function f ( x l ,  x~ . . . . .  xn) is balanced if and 
only if it has an equal number of true and false vectors, 
i.e., I f l  I = [fr o = 2 n-1. The functional properties of 
balanced functions are studied further in [6]. 

Special classes of Boolean functions and circuits re- 
alizing these functions have been the focus of much 
research in the past. Their distinctive properties often 
simplify the problem of testing them. Fanout-free com- 
binational circuits are well-known examples of special 
circuits that are easily testable [7, 8, 3]. Balanced cir- 
cuits also have very desirable testing properties, but 
are more widely applicable, as we demonstrate in this 
paper. 

In 1958, Kautz [9] introduced the term "neutral" for 
what we have independently called balanced functions. 
The use of neutral functions was limited to counting 
the number of symmetry classes of self-complementary 
functions [10] and no practical applications were de- 
veloped. Balanced functions also appear in an implicit 
and unnamed form in some recent testing research. 
Chatterjee and Abraham [11] present a unified test- 
ing theory for arithmetic logic arrays, in which balance 
plays a key role. For example, Lemma 1 of [11] states 
that for a tree of identical, single-output cells to be 
minimally C-testable, it is necessary that the number 
of ones observed on the output of a cell when all input 
combinations are applied to its inputs must be identical 
to the number of zeros. Kundu [ 12] shows that balance 
is necessary to completely characterize a generalized 
form of functional completeness. 

We next describe balance testing, which detects 
faults by checking test response sequences for the 
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Figure 1. A typical balance testing scheme. 

balance property. This can be easily accomplished for a 
circuit that implements a balanced function. For exam- 
ple, the test response R can be directed to an up-down 
counter as shown in Fig. 1. The counter is incremented 
whenever R is 1, and decremented whenever R is 0. A 
fault is detected if and only if the counter's final state 
(the signature) is nonzero. To apply balance testing 
to an unbalanced circuit, we can replace the up-down 
counter of Fig. 1 by a down counter preset to I f l  1, 
where I f  I 1 is the number of minterms of the function 
f realized by the circuit. The counter is decremented 
whenever the test response is 1. Balance testing is di- 
rectly applicable to combinational circuits of moderate 
size, and can be extended to large circuits via logic par- 
titioning, scan design, or the like [1]. The application 
of balance testing to large, multiple-output circuits is 
discussed in Section 5. 

A possible approach to balance testing is to use ex- 
haustive tests, i.e., to apply all possible input patterns 
to the circuit under test. We refer to this approach as ex- 

haus t ive  balance testing. Some other BIST techniques 
such as syndrome testing [4] also employ exhaustive 
testing. The advantages of exhaustive testing include 
ease of test generation, the fact that all detectable com- 
binational faults are sensitized, and amenability to for- 
mal analysis [13]. For circuits with a large number 
of primary inputs (20 or more), pseudoexhaustive test- 
ing may be employed using partitioning techniques to 
reduce its complexity. Pseudoexhaustive testing has 
received considerable attention recently, and a number 
of efficient logic partitioning tools have been developed 
for it [14, 15, 16]. For multiple-output circuits, either 
the testing process can be repeated for every observable 
output, or a suitable space compaction circuit can be 
used [17, 18]. 

Balance-testable 
s-a-O faults 

a 

b 
c 

d 

e 

Figure 2. The ISCAS c17 benchmark circuit with two 
balance-testable SSL faults marked. 

However, exhaustive balance testing is not necessary 
to obtain good fault coverage; we can also use pseudo- 
random or "reduced" deterministic (nonrandom) test 
sets, as we will demonstrate. Pseudorandom patterns 
can be generated using linear feedback shift-registers 
[1], while reduced test sets can be obtained using an 
ATPG program and applied using either a ROM and 
counter or a nonlinear feedback shift-register [19]. For 
nonexhaustive balance testing, the down counter is pre- 
set to the number of  ls in the fault-free test response 
and, as before, it is decremented whenever the test re- 
sponse is 1. 

Consider the small 5-input ISCAS benchmark cir- 
cuit c17 [20] shown in Fig. 2. There are two outputs Zl 
and z2, and the number of  true vectors for each output 
is 18. Therefore, to generate a zero fault-free signature 
for Zl or z2 with exhaustive testing, the down counter 
must be preset to 18. Consider the fault a stuck-at-0 
(s-a-0). The number of true vectors for the output zi 
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Table l. SSL faults detected by exhaustive balance testing for 
some useful logic circuits. 

Number Percent 
Circuit Number of balance- balance- 

Circuit description SSL faults testable testable 

7442 Decoder 168 168 100 

7485 Comparator 228 228 100 

74147 Priority encoder 190 190 100 

74148 Priority encoder 226 226 100 

74150 Multiplexer 412 404 98 

74181 ALU 384 376 98 

74182 Carry-lookahead 184 184 100 
generator 

74280 Parity generator 240 198 83 

74283 Carry-lookahead 250 142 57 
adder 

in the faulty case is 20, which gives a balance signa- 
ture of  18 - 20 (mod25) = 30; therefore this fault 
is balance-testable. (In fact, all SSL faults in this cir- 
cuit are balance-testable, as can readily be verified by 
hand or computer simulation.) In Table 1, we list the 
number of  balance-testable SSL faults for some com- 
mon MSI logic circuits in the 74X series [21]. The 
74150 multiplexer circuit, for example, contains eight 
balance-redundant faults; these are the SSL faults on 
the four select inputs. 

