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INTRODUCTION

: For the purpose of this paper, the flight path of
a rocket will be divided into three sections: (a) launching,
possibly vertically; (b) the flight path after the launching
stage; (c) the homing phase. The present work is concerned
only with the second portion. It is assumed that the craft
can be considered as a particle of variable mass, and thet
the flight path lies in a plane.

Our problem can be stated as follows. At the end of
the launching stage the craft possesses a velocity vector--that
is, a speed and a direction of motion can be assigned to the
craft. These data furnish the initial conditions of thé pro-
blem. The forces that will be considered as acting on the
craft are: (a) thrust due to the burning of fuel; (b) 1lift;
(¢) resistance; (d) gravity. In order to furnish an analytic
treatment of the problem, we shall here assume that 1ift and
drag forces can be approximated by expressions that depend on
characteristic constants and the first power of the velocity.
Thrust will be considered constant in magnitude--that 1s, the
mass of the craft is assumed to decrease linearly with time
because of the uniform rate of burning. However, the direc-
tion of thrust is to be varied continuously if necessary, so
as to obtain the trajectory that is optimum in the sense de-
fined below.

We shall now define the optimum trajectory. First,
we note that two types of motion will be considered: either
the craft burns fuel throughout the motion or it burns fuel
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for a specified time and then coasts with fuel jets turned off.
We shall fix the horizontal distance attained by the craft and
require that the vertical distance at this fixed horizontal dis-
tance be stationary, or, alternatively, we shall fix the verti-
cal distance attained and require that the horizontal distance
at this fixed vertical distance be stationary. If a trajectory
satisfies this requirement, it shall be called an optimum tra-
jectory.

The above approach is to be considered as a first
attack on the problem of optimum trajectories. The essential
idealization is the use of linear drag and 1ift. One could
use quadratic drag or some more complicated drag function as
well as a non-linear 1lift function. The introduction of such
functions would lead to problems of the Bolza type in the Cal-
culus of Variations. Because of the non-linear character of
the resulting system of differential equations, very little
insight into the theory of optimum trajectories could be ob-
tained. It is for this reeson that we have here attacked the
simplified problem. Further, if the optimum trajectories for
a realistic drsg function do not depert too widely from the
optimum trajectories for linear drag, then our results will
prove valuable. With this in mind, we have developed the
theory of optimum trajectories in two directions: (1) exten-
sions of the idealized theory to various other criteria for '
optimum trajectories, such as minimum boost velocity, or maxi-
mum terminal velocity; (2) attempts to study the departure of
the idealized linear theory from the actual non-linear theory,
by perturbations or by stability studies. These will be re-
ported in later papers. '
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IT

SUMMARY

The general equations of motion are stated in Sec-
tion IV, and general formulas for the solution of these equa-
tions, to be verified in succeeding sections, are furnished.
With the aid of these formulas, the variational equations for
the optimum trajectory are determined.

In Section V, the case of flight with neither 1ift
nor drag is examined, and solutions of the differential equa-
tions of motion obtained., By use of the variational equa-
tions, it is shown that for either of the two types of motion
mentioned previously--that is, continuous consumption of fuel
or consumption of fuel for a specified time followed by a
coasting phase--the direction of thrust is fixed in the plane
of motion for an optimum trajectory. The relation of thrust

- direction to burning time for the first type of motion and
the relation of thrust to total flight time for various burn-
ing times in the second type are shown by figures in the text.

Section VI considers the case of flight with linear
resistance and no lift. Again, it is seen that the direction
of thrust is fixed in the plane of motion for an optimum tra-
jectory, and graphs similar to those of the preceding section
are given. For the drag coefficients examined, the effect of
drag on the desired thrust direction is negligible.

The case of flight with linear 1ift and no resist-
ance 1s treated in Section VII. For an optimum tra jectory
the thrust direction is no longer fixed in the plane of motion.
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In fact, the thrust direction at various points of the trajec-
tory is obtained by solving a particular equation.

Finally, in Section VIII another type of optimum tra-
jectory 1s discussed. We seek to determine the thrust schedule
so that in a fixed burning time and coasting time the horizon-
tal or verticel distance ettained by the craft is a maximum,
and in maximizing this horizontal or vertical distance we place
no restriction on the vertical or horizontal distance, respec-
tively. The thrust schedule for such optimum trajectories is
immediately apparent when a linear dreg law and no 1lift are
considered. However, when a linerr 1lift lew and no drag are
assumed, the thrust schedule is not obvious.

The introduction of modified variables 1s found to
simplify the approech to the several phases of the problem,
and to permit easier handling of the relations involved. How-
ever, one may not be inclined to follow each modification
through, and as a result some difficulty mey be encountered.
To avold this possibility, the analysis of one case--that of
zero drag, zero l1lift, with coasting following the burning
stage--is carried through in the original variables in Appen-
dix A.
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11T

NOTATION

c the horizontal component P cos ¢ of the modified craft
thrust.

the acceleration of grevity: 32 ft/sec®,

(0]

’ g a modified gravitation coefficient g/f2, a constant.

n a modified time variable, 1 - rt.

Il

n, the value of n at time t ti.

Il

Ny the value of n at time t ts.

o] an independent variable used in solving the equations of
motion.

r specific burning rate, a constant: time 1.

s the vertical component P sin ¢ of the modified craft
thrust.

t time, measured from the end of the launching stage.
tq fuel burning time.
te total time of flight, burning time plus coasting time.

X horizontal distance of the craft at any modified time n;
a subscript on x denotes a value of n.
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y vertical distance of the craft at any modified time n;
a subscript on y denotes a value of n.

