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Abstract 

One of the most difficult problems in computational chemistry is the prediction of the 
three-dimensional structure of a protein molecule given only its amino acid sequence. 
Although there are several programs for calculating the empirical or quantum mechanical 
energies, and there are more programs for either minimizing the energy as a function of 
conformation or for simulating the dynamics of a system of molecules, these approaches 
generally fail either to locate file known native conformation of small proteins and/or 
show that the native structure is preferred over alternative conformations. In this paper, 
we present the latest extension of our ongoing effort to devise an empirical potential 
function that correctly discriminates between the native and essentially all other 
conformations for more than one protein. Furthermore, the potential incorporates such 
a simplified description of the polypeptide chain that there is hope for locating nearly 
the global minimum as a means of predicting globular protein conformation. The current 
potentital function has been parameterized to agree with the crystal structures of crambin 
and avian pancreatic polypeptide and the parameters thus derived are able to correctly 
predict the native conformations of apan~in and mellitin. The key to this accomplishment 
is a novel nondifferentiable optimization approach to solving the nonlinear program for 
determining the parameters. 

1. Introduction 

A long-standing goal of both experimental and theoretical studies is to predict 
the folding pathway of a protein or at least its three-dimensional structure given only 
the sequence [1-5]. Certainly, there are quantum mechanical methods for calculating 
the energy of small molecules as a function of atomic coordinates, as well as accurate 
empirical classical potential energy functions for even larger molecules, such as 
proteins [6-8]. Although these potential functions accurately represent molecules and 
their conformational energetics, they necessarily have a number of local minima that 
increases exponentially with the molecular size. Presumably, the experimentally 
observed conformations correspond to minima nearly as deep as the global one, but 
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the complete search of the high dimensional potential energy surface is a difficult task 
even for a tetrapeptide [9]. Even in a local sense, the well developed computer 
programs that are used for such calculations seem to drive the same starting structure 
to different final energy minima [10]. One way to reduce the global minimization 
obstacle is to adopt a simplified representation of the polypeptide chain, where each 
amino acid residue is represented by only a few united atoms [11-15] or simplifying 
all 20 residue types to either glycine or alanine [16], for example. 

Aside from all the questions of  local agreement with known crystal structures, 
global minimization, and simplified representation, we view the crux of the matter 
to be that a potential function should favor the native conformation of a protein 
globally over all alternative conformations, something that at least some standard 
force fields fail to do [17,18]. We have shown earlier [19] that it is in general not 
possible to construct a potential where a given crystal structure corresponds to exactly 
a minimum, so our more precise objective is to find a potential applicable to any 
protein such that the global minimum for each protein is close to the experimentally 
known structure, and all other local minima are noticeably worse. In that same work, 
we showed how we adjusted the parameters of the potential function to produce 
apparently a global minimum within 1.8 ,~ root mean square interresidue distance of 
the crystal structure of  avian pancreatic polypeptide. Subsequently, we were able to 
use this same potential together with a new global optimization algorithm to predict 
the conformation of apamin with a deviation of only 1.85 7~ from the experimentally 
determined structure [20]. Now, we have expanded the scope to include more proteins. 

2. Methods 

As in our earlier paper [19], we chose the simple representation of a polypeptide 
chain where each residue is reduced to a single "united atom" centered at the C a, 
thus keeping the virtual bond length between the adjacent residues nearly constant 
at 3.8 .~. For the purposes of evaluation of the parameters, we selected crambin ( l cm)  
and avian pancreatic polypeptide (lppt), lbr the purposes of prediction, we chose 
apamin (1 ap 1) and mellitin (1 mlt), and for generating alternative structures, we chose 
serine proteinase (ltgt) and pancreatic trypsin inhibitor (5pti). The coordinates of 
lcrn [21], lppt [22], lmlt [23], ltgt [24], and 5pti [25], which were all determined 
by X-ray crystallography, we obtained from the Brookhaven Protein Data Bank. The 
coordinates of  lapl  [26] are from 2D-NMR studies [27]. 