The fault-free signature in balance testing is always 
the all-0 pattern. This zero signature is easy to detect, 
and there is no need to store a precomputed fault-free 
reference signature. The test outcome is independent 
of the order of application of  test patterns, therefore the 
test controller is also easy to implement. A previous 
zero-signature method for BIST uses linear feedback- 
shift registers (LFSRs) to compress the test response 
[22]. Balance testing is related to this signature anal- 
ysis technique in that the preset value of  the down 
counter corresponds to the initial state (seed) of the 
LFSR. However, balance testing differs from [22] in 
that it uses ordinary counters instead of LFSRs, and 
while the preset value of  the counter is obtained via 
fault-free simulation, the LFSR's  seed is derived from 
its autonomous behavior. Balance testing also leads 
to a direct analysis of  fault coverage using functional 
properties of  the circuit under test. (The fault detection 
capabilites of  the zero-signature scheme of [22] have 
not been analyzed.) Moreover, it is possible to achieve 
full fault coverage in balance testing using the DFT 
technique described in Section 4. 

It is also useful to compare balance testing to syn- 
drome testing [4]. Both schemes employ ones counting 
and use a counter at the circuit output. Balance test- 
ing is an application of  balanced functions; thus, the 
analysis of balance testability can be based on a tech- 
nique for analyzing functional composition that was 
developed in [6]. In [4], only SSL faults are addressed 
with respect to their syndrome testability, whereas in 
this paper, we characterize the balance testability of 
not only SSL faults, but also of MSL and bridging 
faults. Since syndrome testing computes a signature of 
the form 1f11/2 n for an n-variable function f ,  it can 
be regarded as a variant of  exhaustive balance testing 
with a normalized signature and a preset value of zero. 
Hence, our results on balance testing are also applica- 
ble to syndrome testing. 

A problem associated with balance testing (and with 
most other response compression schemes) is that not 
all faults disturb the tested property of  the circuit--in 
this case, balance--and so remain undetected. Table 1 
gives the number of detectable SSL faults for some 
74X-series circuits. We next characterize balance- 
untestable or "redundant" faults. 

3. Balance Testability 

In this section, we derive necessary and sufficient 
conditions for the balance testability of  SSL faults 
in single-output circuits. Unless otherwise stated, 
we assume that exhaustive balance testing is em- 
ployed. We also assume throughout that all faults 
considered are detectable (non-redundant) in the usual 
sense. 

Let F(X) be the function realized by the circuit 
under test (CUT) and let IX[ = N. Let p = f ( X l )  
be any line in the circuit. We can express F(X) 
as g(f(X1),  Xz), where X1 tO X2 = X (see Fig. 3). 
Let IF[ 1 = 2 N-I + 8, where • is the balance 
offset of F;  we also refer to ~ as the offset 
of the CUT. Clearly, 0 < 181 < 2 u - l ,  and for bal- 
anced circuits, 3---0.  For example, the function 
f (x l ,  x2, x3) = XlX2X3 has i f [ l  = 1, therefore its bal- 
ance offset is 3 = 1 - 4 = - 3 .  

A fault p s-a-d is balance-redundant if it changes 
the fault-free function F(X) to a faulty function F*(X) 
with the same balance offset. Balance-redundant faults 
are not detected by balance testing. Faults that make 
F*(X) unbalanced are termed balance-testable. 

The following theorem provides a necessary and 
sufficient condition for the balance testability of SSL 
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Figure 3. Notation used to analyze balance redundancy of SSL faults. 

faults. Let p be 1 in k g true vectors of g(p,  X2) and 
g 0 in kp, true vectors of g(p,  X2). In other words, 

g k g = Ig(1, X2)l t and kp, --- ]g(0, X2)I 1. For exam- 

ple, if g(p,  x3) = p (9 x3, then k g = k g, = 1. We can 
combine k g and k g, as follows: kgpa = k g if d = 1, and 

g i f d  = 0. lcg~ = k e, 

Theorem 1. Let a circuit with balance offset 8 re- 
alize F(X1 U X2) : g ( f ( X l ) ,  X2) with p = f ( X l ) .  
The fault  p s-a-d is balance-redundant if and only if 

g _~_ 2 n - I  ke, + 8/2 m-w, where (i) [Xll = m, IX2[ = n, 

g is the number of  true vec- IX1 n X21 = w, and (ii) kpd 
tors of  g(d,  X2). 

P r o o f :  Le t  X1 (-I X2 = {Xl, x2 . . . . .  Xw}.  We define 

the parameter kgd ,~1 d~, where di, d ~ {0, 1}, along 
p ,X  1 , . . . ,Xw  

g We can show that the same lines as kpd. 

IFI1 Z g f 
dl,....d~ P'xll'""xtwW xll'""xwW 

+ ~.d kg d . k:~ d t 1 w 1 w 
d l  , . . . , d w  P 'X l  . . . . .  x w  x 1 . . . . .  x l 

= 2' n+n-w-I + 8 

Consider the fault p s-a-0. Let f*  be the faulty 
function corresponding to f in the presence of  this 
fault, Then I f . [1 = 0 and If*l~ = 2 m; therefore, 
kf l  ,w = 0 and kfdl d,o =- 2m-w" This gives Us 