=

a characteristic constant in the linear resistance lsw.

- K

K the modified drag coefficient —=,
Mot

a constant.

(]

a characteristic constant in the linear 1ift law.

I the modified 1lift coefficient ﬁ—‘[’: a constant.

ol
M, the initial mass of the craft, including fuel.

. s T
P the modified craft thrust —.
Mof

T the magnitude of the craft thrust acting during the
burning time, a constant.

g the angle of inclination of thrust to the horizontal
axis at any time.

- the modified horizontal component of creft velocity; a
subscript denotes a value of n.

dy the modified vertical component of craeft velocity; a sub-
script denotes a value of n.

Note:

At time t = 0, n = ny = 1. The expressions X)p, 952
dn/np
refer to the values of the expressions at modified time = 1;
the expressions X)nl’ %% n refer to the values of the expres-
1

sions at modified time m = n,, and so forth., We assume that
x)n, = Y)ng = O-
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IV

THE GENERAL EQUATIONS OF MOTION AND

THE VARTATIONAL EQUATIONS

Let the plane of the flight path be specified, and
let us introduce a co=-ordinate set in this plane in such a way
that the rocket is initially at the origin. Then the equa-
tions of motion are '

° 2 I T
Mo(1 - #6)8F = - K E T + 71 cos ¢,
date dt dt
. .42 - - . -
Mo(1 - #6)85X = - KX + T X 4 7 sin g - Mo(1 - #8)E ,
a2 at at

which can be simplified by introducing the new variable
n=1-rt., Computations show that

&x - - pd&x dex _ g2 dZ%x
’ b4
at dn ate dn®
and that similar expressions are valid for QI, _E%. Combining
the above relations, we may write dt dt
(2.1) &% ,Kdx , Ldy _ ¢
nf ndn n dn n
2
(.2) 9% ,Kdy _Lax _ s _,
dn€ ndn ndn n

In order to discuss the variational equations, it is
necessary that we know the form of the solutions of the last
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expressions. In the case of burning for e specified time and
then coasting, the values of x end y at the end of the total
flight time will be shown by integration to be of the form

n,
(4.3) x(ng,d) = f(n,,ng) + j(ny,ng,n) c dn +
1
ny
+ h(n,,nz,n) s dn ,
1
n;
(4.4) y(ng,d) = Tfln,,ng) + 5(n;,ng,n) ¢ dn +
1
ny
+ h(n; ,nz,n) s dn .
1

where f, j, h, and so forth, are known functions of thelr res-
pective arguments: f and T are solutions of equations (4.1)
and (4.2) when s = c¢c = 0; and j, J, h, h are integrating fac-
tors of the left-hand sides of those equations. It should be
noted that x and y depend on ng,, when n, is specified, and
also on the thrust direction ¢ which is arbitrarily chosen.

In the case of continuous burning the values of x and y at

the end of the burning time, which is also the flight time,
will be shoWn to be of the form

n,
(4.5) x(ng,¢) = ulng) + v(n,,n) ¢ dn +
1
n,
+ w(n;,n) s dn ,
1
ny
(4.6) y(ny,4) = Uuln,) + v(n,,n) ¢ dn +
1
ny
+ | w(n,,n) s dn .
1
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The quantities u and T are solutions of equations (4.1) and
(4.2) when s = c¢c =0, and v, V, w, W are integrating factors
of the left-hand sides of those equations. It will be shown
that these functions have the property

(4.7) v(ny,ny) = ¥(ni,ny) = w(ny,n,) = w(n,,ny) = 0,

and it is of importence to note that 0 < n, < 1, and elso that
- 0 < ng < n; <1.

We shall first form the variational equations for
the case of burning and coasting. Using relations (4.3) and
(4.4) we find that

ny
(4.8) bdx = Enz + (Jnge + hnZS)d{l dnp -
1
n,
- (js - he)dd dn ,
1
ny
(4.9) b8y = [Enz + (Jnge + Enzs)drzl on, -
1
ny
- (3s - he)dd dn ,
1

where the subscripts ng; denote partisl derivatives with respect
to ny. Equsting 8x, 8y to zero in equations (4.8) and (4.9),
and solving the expression (4.8) for 8n,, we obtain
ny
(js - he)dg dn
anz = - 1 . .
y
fn, + (Jnge + hp,s)dn
1
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Combining this last relation with equation (4.9), we may write

y
Tn, +\[ﬂ (Jngc + hp,s)én n,
1

ny
fng +\/\ (Jngc + hp,s)dn
1

ny
-\/\ (33 - he)dfd dn = O .
1

If we assume that there is an optimum path, then along this
path ¢ is known as a function of n,, ng, and n. Thus, the
fractional expression in equation (4.10) is a function of n,
and ny,. We denote this expression by A(n,,nz) so that

. n,
(4.11) I:?nz +f (Tn,e + ans)d{I -
1
ny
- A Enz +f (jnzc + hn2S)er
1 .

and expression (4.10) becomes

n, ny
(4.12) f (3js - hc)dg dn - Af (js - hc)dddn = O .
1 1

It is to be noted that the derivation of equations
(4.11) and (4.12) from (4.8) and (4.9) could have been made
directly by use of the Lagrange multiplier A. Since A is a
function of n; and n,, it may be introduced under the integral
sign in the second expression in equation (4.12) to give

ny
(4.13) f [('55 - he) - A(js - thl 8d dn = 0,
1
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Further, 64 is an arbitrary but integrable function of n.
From this it follows that the bracketed expression in the in-
tegrand of equation (4.13) vanishes, that is,

(4.14) s = li;:;lhl c .
(j - X3

From this we readily obtain

o = P -A))
\/(3 - A\j)2 + (h - Ah)2
s = * P(h - An)

W/(3 “ A2 + (B - An)?2

the meanings of the symbols are given in the section on notation.
By use of the above equations, we obtain the expression
for A:

(4.15) fn, - Afp, ¢
v+ o [t (Gng = Aing) (G - A3 + (Fng - Abng) (B - An)
1 V3 - A2+ (B - )2

n = 0.