2.1. FORMULATION OF THE PROBLEM 

For any particular protein, represented as n residue points in a single chain, 
there will be an experimentally determined native conformation nat, the nearest local 
minimum of  the potential function pert, and many alternative conformations alt, 
possibly lying very far away in conformation space. For a metric on conformation 
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space, we have chosen the root mean square (rms) deviation among interresidue 
distances S, as defined in eq. (1): 

n 11/2 , ~., (dna,, i,j -dp  en, i,j )2 
a(nat, pert)= i=1 j=i+l  

-n ( - ~ -  B)2  (1) 

where do,,;,. / and d r,,ij are the distances between the residues (i and j )  in the native 
and perturbed structures, respectively. For a given functional form and a given set 
of  values for the adjustable parameters, any conformation of the protein has a potential 
function value E( ) ,  which we can calculate. As we have already mentioned, in 
general S(pert,  nat) > 0, but we would at least like to minimize that distance while 
requiring that the greater ~(pert,  alt) becomes, then the greater E(alt) ~ E(pert )  
should be. 

The functional form of the potential is a sum of pairwise interactions between 
amino acid residue points, depending on the distance through space between them, 
their sequence separation along the chain, and their amino acid types. Each term, 
therefore, is a function of the distance, a strength parameter e, and an optimal separation 
p. Both e and p depend in the same way on the sequence separation and amino acid 
types. We employ two functional forms for the terms: a harmonic stretching between 
sequentially adjacent residues or cross-linked Cys residues 

e b ( d i i + , ' e b , P b ) : e b ( P ~  d 2 )2 (2) 

and for all other interactions 

e(di,j ; e, p) = e (di,j p)8 (dij 4 p)6] (3) 

For most interactions, we want e --~ 0 asymptotically as d 0. ~ ~,  but if the chain 
should somehow become broken, the harmonic terms in eq. (2) produce a strong 
restoring force. We changed from our earlier 12-10 term to eq. (3) because it made 
the parameter adjusting process easier. 

As before, we grouped all interactions into five classes: virtual bond stretching 
interactions (b) between all residues i and i + 1, short range interactions (s) between 
residues i and i + 2, medium range interactions (m) between residues i and i + 3, long 
range interactions (l) between residues i and j > i + 3, and disulfide interactions (ss) 
between bridged Cys residues. The e and p for a given interaction depend on which 
of the five classes it belongs to and on the residue types t i and tj involved. The ith 
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residue has numerical type t i corresponding to its index in the ordered list 
{ G , A , V , L , I , C , M , F , P , Y , H , W , S , T , K , R , D , N , E , Q } .  In order to keep the 
number of  parameters to a reasonable level, we grouped residue types into classes 
c(ti), depending on the interaction class, and then medium and long range e's and p's 
are selected according to the pair class p(c(ti), c(t.)): 

(c(ti) - 1)c(ti) 
p(c(ti) ,c(tj))  = 2 +c(tj) for c(ti) > c(tj). (4) 

Thus, the 

E = 

total potential function is 

n - 1  n - 2  

Z eb(di, i+';eb'P b)+ Z e(di, i+2;Es(ti+l),ps(ti+l)) 
i=1 i=1 

n-3 
+ Z e(di,i+3; Crn (f)(c(ti+ 1 ), c(ti+2 ))), Pm (p(c(ti+ 1 ), C(ti+2 )))) 

i = l  

+ 
n-4 
2 
i=1 j = i + 4  

e( di,j ;et(y)(c(ti), c(§. ))), pt(p(c(ti), c(tj )))) 

n $  

+ eb (4, ;es,, Ps,). (5) 
i=1 

The residue classification scheme (table 1) lbr medium and long range 
interactions was derived from our previous one [19] by splitting classes into helix 
forming and helix breaking residues [28,29]. As is clear from eq. (5) and table 1, this 
results in one class for bonded interactions, twenty for short range, seven for medium 
range, fourteen for long range, and one for disulfide interactions. Since we have an 
e and a p for each pair class, there are only 2 + 40 + 2(7 x 8)/2 + 2(14 x 15)/2 + 2 = 
310 adjustable parameters, compared to 134 for our earlier classification scheme or 
864 for all residues being distinguishable. 