X 1 . . . .  ,Xw X 1 , . . . ,Xw  
g 

I F*I 1 -- 2 '~-w ~-,4 kp, x~l....x~" Hence for the fault 

to be balance-redundant, 2 m - w  )'-~-di kg, el dw = 
p ,x I ,...,xw 

2 m+n-w-I q- 8, which implies that Y~ai g k : dl dw 
D ,XI , . . . ,Xw 

2 n-1 + 8/2 m-w, i.e., k g, = 2 n-1 + 8/2 m-w. The proof 

for p s-a-1 is similar. �9 

Observe that the balance redundancy of p s-a-d de- 
pends only on the function g(p,  X2) and is indepen- 
dent of its implementation. It is also independent of  

the function f (X 1 ) .  In addition, if F is balanced, 
then 8 = 0, and therefore balance redundancy is 
independent of  the overlap between X1 and X2. An 
intuitive explanation for this is that balance is a func- 
tional property, and since all combinations of XI are 
applied to the circuit under test an equal number of 
times (IX2 - X1 n X21), the function f ( X 1 )  does not 
affect the balance testability of p s-a-d. However, gen- 
erally not all combinations of  {p, X2} appear an equal 
number of times on the inputs to g(p,  X2), therefore 
it is not intuitively clear that the balance testability 
of  p s-a-d is independent of  the implementation of  

g(p,  X2). 
For example, in the circuit of Fig. 4(a), g(p,  c) = 

p (9 b (9 c , n  = 2, and p depends on b. Since k g = 
2 = 2 n-l ,  the faults p s-a-0 and s-a-1 are balance- 
redundant. In the 2-to- 1 multiplexer of Fig. 4(b), it is 
easy to see that the faults p s-a-0 and s-a-1 are balance- 
testable. Figure 4(c) shows a circuit where the s-a-0 
fault on the line p is balance-testable, while the s-a-1 
fault is balance-redundant. 

Theorem l ' s  condition for an SSL fault to be balance- 
redundant imposes severe constraints on the circuit 
under test. As a result, most SSL faults can be ex- 
pected to be balance-testable, an observation supported 
by the experimental data of Table 1. Theorem 1 also 
implies the following useful necessary conditions for 
an SSL fault in the CUT to be balance-redundant: 
(i) 181 _ 2 m-w, and (ii) I f  m r w, i.e., X~ and X2 
are at least partially disjoint, then 181 must be a power 
of 2; this leads to the following sufficient condition for 
balance testability. 

Corol lary  1. Let a circuit with balance offset 8 realize 
F ( X )  = g(p(X1) ,  X2). I f8  is odd and X - X2 ~ O, 
then the faults p s-a-1 and p s-a-O are balance-testable. 

Functions realized by fanout-free circuits have an 
odd number of  true vectors [3], implying that 18[ is 
always odd. Therefore, since w = 0, all SSL faults 
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Figure 4. Balance redundancy of SSL faults: (a) balance-redundant faults; (b) balance-testable faults; (c) a line 
with both balance-redundant and balance-testable faults. 

in fanout-free circuits are balance-testable. Savir 
(Lemma 6 in [4]) proves that all SSL faults of a fanout- 
free circuit are syndrome-testable. Corollary 1 demon- 
strates that the fanout-free property, though sufficient, 
is not necessary for either syndrome or balance testa- 
bility. 

Corol lary  2. Let a circuit with balance offset 8 realize 
g ( p ( X l ) ,  X2). I f  IX11 > [log2 181] + IXI N X21, the 
faults p s-a-O and p s-a-1 are balance-testable. 

Returning to the c17 benchmark circuit in Fig. 2, 
there are two outputs, each with I FI 1 = 18. This im- 
plies that the offset 8 is 2 and log 2 181 = 1. For the fault 
p s-a-0 and output zl, X1 = {b, c, d}, and X2 = {a, b}. 
Therefore IXal = 3 > log 2 181 + IX1 nX21 = 2, which 
implies that the fault is balance-testable. 

For SSL faults on a primary input of the circuit un- 
der test, we have the following interesting corollary to 
Theorem 1. 

Corol lary  3. Let x be a primary input o f  an irredun- 
dant circuit under test realizing the function F with 
balance offset 8. I f  x does not fan out and 8 & odd, then 
the s-a-O and s-a- 1 faults on x are balance-testable. I f  
x fans out, the s-a-O and s-a- 1 faults on x are balance- 
testable. 

We next consider why an up-down counter is not 
suitable for testing unbalanced circuits. I f  we use an 
up-down counter for explicit balance testing, the preset 
value should be (2 N - 23) (mod 2u). The justification 
for this preset value is as follows: If  IFI 1 = 2 N-1 + 8, 
then [FI ~ = 2 u-1 - 3. Therefore, for the fault-free 
circuit, the up-down counter would register the value 
((2 N - 2 3 )  (mod 2 N) + JFI 1 -  IFI ~ (rnod 2 N) = 0. As 
before, a fault is balance-testable if it makes the counter 
value different from zero. We now show that an up- 
down counter produces additional balance-redundant 
faults, and therefore a down counter should be used for 
response compression. 
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L e m m a  1. Let F(Xl,  X 2 . . . . .  XN)  be the function re- 
alized by the CUT such that IFI 1 = 2 N-1 + 3. A fault 
that transforms F to F*, with IF*I = 2 N-~ + 6 + or, 
is not detected using an up-down counter whenever 

= 0 or cr = -t-2 N-1. 

Proof: Let C be the value registered by the up-down 
counter for the faulty circuit. Now, C = (2 N - 23 + 
2 N-1  --}- 3 + cr - -  2 N-1  Jr- ~ -}- (7) (rood 2 N) = 2~r (rood 

2 N). Thus, the fault is not detected if and only if 2or = 0 
(rood 2N), and since Icrl < 2 N - l ,  the lemma follows. 

If  we use a down counter instead of an up-down 
counter, a fault is masked only when cr is 0. The fol- 
lowing theorem, derived from Lemma 1, demonstrates 
that balance redundancy is more likely when an up- 
down down counter is used. 