Fortunately, in most of our work the fractional ex-
pression in equation (4.14) is independent of n, that is, the
thrust direction is fixed in the plane of motion. Hence

(4.16) A = 48 = he
js - he

where A, ¢ and s are independent of n. So, introducing into
equation (4.11) this expression for X, we get an algebraic

relation between s and c:

(4.17) Ac® + Bs® + Csc + De +Es = O ,
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where n, n,
A E\/\ Ingdn - h\/‘ Ingdn ,
1 1

ny ny
C = J jnzdn - j jnzdn -
1 1
n, n,
- h hnzdn + h hnzdn »
1 1
D = E fnz - h fnz 9
E = j _fng - -JT fnz .
By use of equation (4.17) and the relation s2 + ¢ = P2, we

can obtain ¢, s and d.

The varietional equations for the cese of continuous
burning can be formed in exactly the seme manner. Because of
the relations (4.7), the theory is exactly the same as in the
previous case. For convenlence in future use, we include the
formulas obtained. Corresponding to equations (4.14) and (4.16)

we have
(4.18) s = %—:—ﬁﬂ c ,
Vv - AV
and
A = vs - we |,
vs - we

corresponding to (4.17), we have

(4.19) A'c? + B's? + C'sc +D'e +E's = 0,

Page 12



AERONAUTICAL RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-48
where n, n,
A ! = V_V an d.n - W -{;nldn 9
1 1
ny I,
B' = v Wp,dn - ¥ wn dn ,
1 1
Iy Iy
1 — 37 - 7 -
Ct' = v Vp,dn - ¥ Vp,dn
1 1
n, ny
- W Wnl dn + 'V—V- Wnl dn >
1 1
' — — - —
D = W up W Un,

1 — - =
E' = v vV up,

Note: in this case we vary burning time n, and thrust in-
clination 4.
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\'

ZERO LIFT AND DRAG

Continuous Burning

When both 1ift and drag are absent, equations (4.1)
and (4.2) become

% _ ¢

s
dn® n
% - s .4,
dnZ? n

The integrals of these equations are respectively

Iy
(5.1) x(ni,d) = (n, - 1) (2-1‘2‘-)% +f (n, - n) %dn ,
1

n

(5.2) y(ny,d) (n, - 1) (%%)no - g(n1 - 1)2 +
n,
+ (n - n) £adn .
1 n

Comparing these with expressions (4.5) and (4.6), we see that
for the present case

u = (nl—l) (g_x;) R v = .n_l_-:._l}.’ w = O,
dn/ ng n
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Thus, equation (4.18) becomes
s = -2,

indicating that thrust is fixed in the plane of motion.
Equation (4.19) is reduced to the form

2 QI - - g‘.x;. = 0
Peln ny + s I:(dn)no g(na lil ¥ c(ciln)no ’

and since by definition s = P sin ¢ and ¢ = P cos ¢, we may
write this as

_Plnnl

(5.3) sin (d +a) =

where

(5.4) cos a

(56.5) sin a

Evidently, ¢ will exist only if
2
(P 1n n, ) < 1 )(&)® . |(ax - g(n, - 1) 2,
2 2 |\dn/ng dn/ng ,
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The left-hand side of equation (5.6), when multiplied
by the mass of the craft at time t = t,, represents the kinetic
energy at time t = t; of a craft, of initial velocity zero,
moving in a vacuum under a fixed thrust., Similarly, the right-
hand side when multiplied by the mass of the craft at time
t = t1, represents the kinetic energy at time t = t, of a craft

. aas . dax dy
whose inltial velocity vector has components at) o’ latlo’ and

which moves in vacuum under the force of gravity. Hence, equa-
tion (5.6) implies that an optimum trajectory exists only when
the latter kinetic energy 1s larger than the former. This is
clearly a restriction, in the form of a lower bound, on the
initial components of velocity.

For the case of continuous burning of fuel, some ex-
amples of optimum results are shown in Figure I. These assume
neither drag nor 1lift, and give maximum horizontal distance for
fixed vertical distance. In the examples we assume five to be
the ratio of thrust to total craft weight, inclusive of fuel,
and assume a burning rate r of 0.02/sec. The co-ordinates of
craft position at the end of the burning time are given as
functions of burning time for these values of the craft veloec-
ity vector as existing at the end of the launching stage:

Case A: x, = 2000 ft/sec, yo = 500 ft/sec.
Case B: xo = 500 ft/sec, yo = 2000 ft/sec.
Case C: xo = 750 ft/sec, yo = 3000 ft/sec.
Case D: Xo = yo = 1460 ft/sec.
As we can see from the figure at
y the left, these values imply for
Case A that the craft velocity
Xo vector is initially inclined at
an angle of about 14° from the
horizontal. Corresponding to
Vo |V, the values of the co-ordinates
as shown, the necessary angle ¢
of thrust inclination to the
X horizontal is given as a function
of burning time in Figure II.
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Burning and Coasting

During the coasting phase ny < n < n,, the equations
of motion are

(5.7) 4%& - o s
dn®

(5.8) 95I = _ g,
an2

The conditions for x and y at modified time n = n, are to be
obtained from equations (5.1) and (5.2), and by differenti-
ating these equations with respect to n, we obtain the veloc-
ity components

(5.9) (iX_) = (%) + nl S 4n
\dn/n, dn/ng ,; B ’
ny
(5.10) (%nz)nl = (%E)no - gln, - 1) + . i—dn .

