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The electronic partition function for the hydrogen atom was recently derived by integration 
over the Coulomb propagator. A much simpler derivation is given here, based on Schrfdinger's 
exact solution for a hydrogenic atom in a Riemannian space of positive curvature. The energy 
spectrum is entirely discrete, including states which correspond to the ionized atom. The curva- 
ture in Riemannian space is shown to be equivalent to a finite volume in Euclidean space. 

In a recent publication we evaluated the electronic parti t ion function for the 
hydrogen a tom by integration over the Coulomb propagator  [1]. This is a concep- 
tually s t raightforward way of avoiding the apparent  divergence of  the part i t ion 
function which a naive sum over states might imply. In this paper, we present a 
much  simpler derivation of  essentially the same result. 

Schr6dinger in 1940 obtained an exact solution of  the wave equat ion for a hydro-  
gen a tom in a Riemannian  space of  constant  positive Gaussian curvature [2]. We 
must  emphasize from the outset that  the actual curvature of  space-time in our cor- 
ner of  the Universe is far too feeble to have any perceptible effects on atomic struc- 
ture. We will show that  Riemannian curvature can be regarded as a metaphor  for 
representing a finite volume in 3-dimensional Euclidean space. 

For  a hydrogenlike a tom in a space of  positive curvature 1/R,  Schr6dinger 
showed tha t  the energy eigenvalues are given by a remarkably simple formula: 

Z 2 (n 2 - 1) 
- - + - -  n =  1 ,2 ,3 . - -  , (l)  En - 2n 2 2R 2 , 

with the familiar Coulomb degeneracies 

gn = n 2. (2) 

We are using atomic units h = m = [e I = 1 and assuming infinite nuclear mass. Dis- 
tances are accordingly expressed in bohrs (a0 = h2/me 2) and energies in hartrees 
(EH = e2/ao). We also define the dimensionless temperature parameter  
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t3 -~ EI~/kT = 315774/T (3) 

with T in kelvins. The two terms of  eq. (1) have the forms, respectively, of  a Cou- 
lombic energy plus a free-particle energy. It would be difficult to imagine a formula 
with any simpler structure. 

The hydrogen a tom in positively-curved space has a purely discrete energy spec- 
trum, in contrast  to Euclidean hydrogen, which also possesses a continuum. The 
ground state energy is E1 = - Z 2 / 2 ,  same as for the Euclidean 1 s state. For  the fol- 
lowing value of  the principal quantum number: 

no ~ ~ ,  (4) 

the energy is approximately equal to zero. We will find no ~ 105. This can be consid- 
ered the dividing line between negative-energy bound and positive-energy ionized 
or "free" hydrogenic states. Note  that, in contrast to the Euclidean case, the posi- 
tive-energy states have a discrete, albeit extremely dense, eigenvalue spectrum. 

We can now write down the electronic partition function, based on E1 as the 
energy origin: 

o o  

qelec ----- Z n2 e-3(E"-E~) 
n=l 

OO 

= 1 + e -3z2/2 Z n2 e~Z2/2n2 e-3(n2-1)/2R2" (5) 

n=2 

Setting Z = 0 reduces eq. (5) to a free-electron partit ion function: 

fo qo = ~_.t n2 e-fl(n2-1)/2R2 ~ n 2 e -3n2/2R2 dn = x/-ffR3 
n=l 2133/2 • (6) 

Identifying this with the free-particle partition function 

qo --- (27rmk T)  3/2 V~ h3 ---- (27r13) -3/2 V ,  (7) 

we can associate the volume V in Euclidean space with the radius of  curvature R 
in Riemannian space as follows: 

V = 27r2R 3 . (8) 

(The same formula also relates the hypersurface area of a 4-dimensional hyper- 
sphere to the radius R). The above correspondence leads us to interpret the curva- 
ture as a metaphor  for a finite volume in Euclidean space, whereby 

R = (V/2~)1 /3 .  (9) 

Laboratory-size volumes correspond to radii R of the order of 10 x° bohrs. 
We express the hydrogenic partit ion function in the form 

qelec ----- qbound q- qfree e -3Z~/2. (1 O) 
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Fig. 1. Bound (B) and free (F) contributions to the standard-state hydrogen atom partition function. 

Thus defined, the bound part is based on the ground state as energy origin, 
E1 -= 0, while the free part uses E(no) -- O. 

We evaluate the indefinite integral 

+ { 2 ~ 3 / 2 ( R 3 - i l 3 Z R 2 ) e i # Z / R e r f [ ~ ( R + i Z ) ] + C . C .  } . (11) 

For some special values of x: 

vffR3 (2703)-3/2 V (12) f(cx~) = ~ = = q0, 

f (no)  = f ( ~ )  ~ ½(ZR) 3/2 • (13) 

We note in addition thatf(n0) >> f (n*) for no >> n* >> 1. 
By approximating summations over slowly-varying terms by integrals we 

obtain 

[S ] qbound '~ 1 + e -~Z~/2 n 2 e ~z2/2n2 e "On2/2R2 + f(no)  -- f (n*)  

1 + ½(ZR) 3/2 e -~z2/2 (14) 

since the parts involving n* are negligible compared to either 1 orf(n0) at all tem- 
peratures. Mso 

qfree ~ f ( o o )  - f (no)  ~ qo (15) 

sincef(n0) is negligible compared to q0. 
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The two contr ibut ions to the electronic part i t ion function for hydrogen are 
plot ted in fig. 1. These are referred to the thermodynamic  s tandard state, with vol- 
ume given by 

V ° = N A k T / p  ° = 5.5375 x 1026T bohr  3 (16) 

with p0 = 1 bar. The curves labelled B and F represent, respectively, qbo~d0 and 
q°r~e-~/2. Visually, these curves are indistinguishable f rom their analogs obta ined 
via the Cou lomb  propagator  in ref. [1]. 
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