Theorem 2. Let F ( X )  = g ( f  (Xl ) ,  X2) be the func- 
tion realized by the CUT. Let p = f ( X l ) ,  IXll = m, 
IX21 = n,  and IX1 f3 X21 = w. Let 3 be the offset o f  
I FI a f rom the balance point and let kga be the number 

P 
of  true vectors o f  g(d,  X2). With an up-down counter, 
the fault  p s-a-d is balance-redundant if  and only if  

g is either 2 n-! + ~ or 2~-~, (b) (a) for  ~ > O, kp~ 

for  3 < O, kgy is either 2 n-1 + 2~_ w or 2" 2 m - w �9 

For example, suppose the CUT realizes a 4-input 
function F ( N  = 4) with 12 true vectors (IFI 1 = 
12, 3 = 4). Suppose a fault in the CUT produces the 
faulty function F* with IF*I 1 = 4, i.e. cr = - 8 .  Then 
the counter reading (signature) is 8-t-4 - 12 = 0 which 
means that the error is not detected, and therefore the 
fault is balance-redundant. 

So far, we have assumed that a modulo 2 N response 
compression counter is used for exhaustive balance 
testing of  a circuit with N primary inputs. However, in 
order to reduce hardware overhead, a smaller, modulo 
q (q < 2 N) down counter can be used. The follow- 
ing theorem provides a necessary condition for balance 
testability in that case. 

Theorem 3. Let a circuit with balance offset 3 realize 
F(X1 U X2) = g ( f ( X 1 ) ,  X2) with p = f ( X 1 ) ,  and 
suppose a modulo q response compression counter is 
used for  balance testing. The fault  p s-a-d is balance- 

8 + ( v - c ) q  redundant if  and only if  kga = 2 "- t  + 2 . . . .  where 

(i) IXll = m, IX21 = n, IX1 n X2I = w, (ii) kgd 
is the number o f  true vectors o f  g(d, X2), and (ii~i) 
c = I l F l l / q j  and v is any nonnegative integer. 

Fault sites 

F(X) 

F i g u r e  5. Notation used in characterizing balance redundancy of 
double stuck-line faults. 

Proof:  Following the notation of  Theorem 1, the 
counter's preset value is x = 2 m+"-w-~ -t- 3 - cq. 
Now, the fault p s-a-d is balance-redundant if and only 
if 2m-~~ = vq + x, where v is any nonnegative in- 

~ 5 - ( v - c ) q  teger. This implies that kg~ = 2 "-1 + 2 .... �9 

Theorem 3 is a generalization of  Theorem 1 in the 
sense that the latter can be derived from it by setting 
v = 0 and q = 2 N, which in turn imply that c = 0. 
While it is intuitively obvious that fault masking, and 
therefore balance redundancy, is more likely with a 
smaller counter, Theorem 3 clearly specifies the values 
of  kgp~ that cause fault masking. If  a modulo 2 N counter 

is used, fault masking occurs only when I F*I 1 = I FI 1 . 
On the other hand, when a modulo q counter is used, 
the number of  values of  I F* 11 for which masking occurs 
is L2~-(IFI'-cq)j -t- 1. 

q 
The balance testability of MSL and bridging faults 

can be studied in a similar fashion. Figure 5 illustrates 
the notation used for analyzing double stuck-line faults. 
Let Pl, P2 . . . . .  Pk be lines in the circuit such that Pl = 
f l ( X 1 ) ,  P2 = f 2 ( X 2 )  . . . . .  p~ = fk (Xk) .  We c a n  

write F ( X )  = g ( f l (X1 ) ,  f2(X2) . . . . .  f k (Xk) ,  Xk+x), 
where Xt U X2 U .. �9 U Xk+l = X.  The balance testa- 
bility of the MSL fault {Pl s-a-di, P2 s-a-d2 . . . . .  Pk 
s-a-dk} (dl,d2 . . . . .  dk E {0, 1}) can then be ex- 
pressed in terms of  the parameter kgel a2 d~, where 

Pl ,P2 ..... Pt 
kgd~ d2 ~ is the number of  true vectors of  g with 

Pl ,P2 ..... Pk 
Pi =- di, 1 < i < k. For example, the following theo- 
rem characterizes the balance redundancy of  a special 
class of MSL faults. 

Theorem 4. Let F ( X )  = g ( f l ( X t ) ,  f2(X2) . . . . .  
fk (Xk) ,  Xk+l) be the function realized by the CUT. 
Let X1, X2 . . . . .  Xk be pairwise disjoint, [Xil = mi 
for  1 < i < k, ISk+ll = n ,  and Pi = f i ( X i )  

for  1 < i < k. L e t 3  be the balance offset o f F ,  
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andletl ['Ji=lk (Xi A Xk+l)[ : ~ = 1  IXi AXk+l l  = w. 
The MSL fault  {Pl s-a-d1, P2 s-a-d2 . . . . .  Pk s-a-&} 
is balance-redundant if and only if  kgp~ ' ,p2 ~ ..... Pkek = 

2 n-1 q- 2,~+...+mk_.o. 

Proof :  We prove the theorem for the double fault {Pl 
s-a-0, p2s -a -0} , i . e - ,d l  = d2 = 0. L e t X l  NX3 = 
{xl, xa . . . . .  Xu } and X2 n X3 = {x,+l, xu+2 . . . . .  Xw }. 
Let ~p(pl a~ , pff2) be the number of true vectors of F 
arising from the true vectors of  g where Pl = d l  and 
P2 = d> Then the number of  true vectors of F is given 
by IFI l = ~ , d l , d 2  1 / g ( P l  all, pal2), where 

V,(p ',pg 
dl d2 

dl d2 rI rw XI , . . . ,X  u t 
P l  'P2  'X l  , . . . , X w  Xu+ 1 , . . . ,Xw  

rl  , . . . ,  rw 

and rl, r2 . . . . .  rw ~ {0, 1}. In the presence of the fault 

{Pl s-a-0, P2 s-a-0}, Ifll 1 = If211 = 0, and Ifll ~ = 
2 m~, If2[ ~ = 2 m2. Therefore, for all rl, r2 . . . . .  rw, 
k flq ~, -- k),+~ ,,o -- 0, and k ~ ...,x~, = 2 mr-", 

x I . . . .  , xu  x u +  1 , . . , , x w  

{i, 2 m2-~~ The number of  true vectors in k ~+1 ,xrW ~ 
Xu+ 1 , . . ,  w 

the faulty function F* is given by IF*[ l = lp(p' 1, p~), 
* m l-}-m 2 w g which implies that IF = 2 - ' ke'~,e;" The fault 