Integration of equations (5.7) and (5.8) yields

x(ng,4d) = x(n;,d) + (%ﬁ)nl(nz -n;) ,

- 2
(g, d) = yng,4) + (%E)nl(nz S ny) - g \na = LA

and by substituting into these the co-ordinstes of position at
the end of burning from equations (5.1) and (5.2), and veloc-
ity from equations (5.9) and (5.10), we obtain '

n;

x(nz,g{) = (n2 - ]_) (d_X._) + _(E.z__:_.l_l_). c dn s
dn [ng 1 n
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y(n:a,d) = (nz - 1> (%nz)no - %(nz - 1)2 +

n,
+\[\ {ne - n) s dn .
1 n

Comparison of these latter equations with the relations (4.3)
and (4.4) shows that

dx No - n
f = -1 == = 2 , h = 0
(ng ) (dn)no ? J n ?
-f = (]_’12 - 1) (gl) - g(n2 - ]_)2 , j = o) R
dn [ng 2
I_l — n2 - n .
n

from which we conclude that agein thrust direction is fixed in
the plane of motion. Equation (4.18) furnishes the relation

P21nn1+s[(§'1) —g(n2-1ﬂ+c(ix.) = 0.
dn/ng dn/ng

It is clear that for this case formulas (5.3) through (5.6) are
valid with n; replaced by ng in the various denominators and in
the right-hand side of equation (5.6).

Examples of optimum results for vertical paths are
"~ given in Figure III for cases of burning followed by coasting.
Values of the co-ordinates are shown as functions of total
flight time. Again, 1ift and drag are assumed negligible, and
the conditions at the end of the launching stage are the same
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as those used for the examples of Figures I and II. Burning
times are 10, 20 and 30 seconds, as indicated on the graphs;
the label xp.op, for instance, defines the curve representing
the variation of the x co-ordinate with flight time for con-
ditions A--that is, for xo = 2000 ft/sec, yo = 500 ft/sec--
and for a burning time of 20 seconds. Corresponding angles
of necessary thrust inclination, measured from the horizon-
tal, are indicated in Figure IV. The figures have been drawn
so that some indication of maximum vertical distances attained
by the rocket may be seen. Actuslly, at very large verticsl
or horizontal distances, the effect of the varistion in grav-
‘ity, curvature of earth, etc. should be taken into considera-
tion.

In order to make the methods employed more readily
understandable, the process of optimization in the case of
zero 1lift and zero drag, burning followed by coasting, is
discussed in unmodified terms in Appendix A.
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VI

ZERO LIFT AND LINEAR DRAG

Continuous Burning

When 1ift is negligible and a linear drag is. assumed,
the equations of motion (4.1) and (4.2) become

(6.1) a%x + K SE = £
dn® n dn n

(6.2) Q?E+EQZ = E—g.
dn? n dn n

In order to integrate these relations we introduce the function
G = G(n,q) which satisfies the adjoint differential equation

(6.3) d=e¢ _ K dG , KG
dn® ndn n®

= 0 .

It is easily verified that the value

(6.4) G(n;q) = E'_E"T [anl—K "n] ’ K 7{ 0,1,

satisfies equation (6.3) and has the useful properties

aG
G = 0 == = .
(a,9) ) (dn)q’q 1

The case K = O has been covered in the previous sections. If
K =1, then the function G 1is
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G(n,q) = n 1n (n/q) .

Because of the fact that the case K = 1 is rarely encountered in
practice, we omit the discussion of this case and treat equation
(6.4). We shall now apply the standard method for treating a
differential equation and its adjoint. Combining equation (6.3)
successively with equations (6.1) and (6.2), we find that

(6 5) _d; ng_ - Xg'.g + _d_'. __KGX = .(ﬁ
’ dn \ dn dn dn\ n n ’
and
(6.6) L [cd¥ - y4G) . d (KGy 5 _gla.
dn\ dn dn dn\ n n

On integrating these equations between the limits g =n =1
and replacing q by n,, we obtain

6.1 ) = rgmiTen (&)
No

1l

1 -K dn
ny
_ 1 1-K _ ay +
(6.8) y(nm,d) T g 1) dn)no
1-K -
+ g i - o - i K 1 n12 +
K - 112 K+ 1 2 K+ 1
ny
L1 nK-1n,1-K - 1] s dn .
1-KJ,

Note that K # 0, 1 or -1 in relation (6.8); in future work, we
will omit these special values of K. Comparing these latter
expressions with equations (4.5) and (4.6), we find
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- 1 1-K _ ax

R L) (dn)no ’
nK-1p 1-K _ 1
v = s
1 -K

w = 0,
T = —t (n, 17K - 1) il) +

nK-lnll"K - l
1-K

Again, thrust direction is fixed in the plane of
motion. By use of relation (4.19), we find that

2
(6.9) 22 (K -1)+5s (&) +_& - 28 , K1),
X dn/n, KX+ 1 K+ 1

+ ¢ [ = 0.
dn/ng

The formulas corresponding to expressions (5.3) through (5.5)
are

(6.10) sin(g + a) =
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(6.11) cos a =

(6.12) sina =

< 1)(a=x\2 . |fax) . _& . 28, ®a)®
2 dn/np dn/ng K+1 K+ 1

must be satisfied; this can be interpreted physically in a
manner analogous to relation (5.6).