2.2. ADJUSTMENT 

The fundamental problem in this approach is to adjust the 310 parameters such 
that the pert conformer is favored over all alt's. However, as the parameters are 
changed, the locations of  the local minima in general change simultaneously, such 
that the pert and the alt's may no longer be local minima unless their residue coordinates 
are shifted to compensate for changes in the energy surface. Previously, we had added 
a constraint that the gradients at pert and the alt's should be zero, and then treated 
all parameters and coordinates as variables. Unfortunately, there was a tendency to 
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Table 1 

Classification scheme for medium and long range interaction 

Medium range interactions 

Class Residue types 

1 W 
2 M,R 
3 A, L, C, Y, E, Q 
4 I ,F  
5 G ,P ,S  
6 V,D 
7 H,T, K, N 

Long range interactions 

Class Residue types 

1 R 
2 A 
3 L ,F  
4 I ,C 
5 W 
6 M,E 
7 Y 
8 Q 
9 G,P 

10 N 
11 T 
12 V,S 
13 H,D 
14 K 

change key local minima into saddle points as the portential surface varied. Instead, 
we now vary only the potential parameters directly, and then after each small parameter 
change, we reminimize the E(pert)  and the E(alt)'s with respect to their sets of 
residue coordinates: 

minimizeparameters [maxco.f~ {pert, arts }(E(nat) - E(conf) + 6(nat, conf))] 

[E(conf)  is minimum V conf e {pert, a/t 's}, 

subject to i 0 < ei < 10 g i, (6) 

~ O<p i  < 10 Vi. 

Solving eq. (6) requires a procedure similar to nondifferentiable optimization algorithms 
[30], namely the following: 
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Given a starting set of parameter values and a small set of  alt's, 
For a limited number of outer cycles 

Evaluate the objective function (first line, eq. (6)). 
If the objective is worse, 

If pert is the active conf in the objective function, 
I Accept the worse objective due to the newly discovered 

minimum 
Else some ah is the active conf. 

Halve the step size. 
Retract half way to the previous vector of parameters. 
Never permit the e's and p's outside their bounds. 
Return the pert and the alt's to their previous conformation. 

Else the objective is better 
Quit if the improvement in objective is too small. 
Double the step size. 
Add current pert to list of alt's only if it was active. 

Calculate the (sub)gradient with respect to parameters at the 
current position. 
If the objective has been improving, 

Take a step along the normalized negative gradient. 
Never permit the e"s and p's outside their bounds. 

Since every, evaluation of the objective function entails reminimizing with respect to 
their coordinates the potential of nat to produce the latest pert and all old alt's to 
produce the new ah's, we keep a list of only four alternative structures, continually 
eliminating duplicates, and substituting any new important minima in place of the 
least active alt. 

2.3. INITIAL SET OF PARAMETERS 

Of course, the solution found by the algorithm outlined above depends on the 
starting values of the variables. We were fortunately able to start with the earlier 
parameters [19] for bonded, short range, and disulfide interactions, but the re- 
classification of residue types for medium and long range interactions led us to find 
these starting parameters differently. Experiments on the helix-coil  transition of 
polypeptides show that polyalanine prefers the helical state [31]. Therefore, we let 
the right-handed a-helical conformation of (Ala)2 0 be the nat and the fully extended 
conformation be the one alt. Then the nonlinear program produced a set of  medium 
and long range interaction parameters for Ala-Ala  that were applied to all helix 
former residues. By reversing the roles of the helical and extended conformations, an 
initial set of  parameters for all helix breakers was calculated using a model homo- 
polymer of polyglycine [32]. 
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3.  R e s u l t s  ~ a n d  d i s c u s s i o n  

We began with adjusting our starting set of parameters for lcrn, chosen because 
it has an accurate crystal structure showing substantial amounts of secondary structure, 
yet it has only 46 residues. Rotational energy embedding (ROENEMB) [20] is an 
algorithm that acts as nearly a global optimizer for conformational search problems. 
Given our starting parameters, it was able to find an alt for lcrn substantially better 
than the pert, but then solving the nonlinear program of eq. (6) gave a new set of  
feasible parameters. Alternating ROENEMB searches with parameter adjustment 
generated a library of more than 500 alternative structures of  l cm (of which only the 
four most active ones were needed for the next round of parameter adjustment). The 
resulting parameter set satisfied E(pert) < E(alt) for all these alt's of  lcm, but since 
there are some parameters used by lppt but not by lcm, it was not surprising to find 
that ROENEMB could locate an ah of lppt with a better potential than its pert. 
Additional cycling between ROENEMB and parameter adjustment and between lcrn 
and lppt eventually produced a library of over 500 alt's of lppt and a final parameter 
set that satisfied both proteins. This is the parameter set shown in table 2. 