�9 1 * 1  is balance-redundant if and only ff [ F I = [ F I , which 

k , ' = + 2,.J+,,,2-,~" �9 implies that g 2 "-1 a 
P l, P2 

For example, in the circuit of Fig. 6, z = F(a, b, 
c , d )  = ab + cd § a'b'c'd' ,  p~ = ab, P2 = cd, 
n = 4, and g(Pl ,  P2, a, b, c, d) = P] + P2 + a'b'c'd'. 
S i n c e k  g, , = 1, 3 = 0, and 2 "-1 = 8, the fault 

P t , P 2  
{Pl s-a-0, Pe s-a-0} is balance-testable. For an MSL 
fault to be balance-redundant, 13] > 2 ml+'''+mk-l, and if 
m l + m 2  ~: l, then 131 must beapower  of 2. This implies 
that in fanout-free circuits, all MSL faults are balance- 
testable. In other words, MSL faults in fanout-free 

Balance-testable 
. ]  ~ double stuck-line fault 

P l S ' a ' 0 '  P 2 s ' a ' 0  

F i g u r e  6. A ba lance - t e s t ab le  doub le  s tuck- l ine  fault.  

circuits are syndrome-testable, a fact not recognized in 
[4]. The general conditions for balance redundancy of 
MSL faults are very strict, hence like SSL faults, most 
MSL faults can be expected to be balance-testable, 

Defects that manifest themselves as shorts between 
unconnected components in circuits are called bridg- 
ing faults [1]. I f  the affected signal lines x and y are 
effectively AND-ed, the fault is referred to as an AND 
bridging fault, denoted by AND(x,  y). The OR bridg- 
ing fault, OR(x, y) is defined similarly. A bridging 
fault can create a feedback loop, and thus transform 
a combinational circuit to a sequential one. The fol- 
lowing result characterizes the balance testability of 
non-feedback bridging faults. 

Theorem 5. Let F(xl  . . . . .  x , )  be the function with 
balance offset 3 realized by the CUT. The following 
statements are logically equivalent." 

1. The AND bridging fault  between the primary inputs 
xi and x j  is balance-redundant. 

2. 3kFx,.. x , + kxFx, = 2  "-1 + a .  
i ,  ] 

3. k Fx;,x a, is the arithmetic mean of  kVx,~,x~ and k Fx,,xj,, i.e. 
~'x +k2 , 

k F : Xr J ~.~] 
<,x'j 2 

Proof:  Without loss of generality, let us consider the 
inputs Xl and x> Shannon's expansion theorem implies 
F(Xl, x2 . . . . .  x.) = XlF(1, x2 . . . .  , Xn) + x'  1F(O, 
x2 . . . . .  x . )  = XlX2F(1, 1, x3 . . . . .  x . )  + XlX~F(1, O, 
X3,  . . . . .  . .  , X n )  -~  XIlXEF(O, 1,X3, X.) q- XlX2f(O; ' 
0, x3 . . . . .  x.). Consider the AND bridging fault 
AND(xl ,x2).  Then F(0,  1,x3 . . . . .  x.)  = F(1,  0, 
x3 . . . . .  x.) = F(0 ,0 ,  x3 . . . .  , x . )  and the faulty 
function F*(Xl,XZ . . . . .  xn) = (x' 1 + x~)F(O,O, 
x3 . . . . .  xn) + XlX2F(1, 1, x3 . . . . .  x . ) .  Therefore, 
]F*[ 1 = 3kFx~ + k~,x;. This establishes the equiva- 
lence between statements 1 and 2. Statement 3 follows 
fromthe equation k~, 4 +kx~,x2 +kxF,4 +kV,x2 = ]v]lo 

Theorem 5 is valid for the OR bridging fault be- 
E k f tween primary inputs xi and xj if kx~,xj and xl,x) are 

interchanged in the theorem statement. 

Corol lary 4. Let F (xl . . . . .  xn) be the function real- 
i zedbythe CUT. I fe i therk  F o r k  F (butnotboth) is 

X i ,X j  X i ,X~ 

odd, the AND and OR bridging faults between primary 
inputs xi and x j are balance-testable. 
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X l ~  
x 2 -  

xa-- t- 

Bridging f a ~  
between I 
x 3 and x 4 x4 el 

Figure 7. An example of a non-feedback bridging fault. 

For example, in the circuit of  Fig 7, k~ x. = IF(x1, 
x2, 1, 1)12 = 1, kxV, x' = IF(xx, x2, 0, 0il 1 --- 1, and 

= 0. Therefore, ~2F~l~eorems 5 implies that the faults 
AND(x3, x4) and OR(x3, x4) are balance-testable. 

4. Design for Balance Testability 

A circuit is balance-testable if it has no balance- 
redundant faults�9 In this section, we present design 
for balance testability (DFBT), a systematic design- 
for-testability technique for ensuring 100% fault cov- 
erage for SSL faults�9 DFBT offers several advantages 
over many other DFT techniques�9 It requires only one 
additional control input, and the method can be easily 
integrated into standard CAD tools. It does not require 
redesign of the underlying circuit or impose any strin- 
gent design rules�9 There is very little adverse effect 
on the normal performance of the circuit. This is in 
contrast to existing DFT techniques such as test-point 
placement [23], which require redesign and increase 
the circuit delay. 