Burning and Coasting

During the coasting phase ng < n < n,, the equatlons
of motion are
d%x | K ax _ |
dn? n; dn
d®y , K dy _
dn® n; dn
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which can be immediately integrated to give
~ -

) I,

(6.14) =x(ng,d) = - % fK(l - w) - i (é‘%)n1 + x(ny,4) ,
(k1 -1 )

(6:38) ynoud) = - B oK =52 - (gg)n b yn,4) +

gny | ny- n; K(1 - =2)
+=2=2 =2 -n, +n, - 2o n
K [}( 2 1 K 1

The conditions at modified time n = n, for x and y and their
derivatives are obtained from equations (6.7) and (6.8) and
their derivatives. We find that

ny
(6.16) (& = n, K (&= + n, “EnK-1 ¢ dn ,
dnfn, dn/ng 1

(6.17) (91)
\dn/n,

[l

dn n K+ 1

ny
+\/‘ nl‘KnK‘l s dn .
1

Substituting the results from equetions (6.7), (6.8), (6.16)
and (6.17) into (6.14) and (6.15), we obtain

nl_K (gl) + -—g-— (nl"K - nl) +
d o

X(HZ’d) =

o[l k- 22y | mlE 1 fax)
K K(K - 1) K - 1| \dn/ng

n,
+ Rcdn,
1
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v(ng,4) =
s | k- L miE 1 éz) R
K K(K - 1) K -1 dn/ ng
- - D= '
. -, 17K (1 - 52) L 2.K(L - ng ) 1 _
1 Iy
K(K + 1) | K2(K + 1)
_ n, 1=K + n; (K2 + 2K + 2) _
K(K + 1)(K - 1) 2K2(K + 1)
n,
- Malle 4 1 + R s dn ,
K 2(K - 1) 1
R 1 o 1-Epk-1 o 1 P A (E N 22
K(1 - K) 1-K K

Comparing these expressions with equations (4.3) and (4.4), we

find that
£ = -n, 1K K(1 - 22) n, 1-K 1 dx
= |/ e n,’ - + — ’
K K(K - 1) K - 1| \dn/n,
~-K -K
5 o= pk-1 [Tl g - By L mt 1
K * K(K - 1) 1-K
h = 0,
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_ " 1-K a 1-K |
F o= [ZTBal K(1 - H2) 4+ 1 dy)
K K(K -1) 1 - K| \dn/ng
_ Dz - D=
+ —nll'K eK(l nl) _ n? eK(l nl) _
K(K + 1) K2(K + 1)
_ nll_K : N n% K2 + 2K + 2 _ nlng +
K(K + 1)(K - 1) oKE(K + 1) K
1
+ —_—
2(K - 1{] ’
j = 0,
—_— | 1-K . I’l2 l"K 1
B = nK-1 |-21i = K(1-72) . M _ .
K K(K - 1) 1 -K

Again equation (4.14) shows that the thrust direction is fixed
in the plane of motion. From the relation (4.17) we have

(6.18) %?(an - 1) +

dnfJno K+ 1 EK(K + 1) K 1
+c GP% = 0.
dn/ng

Formulas similar to (6.10) through (6.13) may be written. The
only difference between equations (6.18) and (6.9) lies in the
multiplier of s. We shall not explicitly list these results.
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VII

ZERO DRAG AND LINEAR LIFT

Continuous Burning

When linear 1ift and negligible drag are assumed, the

equations of motion

may be written

Eliminating y

2 L d

(7.1) dex , L dy - ¢ ,
dn2 n dn

7.2y &8y _Lax _ s _,
dn<e n dn n

from equation (7.1) and x from equation (7.2), we

obtain the relstions

3 2 2
('7.,_'7)) .d_._x_+}.g'__‘§+£‘_.g§.= _L‘E_FE_L_*__;_@__C_’
dn® n dn® n® dn ne n n dn
2
(7.4) &3y ,14% ,1fdy _ Lec _g,lds
dn3 n dn? nf dn n n n dn
The adjoint is
a%c _ a2 e\, & (L2G) _ ,
dn® dn2 \n dn \n® ’
Simplifying this, we may write
2 2
(7.5) as¢ _ 148G 2 + Lk dG 2 + 2L o _ o
dn® n dn® ne dan nd
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We shall attempt to find solutions of equation (7.5) of the form
(7.6) G = no% ,

Combining equations (7.5) and (7.6), we find that o must satisfy
the characteristic equation

ad - 4a2 + (5 + LR)a - (2 + 2L2) = O ,
which has solutions

« = 2, 1+1iL, 1 - iL.
Hence, the solutions (7.6) are of the form

n2 , nl+il | pl-iL
with real parts

n? n cos(L 1n n) , n sin(L 1n n) .