Our experience has been that ROENEMB is very good at locating excellent 
local minima, but it is not infallible. As an additional check of the global discriminatory 
powers of the final parameter set, we generated approximately 300 additional starting 
conformations for both lcm and lppt and minimized the potential from all of  these 
with respect to residue coordinates. The starting coordinates were obtained from 46 
and 36 residue contiguous segments, respectively, of ltgt and 5pti. The result is that 
1 cm and lppt minimizations began from a variety of protein-like conformers exhibiting 
realistic secondary and tertiary structural motifs. Altogether then, we had a database 
of over 800 alternative conformations for lppt and another 800 for lcm. 

Table 3 shows the result of using our final parameters in local minimizations 
from every starting conlormation in the database and by searching using ROENEMB. 
Since our potential is very empirical and is not related to any dynamical experiments, 
the units must be viewed as completely arbitrary. For lcm, the best minimum was 
the pert (6 = 1.56 A, E = -308.02), compared to a best alt having 6 = 2.36 A and 
E = -303.97. Figures 1 and 2 show that both are quite close to the native and differ 
mostly by distortions of the loop and the ends of the helices, while keeping the overall 
folding and main secondary structural features intact. ROENEMB finds a very different, 
compact structure of substantially worse potential. The result is essentially the same 
for lppt (figs. 3 and 4), with pert the best (6 = 2.05 A, E = -229.27),  compared to 
the best alt (6 = 2.58 A, E = -225.94) and a much worse and compact ROENEMB 
structure. Once again, the overall folding and secondary structure is preserved in pert 
or the best alt, with the main variations located in the extended strand. 

Of course, the real test of  the potential is its predictive power. Table 3 shows 
that for the small proteins lapl  and lmlt - neither of which had been involved in 
any way in adjusting the parameters - the corresponding pert's are favored over some 
300 alt's of.each generated as before from ltgt and 5pti. Figures 5 - 8  show the close 
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Final set of parameters with interaction labels corresponding to eq. (5) and table 1. Interaction 
type b is for bond stretching; s,t is short range with intervening residue type t in the sequence 
{G,A,V,L,I,C,M,F,P,Y,H,W,S,T,K,R,D,N,E,Q} (e.g. 10 refers to the amino acid Y); m,p is 
medium range with intervening residue pair class p calculated using eq. (4); 1,p is long range 
between residues having pair class p calculated using eq. (4); ss is the disulfide interaction. 

Interaction e p Interaction e p 

b 2.271 3.836 m,5 5.530 3.614 

s,1 3.172 4.490 m,6 3.020 4.119 

s,2 0.936 4.324 m,7 2.000 4.141 

s,3 2.447 4.407 m,8 0.662 4.178 

s,4 6.258 4.112 m,9 5.580 4.004 

s,5 3.480 4.136 m,10 1 . 6 5 9  3.831 

s,6 3.725 4.367 m, l l  2.000 4.514 

s,7 3.900 4.020 m,12 5.558 4.222 

s,8 3.996 4.004 m,13 3.023 4.048 

s,9 5.582 4.279 m,14 1.660 3.141 

s, lO 5 . 5 8 1  4.600 m,15 2.380 4.515 

s,11 0.080 4.625 m,16 2.000 4.040 

s,12 2.000 4.120 m,17 2.000 3.607 

s, 13 3.020 4.400 m, 18 4.227 4.120 

s,14 4.067 3.877 m,19 6.322 4.008 

s,15 1.600 4.528 m,20 4.932 4.044 

s,16 5.072 4.001 m,21 0.697 4.263 

s,17 2.394 4.112 m,22 2.000 4.141 

s,18 5.548 4.236 m,23 0.399 4.084 

s, 19 3.051 4.387 m,24 0.496 3.993 

s,20 1 . 0 7 5  4.620 m,25 6.346 3.994 

m,1 2.000 4.514 m,26 3.020 3.998 

m,2 2.000 4.297 m,27 4.952 3.993 

m,3 2.400 3.928 m,28 1.650 4.131 

m,4 2.000 3.800 1,1 0.399 4.084 

1,2 0.496 3.415 
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Table 2 (continued) 