The basic idea of DFBT is to add one extra input 
and a few extra gates to the circuit under test C, as 
shown in Fig. 8. The AND gates are chosen to eliminate 
as many of the balance-redundant faults as possible 
in C. We first identify the balance-redundant faults, 
which can be done by exhaustive simulation. For this 
purpose, we can use a fault simulation program that 
computes the balance signature for each fault in C. For 
the time being, we assume exhaustive balance testing. 
We extend the method to nonexhaustive balance testing 
in Section 5. 

We define a redundancy cover as a set of false vectors 
of F (input combinations for which F is 0), where C 
realizes the function F(X) ,  such that for every fault Pi 
s-a-d, there is at least one vector that is a test for it. I f  
the redundancy cover consists of  k false vectors of F,  

x 1 

x 2 ] l  Circuit 
under 
test 

) 
 i=2D.. P(X,c 1 ) 

l k 

Inverters as needed 

Figure 8. The general DFBT technique. 

l e t  di) : {q~l (X)  , q~2(X) . . . . .  q~k(X)},  where ~ i ( X )  : 
dl .. d2 dN 
1 x2 "''XN a n d x j  = dj (1 < j < N)  i n t h e i t h  

vector of the redundancy cover. Every detectable but 
balance-redundant fault is included in the redundancy 
cover, a consequence of the following lemma. 

Lemma 2. Let p s-a-1 (p s-a-O) be balance-redun- 
dant in a circuit that realizes F(X).  Then there exists 
at least one false vector V of F such that V is a test 
for p s-a-1 (p s-a-O). 

Proof: Let p s-a-1 be balance-redundant, and let the 
fault change F to F*. Suppose F(V  ~ = F*(V ~ for 
all false vectors V ~ of F. This implies that F(V  1) = 
F*(V 1) for all true vectors V 1 of F since the fault 
is balance-redundant. Consequently, no input vector 
V exists that makes F*(V) ~ F(V) ,  implying that 
p s-a-1 is undetectable, a contradiction. Therefore, 
there exists a false vector V ~ which is a test for the 
fault�9 The proof for the fault p s-a-0 is similar. �9 
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The redundancy cover can be generated from a bal- 
ance redundancy table, whose columns denote the false 
vectors Vz, V2, . . . ,  Vt of F and whose rows denote the 
balance-redundant faults f j ,  f2 . . . . .  fm. Each fault 3~ 
corresponds to a line Pk; s-a-d. The entry in the ith row 
and j th column is 1 if the input combination Vj is a test 
for Pki s-a-d. In practice, it suffices to consider a small 
number w < <  I FI ~ of false vectors of F because there 
are typically only a few balance-redundant faults. 

We make C balance-testable by adding a control in- 
put cl such that the modified circuit C realizes the func- 
tion F(X)  = F(X, Cl), where F(X, cl) = F ( X )  + 
Cl~bl(X) + cl~b2(X) + . . .  + c14~k(X); see Fig. 8. The 
various ~bi's are obtained from the redundancy cover 
described above. We show later that k is small--just 
one or two--for  common circuits. The modified cir- 
cuit operates in two modes. In the normal mode, the 
input cl is set to 0, so the CUT realizes the function 
F. In the test mode, cl is first set to 0 and all com- 
binations of X are applied to the circuit. This detects 
all the balance-testable faults in C. Next, Cl is treated 
as an independent primary input and all combinations 
of c and X are applied to the circuit. This detects the 
faults that are balance-redundant in C. 

The various steps in the DFBT procedure are listed 
below. 

D F B T  Procedure. Given a circuit C realizing the 
function F(x l ,  x2 . . . . .  XN), construct C from C as fol- 
lows: 

1. Identify the balance-redundant faults. 
2. Generate a redundancy cover for the balance- 

redundant faults; let its size be k. Let ~b i ( X )  = 
xd~ ..d2 dN where x j  = dj in the ith vector of I ~2 " " " XN ' 
the redundancy cover. 

3. Introduce a control input line Cl. 
4. Insert k ( N  + 1)-input AND gates G1, G2 . . . . .  Gk 

to realize the functions ClUb1 (X), 
Cl~b2(X) . . . . .  Cl~bk(X). If  necessary to meet fan-in 
constraints, implement Gi a s  a tree of AND gates. 

5. Insert a (k + 1)-input OR gate Gk+l, whose inputs 
are F ( X )  and the outputs of GI,  G2 . . . . .  Gk. Make 
Gk+l's output the primary output of C. 

Although the DFBT procedure requires a signifi- 
cant amount of computation, this has to be carried out 
only once during the design process. In Section 5, we 
demonstrate that the procedure is computationally fea- 
sible for all the ISCAS 85 benchmark circuits, The 

next result shows that DFBT guarantees the detection 
of all (detectable) faults. 

Theorem 6. I f  an SSL fault  is balance-redundant in 
C, then the fault  is balance-testable in C. 

Proof: Let the fault p s-a-1 be balance-redundant in 
C. Then from Theorem 1, k g = 2 n-1%" 3/2 m-w using 
the  notation of Fig. 3. Let u (v) be the number of 
~b i'S such that dPi(X) = 1 makes p = 0 (1). Now, kp ~ = 
2N-n+lk g + v = 2 N %" 23 + v. For the fault to be 

balance-redundant in 6', k g = 2 u + 6, where ~ = 
23 %-u + v. Since the fault is included in the redundancy 
cover (Lemma 2), v > 1 and kp ~ r 2 N + 6; hence, it is 
balance-testable. �9 

The value of k obtained from the DFBT procedure 
is a maximum when every balance-redundant fault re- 
quires a different AND gate. However, for many useful 
circuits, k is very small, as we will see in Section 4. For 
example, k = 2 for the 74283 carry-lookahead adder, 
which has an exceptionally large number of balance- 
redundant faults. 