If we choose

n . n
(7.7)  G(n,q) = -8 cos(L In g) _ gn sin(L Ing) . n<

(12 + 1) L(L2 + 1) 2 + 1

as the solution of equation (7.5), this satisfies the conditions

aG dea
7.8)  G(q, = (&5 = 0, a=z = 1.
( (2,0) (dn)q,q (dnz)q,q

By use of relation (7.8) and the standard technique for solving
an equation with the aid of the adjoint--see equations (6.5),
(6.6)--we obtain
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(7.9) X(nlﬁgf) = G(l,nl) [C - L gE:I +

dn|n=1

; Em,nl)- (gg) ](gx_) ,
dn/1l,n; dn/1l

(7.10) y(n,.4) = G(1,n;) [s - g + LQ] +

These equations can be simplified. Integration by parts and
use of relation (7.8) shows that

an( ) n,
1 n dn 1 dn \n

and an equation similer to this is valid if c¢ 1s replaced by
s. Use of equations (7.7) and (7.11) shows that relations
(7.9) and (7.10) mey be written
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(7.12)

and

(7.13)

X(n1,¢) =

1
Lz + 1

]

+

I + 1

L

nl r
-1 -n,; cos(L 1n
2 +1 |,

ny
__;__f K
2 4+
L 1 1 L

y(n,,4) =

-1
I +1

e + 1

PN S E11 cos(L 1n n,) + n,L sin(L 1In n,) - 1](51-1) +

+ — 8
I + 1

n, n
- 1 3 ___Il - — +
TR . n,;L sin(L 1n nl) n, cos(L 1n nl)

1 l:nl cos(L In n;) + n;L 8in(L 1n n,) - ]:I

gn,
- sin(L In n -
T ( 1)

’:’11 cos(L 1n ny) - ]] +

nlr
*—Lf
21, L

UMM-48

l:nlL cos(L In n;) - n; sin(L in m) - L](%Izl)no.F

().,

Dy _ D, el S 4n-
#;) - §8in(l 1n 77) + n:];l- dn
n, L sin(L 1n ﬁr—li-) - n;, cos(L 1n -r?l—) + r{'% dn,

v ax
lquL cos(L 1n ny) - my sin(L 1Inny) - I‘Z]('d_ri)no+

dnfng

ny _ oy n
) Lsin(Llnn)+

-n, cos(L 1n
N . ny 1

rzl-c- dn-

n

rﬁ-"ldn
n
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Comparing these with equations (4.5) and (4.6), we find thet
(7.14)
= 1 - - dy
U= o T l:nlL cos(L 1n ny;) - n, sin(L 1n n,) I](dn)no+
+——1—-ncos(Llnn)+n'Lsin(L1nn)-l% -
2 +1 | * * 1 dnj/ng
n, .
- g —=2*— sin(L 1n n,) ,
g L2 + 1 1
. n o e 7
(7.15) v = - 1 n,L sin(L 1n l,11) n, cos(L 1n nl) +n ’
L + 1 n B
n n
- -n;L cos(L 1n 5-) - n; sin(L 1n 7-) + nL |
(7.16) w = — 1 1 ny 1 vy ,
I + 1 n -
(7.17)
1_1- = i—g—-lri [nlL COS(L 1n nl) - nl Sin(L ln nl) - L] (%)no'f‘
- d‘
1 - ay) 4
+ ) n, cos(L 1n n,) + n;L sin(L 1ln n,) l:l(dn)no
B
+—-2—5— n, cos(L 1n ny) - 1| ,
12 +1 |
n n
(7.18) T = 1 r—nlL cos(L 1n ) - n; sin(L 1n 7-) + nbL ’
2 +1 [ n
_ -1 rnlL sin(L 1n ﬁ%) - n; cos(L 1n nﬂ;) +n
W -
L +1 | n
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From equation (4.18), we have

(7.19)
-n; (L+Nsin(L 1n g=) + ny (1-AL)cos(L 1n 3-) - n(1-AL)

5 =
c -n; (L+A)cos (L 1n %%) - n; (1-AL)sin(L 1n %%) + n(L+\)

Thus, we see that the thrust direction veries from point to
point on the optimum trajectory. In order to obtain the value
of A, one must solve the slgebraic equetion corresponding to
equation (4.15) for the case of continuous burning, which is

— +

P M (V- ) (3-Mv) 4 (W -dwrp ) (W-dw) dn = 0,

1 \/(V-XV)z + (w-w)?®

Because of the complexity of the formulass for u, U, etc., there
seems to be little hope of finding the general solution of this
equation. However, if we require that A\ be constant, then
equation (7.20) may be simplified. First, we note that in gen-
eral

dn]_

(7.21) -2 J(v-xv)2+(w-xw)2 -

(Fy = W, ) (7= W)+ (i =My ) (F-hr)] -Ay, [vFwi- A(vBow2)]
VE- X2 + (-2

Since A is essumed to be constant, the expression under the in-
tegral sign in expression (7.20) can be simplified by use of
equation (7.21). Substituting equetions (7.14) through (7.18)
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and (7.21) into the relation (7.20), we may write

(7.22) [sin(L ln n;) - Acos(L 1n 1'11)] (Q’S) .
o

dn

+ [%os(L ln n,) + Asin(L 1n nl)] (QI) +
dn/ng

+ _gg——L ) [(1 + AL) cos(L In ny) + (-A+ L) sin(L 1n nlzl +

1y
+ 4 2+ N+ KL2+1 4 n+1-2n,ncos(L 1n ) dn = O.
2
I + 1 1 dn]_

3

For arbitrarily chosen constants Aand n; (0 < n; = 1), the ex-
pression (7.22) determines a linear relation between the initial
components of velocity, so that the craft may follow an optimum
trajectory. By substituting this value of A into equation
(7.19), one obtains the desired thrust direction schedule for
the optimum tra jectory.