Interaction e p Interaction e p 

1,3 3.660 4.645 1,29 1.034 

1,4 3.889 3.436 1,30 1.035 

1,5 3.659 4.415 1,31 0.913 

1,6 4.940 4.001 1,32 1.035 

1,7 2.299 3.238 1,33 2.000 

1,8 2.287 3.719 1,34 1.035 

1,9 1.660 4.140 1,35 1.032 

1,10 0.406 3.570 1,36 0.732 

1,11 2.000 3.374 1,37 0.020 

1,12 2.000 3.579 1,38 3.003 

1,13 2.000 4.042 1,39 1.660 

1,14 2.000 3.942 1,40 1.009 

1,15 2.000 4.115 1,41 2.000 

1,16 1 . 8 1 3  3.207 1,42 0.020 

1,17 4.220 4.083 1,43 1.660 

1,18 0.577 4.536 1,44 1.035 

1,19 1.216 4.315 1,45 0.020 

1,20 2.000 3.746 1,46 1.660 

1,21 1.600 3.974 1,48 1.580 

1,22 3.660 3.651 1,49 1.659 

1,23 1.216 3.963 1,50 2.000 

1,24 2.020 4.072 1,51 1.056 

1,25 3.017 3.381 1,52 1.216 

1,26 2.000 3.748 1,53 1.021 

1,27. 2.340 4.402 1,54 1.660 

1,28 1.216 3.608 1,55 1.282 

3.154 

3.782 

3.457 

3.878 

4.341 

4.435 

3.753 

5.459 

2.987 

3.414 

3.436 

3.232 

3.374 

3.306 

2.664 

2.579 

2.987 

3.416 

4.414 

3.813 

3.579 

4.082 

3.964 

3.730 

3.417 

4.646 
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Table 2 (continued) 

Interaction e p Interaction e p 

1,56 1.856 3.232 1,82 2.015 4.312 

1,57 1.856 3.816 1,83 2.000 3.746 

1,58 0.496 4.134 1,84 1.216 3.974 

1,59 1.535 3.714 1,85 1.216 4.439 

1,60 2.000 3.942 1,86 1.115 4.508 

1,61 0.020 4.314 1,87 1.580 3.308 

1,62 0.220 3.375 1,88 0.020 4.082 

1,63 0.990 3.897 1,89 0.020 4.315 

1,64 0.220 3.231 1,90 2.220 3.746 

1,65 1.216 3.814 1,91 0.704 3.364 

1,66 1.056 3.966 1,92 2.600 3.451 

1,67 1.214 3.374 1,93 1.800 3.963 

1,68 1.189 3.579 1,94 2.200 4.272 

1,69 1.660 4.042 1,95 2.400 3.375 

1,70 1.657 3.939 1,96 2.000 3.748 

1,71 2.000 4.115 1,97 2.400 4.539 

1,72 0.020 3.746 1,98 3.320 3.808 

1,73 • 1.016 3.748 1,99 2.760 4.140 

1,74 0.991 4.359 1,100 2.800 3.751 

1,75 0.220 3.374 1,101 2.400 3.963 

1,76 0.934 3.580 1,102 2.200 3.375 

1,77 1.215 3.942 1,103 2.000 3.748 

1,78 1.662 4.116 1,104 2.600 4.439 

1,79 1.856 3.306 1,105 2.400 3.608 

1,80 0.576 4.082 ss 1.230 5.200 
III III 

1,81 0.020 4.536 
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Fig. 1. Stereo pairs illustrating the comparison of C a traces of 
different conformations of lcrn. Structures are shown with only the 
first residue marked for chain tracing purposes. From the top, the 
figures are the native structure, the near native structure, the best 
alternative structure, and the conformation favored by ROENEMB. 