Every irredundant two-level AND-OR circuit can be 
made syndrome-testable by adding control inputs to the 
AND gates [4]. It is interesting to compare DFBT to 
this method for making an AND-OR circuit syndrome- 
testable. The circuit, shown in Fig. 9(a), which is taken 
from [4], realizes the function F(x l ,  x2, x3, x4, x5) = 
XlX~ %" XtlX3 %" X2X ~ %" X4X5 %" Xt4Xt 5. The syndrome- 
testable circuit shown in Fig. 9(b), also taken from [4], 
requires two control inputs. The balance-testable ver- 
sion of the same circuit shown in Fig. 9(c) requires 
an extra gate, but only one control input. The gates 
that are added or modified are shaded, and additional 
connections are bold in Fig. 9. 

The syndrome-testable design suffers from several 
drawbacks: (i) it requires extensive redesign of the 
original circuit, (ii) it is not applicable to multi-level 
circuits, and (iii) there is no limit to the number of 
additional control inputs. DFBT avoids all these draw- 
backs for a modest increase in chip area. Moreover, 
the area overhead penalty as a fraction of circuit area 
tends to decrease with circuit size. 

For a multiple-output circuit, the DFBT procedure 
can be applied separately to each single-output subcir- 
cult that contains balance-redundant faults. The ad- 
ditional AND gates can be shared between the dif- 
ferent primary outputs to reduce the overhead. To 
illustrate this, we apply DFBT to two representative 
logic circuits--the 74283 carry-lookahead adder, and 
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C > -  
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Figure 9. (a) An example circuit from [22]: (b) syndrome-testable design [22] (c) balance-testable design. 

"nework 
uit 

Figure 10. DFBT version of the 74283 carry-lookahead adder. 

the 74181 ALU [21]. The 74181 contains only a small 
number (8 out of 384) balance-redundant faults (see 
Table 1). The 74283 carry-lookahead adder, how- 
ever, contains an unusually large number of balance- 
redundant faults (108 out of 250). To estimate the area 
overhead, we count the number of extra gates weighted 
by their fan-in. 

The 74283 circuit has five outputs S1, $2, $3, $4, 
and C4. The subcircuit feeding the carry output C4 
is fully balance-testable, therefore the DFBT proce- 
dure has to be applied only to the four sum out- 
puts. The resulting balance-testable circuit is shown 
in Fig. 10. The redundancy cover for this circuit, 
produced by DFBT, consists of two input vectors 
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Figure 11. DFBT version of the 74181 ALU. 

(k = 2), and therefore only two AND functions 
cxq~x(X) = cI.A1.A2.A3.A4.B1.B2.B3.B4.CO and 
cl~b2(X) = q.AI'.A2'.A3'.A4'.B1.B2.B3.B4.CO' 
are necessary. These functions, shown in the figure, 
are realized using three AND gates by factoring out 
the subfunction B 1.B2.B3.B4 common to ~bl (X) and 
~2(x). 

The above example illustrates one of the major ad- 
vantages of the DFBT technique. The logic modifi- 
cation is done only at the primary outputs, instead of 
at internal points. Thus, the DFBT procedure can be 
viewed as the addition of a framework circuit (shown 
shaded in Fig. 10) that guarantees full balance testa- 
bility. The area overhead is 25% for the 4-bit adder 

of Fig. 10, but drops significantly for larger adder 
circuits. For example, the overhead is only about 
15% for a 16-bit carry-lookahead adder made from 
4-bit adder slices and a 4-bit carry-lookahead gene- 
rator. 

The 74181 ALU has eight outputs: F0, F1, F2, 
F3, X, Y, Cn+4, A = B. The subcircuits corre- 
sponding to the outputs F2, F3, X, Cn+4, A = B are 
balance-testable, so the DFBT procedure has to be ap- 
plied only to F0 and F1. The value ofk for this circuit 
is 2, and 100% SSL fault coverage is obtained with an 
area overhead of 12%. Once again, the functions ~1 (X) 
and ~2(X) in Fig. 9 are realized using three AND gates 
by factoring out a common subfunction. 
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The DFBT procedure can be easily extended to 
nonexhaustive test sets--both reduced and pseudoran- 
dom. Given test set T, we define the redundancy cover 
as a set of test patterns from T which (i) together detect 
all the balance-redundant faults, and (ii) are all either 
true vectors or false vectors of  the function realized 
by the circuit under test. This allows us to use the 
DFBT procedure for any given test set. Lemma 2 
and Theorem 6, which guarantee the completeness of  
the DFBT procedure, apply to (pseudo) exhaustive test 
sets. Therefore, it is possible that not every balance- 
redundant fault is included in the redundancy cover 
if nonexhaustive testing is used. However, we have 
performed extensive experiments with the ISCAS 85 
benchmark circuits using reduced test sets and obtained 
100% fault coverage in all cases, as we will see in the 
following section. 

5. Experimental Results 

Next, we consider the application of  balance testing to 
large combinational circuits. Since most circuits have 
more than one output, we need to extend balance testing 
to multiple-output circuits. First, we consider a method 
that trades off testing time for hardware overhead. We 
then describe balance testing using a combination of  
reduced test sets and space compaction, and present 
experimental results for the ISCAS 85 benchmark 
circuits. These results show that balance testing 
provides very high fault coverage for large multiple- 
output circuits. 