Burning and Cossting

During the coesting phase n; < n < n,, the equations
of motion are

2
dn< n, dn
&%y | L ax _ _,
dn€ n; dn )

The equations corresponding to (7.3) end (7.4) are

dn® n? dn n,
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Q§X+L_2§1l=o

dn3 n; dn ’

of which the integrals are easily found to be

(7.23) x(ng,4) =
= ny ny L day n, . L, dx
= -|= - — cosg—(n,- - = — - - +
I:L L nl( * nz):l (dn)nl L 51nnl(n1 nz)(dn)nl

2
+ X(nl’Q{) + g ﬂ(n;a"nl) + ﬁ' sin—I—'—(nl—nz) R
L e ny

(7.24) vy(ng,d) =

= Do _ D COS_L_(nl—nz) gﬁ - Sin‘L’-(nl"‘nz) QI +
L L n, dn/ n; L - ny dn/ n;

2 2
+ y(n,,d) - g[i% - -I—% cosL(nl—nz):I
L L ny

The boundary conditions at modified time n = n, for x, ¥y and
their derivatives are obtained from equations (7.12) and (7.13)
and their derivatives. Thus, by differentiating equations
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(7.12) and (7.13), we get

ax
dn ny

T2 v 1

and

+ 8
L2 + 1

UMM~-48

- sin(L 1n n;) (QX)
o

ny
+\/\ [%-sin(
n
1

dn

L 1n =) +
ny

[%in(L ln n,) +

dx

sin(L 1n n,) (——) +
o

ny
+f [E
n
1

dn

cos(L 1n =) -
n,

l:COS(L ln n,) -

Substituting these into equations (7.23)
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(7.258) x(ng,d) =

dx -n; n, . |-L
== —_— L1 - — sin|—(n;-ng)-L 1In n +
(dn)no L stall in m) L L1< +~r) {I

+7;—-— [nl cos(L Inny;) + n; L sin(L 1n n,) - l] +

+ (Q;Z) X cos(L In n,) + 21 cos [—-—L-(nl—nz)—L 1n n1:| +
n L Ny

dn L
+ z2-%_—-? [nl L cos(L 1n n,) - n; sin(L 1n ny) - ] +
ny
+ 8381 6os(L 1n B) + Bt cos|E(n,-ng)+L 1n BfYan+
1 n L n, L n; ]
g Ny N Lonh on)- -
+L2+l T cos(L 1n n,) + o cosl;l‘(nl ns)-L 1n nl}

n, sin [I—{L—(nl—nz)—L 1n nl] +

1

2
lnl( -n,) ny L -
+ “t(n,.-n + L sin =(n,;-n.)]| +
g I 213 12 § 1Ny

n, [~
+ __2_1____ % n, L cos(L 1n ;11’_1_)+n1 Sin(L 1ln 'E‘)'I’IL] dn -

L + 1 1 1 n,
n, r
1 c . n n
- g £ln, L sin(L 1n £)-n; cos(L 1n —=)+n| dn +
L +1}, n * ny ' Ny

+
|

ny
e B gin(L 1n B) - BL sin -L-(nl—ng)+L 1n 2% dn,
n |L n, L ny, - n,

and
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(7.26) y(ng,d) =

{El- cos(L 1n ny) - %1- cos E(HI-HZ)—L in n{l -
1

- ——2—1——— [nl L cos(L 1n n;) - n; sin(L 1n ny) - L:l +

- n
+ (%%)n {21 sin(L 1n n;) - —f— sinEll"—(nl—nz)—L 1n n{l +
0 1

+——2-—1——— [nl cos(L Inn;) + n; L sin(L 1n ny) - :| +

|
N
g
s
B
(@)
-

L~ + 1
n; B .
+ s (i sin(L 1n &) - =L sin —L—(nl‘nz)‘*'L in 2 dn +
1 n |L nq L n, ny
n, - n B ]
+ e {82 cos(L 1n B) - 2L cos L-(1'11-n:3)+L 1n 2% dn +
1 n L ng L n, n;

+ 28‘ ! sin(L 1n n,) + n; cos -Tf—(nl-nz) - L 1lInny| -
I + 1 L n,

- M ogin | L (n;-ng) - L 1nny - -
L ny

n, -
- ek S |n; L sin(L 1n £)-n; cos(L 1n =2)+n | dn +
2 + 1 ;P n, ny
n, [~
+ L € l-n; L cos(L 1n 2)-n; sin(L 1n 2)4nL]| dn.
I2.+1 [, n Ny H1
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It is clear from the form of equations (7.25) and (7.26) that
the thrust direction varies from point to point on the optimum
trajectory. The determination of optimum peth thrust schedules
is very compliceted in the general case, for equation (4.15)
must be solved. However, particular solutions of equation
(4.15) corresponding to a constant A can be obtained. The
final formula is slightly more complicated than (7.22); hence,
we shall not derive 1t explicitly.
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VIII

OTHER VARTATIONAL PROBLEMS OF THE SAME TYPE

We sew in Section VII that the problem of maximizing
x for a fixed y, or vice versa, either at the end of the total
flight time or at the end of the burning period, with veriable
burning time and variable thrust direction assumed, is rather
compliceted when 1lift is involved. A simpler problem of the
same type, involving 1lift, is that of maximizing x or y at the
end of the burning period or at the end of the total flight
time when both burning time and coasting time are preessigned and
thrust direction is variable. The thrust direction schedule cen
be obtained immediately by epplying direct vaeristions to equa-
tions (7.12) and (7.25), or (7.13) end (7.26).

Maximum x for Continuous Burning, Zero Dreg end Linear Lift

From equetion (7.12) we find thet

nl L cos(L 1n &) + n; sin(L 1n &) - In| £ +
n, ny n

+ [%1 L sin L(ln ) - n; cos(L 1n 2) + %] % 84 dn = O.

