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The electronic partition function for the hydrogen atom was recently derived by integration
over the Coulomb propagator. A much simpler derivation is given here, based on Schrodinger’s
exact solution for a hydrogenic atom in a Riemannian space of positive curvature. The energy
spectrum is entirely discrete, including states which correspond to the ionized atom. The curva-
ture in Riemannian space is shown to be equivalent to a finite volume in Euclidean space.

In a recent publication we evaluated the electronic partition function for the
hydrogen atom by integration over the Coulomb propagator [1]. This is a concep-
tually straightforward way of avoiding the apparent divergence of the partition
function which a naive sum over states might imply. In this paper, we present a
much simpler derivation of essentially the same result.

Schrodinger in 1940 obtained an exact solution of the wave equation for a hydro-
gen atom in a Riemannian space of constant positive Gaussian curvature [2]. We
must emphasize from the outset that the actual curvature of space-time in our cor-
ner of the Universe is far too feeble to have any perceptible effects on atomic struc-
ture. We will show that Riemannian curvature can be regarded as a metaphor for
representing a finite volume in 3-dimensional Euclidean space.

For a hydrogenlike atom in a space of positive curvature 1/R, Schrodinger
showed that the energy eigenvalues are given by a remarkably simple formula:

zZ: (n®-1)
En——‘z—;ﬁ“}——z-R'i-—, n-—l,2,3-~-, (l)
with the familiar Coulomb degeneracies
gn=n". (2)

We are using atomic units # = m = |e| = 1 and assuming infinite nuclear mass. Dis-
tances are accordingly expressed in bohrs (ap = #*/me?) and energies in hartrees
(Eg = €*/ay). We also define the dimensionless temperature parameter
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B = Eu/kT = 315774/ T (3)

with T in kelvins. The two terms of eq. (1) have the forms, respectively, of a Cou-
lombic energy plus a free-particle energy. It would be difficult to imagine a formula
with any simpler structure.

The hydrogen atom in positively-curved space has a purely discrete energy spec-
trum, in contrast to Euclidean hydrogen, which also possesses a continuum. The
ground state energy is E| = —Z?%/2, same as for the Euclidean 1s state. For the fol-
lowing value of the principal quantum number:

Ry ~ \/Z__R, (4)

the energy is approximately equal to zero. We will find ny ~ 10°. This can be consid-
ered the dividing line between negative-energy bound and positive-energy ionized
or “free’” hydrogenic states. Note that, in contrast to the Euclidean case, the posi-
tive-energy states have a discrete, albeit extremely dense, eigenvalue spectrum.

We can now write down the electronic partition function, based on E; as the
energy origin:

o0
Gelec = Z n? e AEn—E1)

n=1

=14 P22 inz B2t =B -1)/2R" (5)

n=2

Setting Z = Oreduceseq. (5) to a free-electron partition function:

0 B B =5} B 7TR3
go = an e AP -D/2R /0 n? =P /2R gy — —\2/,8_3/2_ - (6)
n=1

Identifying this with the free-particle partition function
go = (2mmkT)*?V |1 = (2nB) 7V, (7)

we can associate the volume V in Euclidean space with the radius of curvature R
in Riemannian space as follows:

V =2r7R. (8)

(The same formula also relates the hypersurface area of a 4-dimensional hyper-
sphere to the radius R). The above correspondence leads us to interpret the curva-
ture as a metaphor for a finite volume in Euclidean space, whereby

R=(V/2n%)'*. (9)

Laboratory-size volumes correspond to radii R of the order of 10'° bohrs.
We express the hydrogenic partition function in the form

Gelec = qbound + Jfree e—ﬂZ’-/z . (10)
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Fig. 1. Bound (B) and free (F) contributions to the standard-state hydrogen atom partition function.

Thus defined, the bound part is based on the ground state as energy origin,
E, = 0, while the free part uses E(np) = 0.
We evaluate the indefinite integral

flx) = / x* exp [’8 z -ﬁi} dx = —szexp [ﬂZZ ,sz}

2x2  2R? 3 2x2  2R?
+ {N*j/; B (R — iBZR%)eP?/Rexf \/g(%-{—i%) +c.c.}. (11)
For some special values of x:
(o0) = Yo = n) 1Y =, (12)
f(m) = f(VZR) =~ }(ZR)*. (13)

We note in addition that f(ng) > f(n*) forng > n* > 1.
By approximating summations over slowly-varying terms by integrals we
obtain

Ground & 1 + € P72 N~ 2 2P IR 4 f(ng) — f ()

n=2
~ 1+ Y ZR)Y? P2 (14)

since the parts involving n* are negligible compared to either 1 or f(ng) at all tem-
peratures. Also

Gfree zf(oo) _‘f(no) = 4o (15)

since f (ng) is negligible compared to go.
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The two contributions to the electronic partition function for hydrogen are
plotted in fig. 1. These are referred to the thermodynamic standard state, with vol-
ume given by

V9 = NakT/p® = 5.5375 x 10% T bohr® (16)

with p® = 1 bar. The curves labelled B and F represent, respectively, g2, and
g% .e~?%. Visually, these curves are indistinguishable from their analogs obtained
via the Coulomb propagator in ref. [1].
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