102 P. Seetharamulu, G.M. Crippen, A potential function for protein folding 

"4 a5 



P. Seetharamulu, G.M. Crippen, A potential function for protein folding 103 

\ k__ 

N 

Fig. 3. Stereo pairs illustrating the comparison of C a traces of 
different conformations of lppt. Structures are shown with only the 
first residue marked for chain tracing purposes. From the top, the 
figures are the native structure, the near native structure, the best 
alternative structure, and the conformation favored by ROENEMB. 
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Fig. 5. Stereo pairs illustrating the comparison of C a traces of 
different conformations of lapl.  Structures are shown with only the 
first residue marked for chain tracing purposes. From the top, the 
figures are the native structure, the near native structure, the best 
alternative structure, and the conformation favored by ROENEMB. 
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Fig. 7. Stereo pairs illustrating tile comparison of C a traces of 
different conformations of lmlt. Structures are shown with only the 
first residue marked for chain tracing purposes. From the top, the 
figures are the native structure, the near native structure, the best 
alternative structure, and the conformation favored by ROENEMB. 
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Tab le  3 

C o m p a r i s o n  of  energy  va lues  and rms dev ia t ion  from na t ive  s~uc tu re  for var ious  confo rma t ions  

of  l c rn ,  lpp t ,  l a p l  and l m l t  

Pro te in  Na t ive  Near  na t ive  Best  a l te rna t ive  Structure  

s t ruc ture  s t ructure  s t ructure  ca lcu la t ed  from 

R O E N E M B  

E* 8 ~ E* 8 ¢r E* o m~ E* 

l c r n  - 15.95 1.56 - 308 .02  2.36 - 303.97 5.92 - 300.57 

l p p t  - 69.19 2.05 - 229.27 2.58 - 225.94 7.73 - 199.88 

l a p l  2719.11 1.14 - 89.05 3.07 - 84.61 2.55 - 76.73 

l m l t  - 61.90 1.62 - 149.03 8.73 - 147.29 10.84 - 139.10 

*Poten t i a l  funct ion va lue  in arbitrary, units. 

'~Root mean  square d is tance  dev ia t ion  (eq. (1)) from the na t ive  s t ructure  in ~ .  

resemblance between nat and pert. Now both the ROENEMB conformers and the best 
alt's are relatively far from the corresponding nat's. The 1 apl conformational searches 
can be viewed as an improvement over our earlier potential [19] in that the difference 
between pert and nat is only 1.14 ~ compared to the earlier [20] 1.65 ]k. However, 
for prediction of  conformation directly from amino acid sequence (without any starting 
coordinates at all) we have to use ROENEMB, which used to get within 1.85 /~,, 
compared to 2.55 tk using the latest parameter set. 

For determining the initial values of the parameters, polyalanine and polyglycine 
had been used to favor helix over extended conformations and vice versa, but the 
subsequent fitting of lppt and lcrn had greatly changed the parameters. Returning 
now to polyalanine with helix as nat, we found that still the pert (a = 1.35 .~, 
E = - 120.53) was favored over the extended conformation (6=  16.95, E = -0 .1)  and 
over the best of some 300 alt's generated as above (a = 7.24, E = -113.38) ,  but 
unfortunately ROENEMB found a better conformation (a  = 6.96, E = -147.66).  
Taking the extended conformation as nat for polyglycine, ROENEMB found the best 
conformation to be the cz-helix (6 = 15.59, E = -97.56),  followed by the best alt 
generated in the usual way (a = 18.44, E = -80.93) ,  distantly followed by pert 
(6 = 0.0, E = -0.5) .  

We conclude that finding some kind of potential function that favors the native 
structure of even a few proteins over probably all alternative conformations is apparently 
a more difficult task than simply ensuring there is a local minimum near the native. 
However, it can be clone even using such a simplified model of the polypeptide chain 
as one point per residue. This suggests that although detailed steric representat ion 
may be essential to reproducing the fine conlormational features of small molecules, 
the overall folding of  globular proteins does not depend sensitively on even the 
presence of side chains! One should be careful not to ask too much of  this potential. 
It in no way attempts to simulate the dynamics or the real forces experienced by real 
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proteins in solution, but rather it attempts only to guide a global minimization search 
toward a minimum located near the native. Whether this sort of scheme can be 
extended to a longer list of  proteins and more successful "predictions" remains the 
subject of future research. 
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