Balance testing can be applied to multiple-output 
circuits by time multiplexing the test responses from 
the different primary outputs. In this method, the test- 
ing process is repeated for every primary output, and a 
multiplexer is used to select the primary outputs, one 
at a time. In order to determine the fault coverage for 
balance testing with time multiplexing of  output re- 
sponses, we performed a set of  simulation experiments 
with the ISCAS 85 benchmark circuits [20]. In these 
experiments, we employed reduced test sets generated 
by the COMPACTEST [24] and ATALANTA [25] test 
generation programs and explicitly generated the fault 
dictionaries. Tables 2(a) and 2(b) list the fault cover- 
ages obtained in these two sets of  experiments. 

The above technique for time multiplexing the test 
responses requires only one response compression 
counter, but it suffers from the drawback that a k-output 
circuit increases the test application time by a factor of 
k. We next describe a method for merging the k test 

Table 2. Fault coverage obtained for balance testing with time 
multiplexing of output responses for the ISCAS 85 circuits with 
reduced tests generated by (a) COMPACTEST, and (b) ATA- 
LANTA. 

ISCAS 85 No. of No. of No. of Percentage 
benchmark test  detectable faults fault 
circuit patterns faults detected coverage 

c432 48 520 485 93.27 

c499 59 750 708 94.40 

c880 30 942 938 99.36 

c1355 95 1566 1527 97.51 

c1908 129 1870 1835 98.13 

c2670 75 2630 2528 96.12 

c3540 113 3287 3158 96.08 

c5315 59 5291 4913 92.06 

c6288 23 7710 7707 99.97 

c7552 88 7419 7160 96.51 
(b) 

c432 61 520 509 97.88 

c499 63 750 709 94.53 

c880 66 942 929 98.62 

c1355 87 1566 1545 98.66 

c1908 127 1870 1848 98.82 

c2670 121 2630 2548 96.88 

c3540 174 3287 3164 96.26 

c5315 144 5291 5221 98.68 

c6288 40 7710 7660 99.35 

c7552 236 7419 7151 96.39 

response streams into a single-bit stream, which can 
then be compressed into a short signature using balance 
testing. Such two-stage compression of the test re- 
sponse often requires less logic then traditional com- 
pression techniques such as multiple-input signature 
registers (MISRs) [18]. 

The k-bit data stream from a k-output circuit can 
be compressed to a 1-bit data stream by a parity tree 
(see Fig. 12). The use of parity trees for space com- 
paction was proposed in [26], and experimental results 
for the ISCAS 85 circuits presented in [27] and [17] 
indicate that parity compression introduces very little 
fault masking. Moreover, fault masking can be elim- 
inated altogether either by suitably choosing the test 
set or by modifying the circuit under test [17]. There- 
fore, we can keep the test application time low without 
requiring additional response compression counters. 
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Figure 12. Merging of k test response streams by means of a parity tree. 

We next determined the fault coverage of balance 

testing for the benchmark circuits using a parity tree 
to merge the output responses into a single-bit stream. 

Table 3. Fault coverage of balance testing for the ISCAS 85 
circuits with space compaction of output responses and reduced 
test sets generated by (a) COMPACTEST, and (b) ATALANTA. 
(The number of detectable faults represent the faults that are not 
masked by the parity tree.) 

ISCAS 85 No. of No. of No. of Percentage 
benchmark tes t  detectable faults fault 
circuit patterns faults detected coverage 

(~ 

c432 48 514 513 99.81 

c499 59 687 687 100 

c880 30 942 942 100 

c1355 95 1558 1549 99.42 

c1908 129 1856 1840 99.14 

c2670 75 2549 2434 95.49 

c3540 113 3210 3210 100 

c5315 59 5204 5179 99.52 

c6288 23 7605 7563 99.45 

c7552 88 7361 7306 99.25 

(b) 
c432 61 517 517 100 

c499 63 749 726 96.79 

c880 66 942 940 99.79 

c1355 87 1559 1550 98.97 

c1908 127 1863 1855 99.19 

c2670 121 2623 2595 98.67 

c3540 174 3270 3211 97.68 

c5315 144 5288 5288 100 

c6288 40 7701 7673 99.52 

c7552 236 7370 7316 99.27 

The experiments were performed with reduced deter- 
ministic test sets generated by COMPACTEST and 
ATALANTA. Table 3 lists the fault coverage obtained 
with this method. Note that we have not considered 

the faults that are masked by the parity tree; as stated 

earlier, fault masking in the parity tree can be easily 

avoided. 
From Table 3, we see that very high post-compaction 

fault coverage (over 99%) is achieved with balance 

testing using test patterns produced by standard test 
generation programs. We can increase the coverage to 

100% by using a test pattern generator tailored to bal- 
ance testing. We can also achieve 100% coverage for 
all the circuits by applying DFBT with the standard test 

sets. The redundancy cover for each circuit consists of 
either one or two input vectors, implying low hardware 
overhead. This is a direct consequence of the fact that 

there are so few balance-redundant faults. 

6. Conclusion 

Balance testing is a promising approach to the built- 

in self-testing of logic circuits. A key advantage of 
balance testing is that the testability of various fault 
types can be directly analyzed. We derived necessary 
and sufficient conditions here for the detection of SSL 
faults. These conditions are very strict, implying that in 
almost all practical cases, complete fault detection can 
be guaranteed. Another advantage of balance testing 
is that the fault-free signature is always zero, there- 
fore there is no need to store a precomputed reference 

signature. 
Design for balance testability (DFBT) provides a 

systematic method for always achieving 100% fault 
coverage with balance testing. DFBT does not require 
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redesign of the CUT or impose stringent design rules. 
It effectively places the circuit under test in a low-cost 
framework circuit that ensures full testability. This 
framework can be added automatically to any design 
and can be used with any complete test set. Balance 
testing can be implemented for large circuits by time 
multiplexing the output responses, or by using a parity 
tree to merge the responses. We are currently studying 
the application of balance testing to general sequential 
circuits, and investigating ways to reduce the hardware 
overhead. 
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