I, n,

If the integrand of this relation is to vanish for srbitrary
84, then it follows that

n, L sin(L 1n ﬁi) - n; cos(L 1n l%) +n

tan ¢k = -

n
n, Lcos(L ln B2) + n, sin(L In &) - In ’
ny ng
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and this formula furnishes the desired thrust direction schedule
for the optimum peth.

Maximum y for Continuous Burning, Zero Drag end Linear Lift

From equation (7.13) we have the result

tan gy = - cot dx -

Maximum x for Burning and Coasting, Zero Drag and Linear Lift

From equation (7.25) we see that

n, (
- n
€I cos(L 1n B) + = cos -li(nl—nz) + L 1n 2| +
1 n L n, L n, n,

+ ———1——-—E11 L cos(L 1n 2)+n; sin(L 1n —r—l—)—nI] 54 dn +

Ie + 1 n, n,

+

80 gin(L 1n &) + 2L sin [%L(nl-nz) + L 1n l%] +
n L nq L N, n,

+ 1 n; L sin(L 1n 2+)-n; cos(L 1n B)in|) 64 dn = O.
L2 + 1 n, | ny

Consequently,
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tan gx =

= {22 cos(L 1n B) + EL cos ji(nl—nz) + L 1n 2| +
L ny L n,y N4

+ -1 n, L cos(L In &) + n; sin(L 1n ) - nL|) =
I? +1 ny Ny :
-
= T ogin(n 1n 2) + 2L sin li(nl-nz) + L 1n 2| +
L n; L n; ny

I + 1 Ny ny

+ —gj;—— [%1 L sin(L 1In &) - n, cos(L 1n =) +

Maximum y for Burning and Coasting, Zero Drag and Linear Lift

From equation (7.26) we find thet
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APPENDIX A

THE PROBLEM OF ZERO DRAG AND LIFT IN UNMODIFIED

TERMS; BURNING AND COASTING

For the sake of simplicity, we shall consider opti-
mization in the case of zero 1lift and drag, burning and coast-
ing, directly in unmodified terms. We may write the equations
of motion in the form

. d2x
M. (1 - rt = T cos
O( ) dtg 52{ ’
M. (1 - rt) dfy _ Tsin g - g
° at2 ’

and integrate to yield the respective velocity components at

time t
t
ko= %o o M§<§°f gt) s
t
v = Yo-gb+ . Mz(ii?gt) s

and the co-ordinates of instenteneous position

t pr
x = xot + T cos §_ 4¢ ar ,
o Jo Ho(l - o)
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t T
-2 1=, 2 T sin
T Job T8 fo J:) M, (1 - 7o)

If the rocket burns fuel during the intervel (0,t,), integra-
tion by parts gives, as the position co-ordinates of the rocket
at some later time t = t,,

ta

(A.1) x5 = ZXobg + (tp - t) —L Cosiff at ,
Mo(l - r't)
0
t1 d
. 1—. 2 T sin

A.2 = t, - =gtf + (t. - %) = dt .
( ) Y= Yotz 2% 2 . 2 Mo (1 - 7t)

For en optimum path we require thet x5, be & maximum for fixed
Y= Or yz be a maximum for fixed xz. Along the path the thrust
angle is some function of time t snd flight time t;. Thus, for
an optimum peth we require that ‘ '

t, 4
. T cos
o} = Xo + s dt]| 6ty -
XB [O O Mo(l - I‘t) ] ®
t. 4
T sin
- t, - t 834 At = O
(te ) Mo(1 - Pt) # ’
0
t, ¢
. - T sin
8y = Yo - 8ts + - - dt | 6t +
= [O R 0 Mo(l - rt)
t, 4
T cos
+ to, - t) L g dt = O .
0 (t2 Mo(1l - rt) #
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From these equations we get
ta
Jo - 8tz + MT(ilngt) at tl
o -
0 sin g ¢ at +
t1 o Mo(l -rt)
%o + T cos & at
0 Mo(l - I’t)
(A.3)
t1
+ (bp - t) —% COSA? 54 dat = O .
0 Mo(l - rt)
The substitution
t, 4
. — T sin
- gts, + - dt
(A.4) A = " s
1
fo + | Toosd g
0 Mo(1 - rt)

where \is independent of t, permits us to write equation (A.3)
in the form
t,

(tz - t) T [cos;zf+ Xsingf]agfdt = 0.

0 Mo(1l - rt)

Since 8¢ is an arbitrary function of t the bracketed expression
above vanishes, so that

cot 4 = - \.

Consequently, thrust angle # is independent of t, and therefore
for an optimum path thrust direction is fixed in the plane of
motion.
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Now equations (A.1), (A.2) end (A.4) become respec-
tively :

(A.5) Xo

Il

1 - Pt ’

Xot2+___c_os_éf htz—tdt

3

1 - rt

(A.6) yz = yotz + —gt2 + —————éSln f tz - t dt

(A.7) %o cos 4 + (§o - Btg) sin 4§ = ﬁ% 1n (1 - #ty)
(o]

For a given launching velocity end e specified burning time we
have three equations in Xg,ys,ts and ¢. For fixed x5 or fixed
ys equations (A.5), (A.6) and (A.7) give respectively the values
for yz,ts,d or Xs,ts,4 for the optimum path.
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DISTRIBUTION

Distribution of this report is made
in accordance with ANAF-G/M Mailing
List No. 10, dated 15 January 1950,
including Part A, Part B and Part C.
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