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REALIZATTION OF OBJECTIVES OF CONTRACT

The purpose of this research was to determine characteristic
systems for steady, supersonic flows of a polytropic gas and to apply
the results to the study of: (1) simple waves for plane rotational mo-
tion; (2) some irrotational three-dimensional motions. First, intrinsic
forms of the characteristic systems were obtained. These equations re-
late the directional derivatives of the magnitude of the velocity, q,
and the sound speed, c, and curvatures of the characteristic manifolds.
With the aid of these relations, it was shown in our first report that:
(1) for plane rotational isentropic motion of a polytropic gas, simple
waves (straight-line bicharacteristics) exist only at Mach number one;
(2) the bicharacteristics are radial straight lines in this case; (3)
the flow is a vortex flow which possesses a limiting circle (or arc of
a circle). Further, it was shown that a class of plane rotational flows
exists for which the Mach number is constant along each bicharacteristic.
In the second report, two supersonic irrotational flows whose stream
lines are space curves are studied. These flows are characterized by
the fact that one family of ol characteristic surfaces are parallel
Planes. The stream lines are helices in: one case and winding curves
lying on right circular cones in the other case. The Mach number in
each case varies with the radius of the cross section of the cylinder
or cone.

ABSTRACT

The case where one family of characteristic surfaces are oot
parallel planes is considered. By use of the intrinsic form of the
characteristic relations as derived in a previous report, it is shown
that (in the present case) two flow patterns of a polytropic gas can
be determined. These flows are three-dimensional, steady, supersonic,
irrotational, and isentropic. In the first flow, the stream lines are
helices, along which the Mach number is constant, and the bicharacter-
istics are concentric circles. For the second flow, the stream lines
are space curves which wind along right circular cones; any given stream
line, in the limit, makes a fixed angle with every generator of the cone.
The Mach number varies with the radius of the cross section of any cone
and the bicharacteristics are these circular cross sections. The rela-
tion between the Mach number and the radius of the cylinder of cross sec-
tion of the cone is determined. It is shown that as this radius goes
from some limiting value to infinity, the Mach number goes from infinity
to one.
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1. INTRODUCTION

In a previous report, we obtained an intrinsic formulation of
the characteristic relations for the steady supersonic flow of a compres-
sible fluid.l The present report is concerned with a study of two clas-
ses of irrotational, isentropic flows both of which possess a family of
parallel planes as characteristic surfaces. 1In the first class of flows,
every family of oo bicharacteristics forms right circular cylinders with
generators perpendicular to the family of plane characteristic surfaces.
The resulting flows possess helical stream lines lying on these right
circular cylinders; the magnitude of the velocity q is constant along
a given helix; the value of q in terms of the radius r of the cylin-
der is determined. The second class of flows is characterized by the
fact that every family of ! bicharacteristics forms right circular cones;
the stream lines are helix-like curves lying on these cones; the value
of q 1is determined in terms of the radius of a cross section of a cone.

2. A CLASS OF SPACE FLOWS

For plane flows, the two families of characteristic surfaces
are right cylinders with parallel generators. Here, we consider the case
where one family 9£ characteristic surfaces are parallel planes. We
shall show that this condition defines a family of space flows.

We recall® that in section 5* [see the equations fqllowing(}.l)*]
we assumed that the ordered triad of unit vectors (tJ, nJ, 1Y) form a
right-hand system. Thus, if the characteristic planes are assumed to be
perpendicular to the z-axis of an X,y,z Cartesian orthogonal coordinate
system, and nJ is sensed in the positive direction of the z-axis, then
the ordered pair (tj, -lj) form a right-hand set in any plane orthogonal
to the z-axis. Let us introduce into any such plane, z = constant, a
family of parameter curves, & = variable, along tJ and a family of para-
meter curves, B = variable, along ¢J. Then the arc-length element in
any such plane is

ds® = (Adx)2® + (BdR)2 , (2.1)



where A and B are functions of @, B, and z. If Q(G,B,g) denotes the an-
gle between the x-axis and tJ, then the unit vectors tJ,EJ have Cartesian
orthogonal components

td > (cos @, sin e, 0) ,

. (2.2)
J s
L + (sin @, -cos @, 0)

From these last equations, it follows that in any plane, z = constant,
the Q,B parameter curves are determined by

ox dy .
= A cos @, X = A sino ,
(2.3)
ox . &y
P - B sin o, » = -B cos ©

Further, the curvatures k,k of the @ = variable, B = variable, curves
are

1 0 1 0A
f s i B o® (2.4)
- 1 36 1 OB
"B ® "B & - (2.5)

The last relations in (2.4),(2.5) are obtained by partial differentiation
of (2.3). These relations imply that the integrability conditions of
(2.3) are satisfied, or that the Riemann tensor for the plane vanishes.
Note that in forming the partials of {(2.4),(2.5), z is constant. Thus,
if we write the variables which are kept constant, then

9 _ 96

% o , ete. (2.6)

z,B

We digress briefly to consider the significance of (2.6). The
relations (2.3) define a coordinate transformation

]
(o

X = X(C!,B,&) ) y = Y(a:B:S) ) Z (27)

Thus, in (2.3) through (2.6),the differentiation is taken with respect
to the variables of the set ,B,5. We shall need to relate the operators



where the last derivative is equivalent to 8/6z)a,5.
and (2.7), we see that the matrix

is

9
oz %,y

3x

X

3x
B

3x
%

A cos ©
B sin ©

ax
%

S
Y

dy oz
X X

dy oz

)

dy Oz

)

A sin ©

-B cos ©

oy
08

-

0

0

1

(2.8)

Comparing (2.3)

(2.9)

(2.10)

Since the matrix of dx/dx, etc. consists of the reduced cofactors of the
determinant of the matrix (2.9) or (2.10), we find that

where

"

o
ox

o’
dy

x
oz

o)
ox
B
oy

B
oz

ais

azs3

%
ox
B |
oy
»
oz
p—
_ sin ©
T A
-cos ©
= B

cos © sin ©
A B
sin © -cos ©
A B
-a13 ~a23
dy + Cos 6 ox
boto) A 08
dy sin 6 ox
» * T B

, (2.11)

(2.12)



Thus, we find by use of the chain rule and (2.11),

0 N R 2,2
> .y = -tis g 823 39 s (2.13)

The significance of the coefficients a;3,ap3 can be seen from
the following arguments. Using (2.10) and (2.12), we find that

I A F R -
S A
- 7 (2.14)
1 |dx ox o)
az23 = 55 SE Sg + %% 5% + (0)(12—

If cos (a,d) denotes the cosine of the angle between the curves B = con-
stant, & = constant and @ = constant, B = constant, and cos (B,5) denotes
the cosine of the angle between the curves o = constant, & = constant and
a = constant, B = variable, then

Aayg = cos (2,8) , Basg = cos (B,d) . (2.15)

Again, we note that if we solve (2.12) for

y  x
¥’ » ?

we obtain

ox
Sg = Bagg sin © + Aayz cos © ,
(2.16)
oy
= = A ajs sin © - B agg cos ©
08
Using (2.3), the above becomes
& _ o, %X
68 23 aB ais M )
(2.17)

Sy dy dy

35 = azg & + ais X

Thus, x(@,B,%), y(a,B,5) are two independent solutions of the partial
differential equation



or (as is evident)

From (2.3) and (2.16), we obtain a set of integrability con-
ditions which must be added to the equations (2.4) and (2.5). These
are

% (B as3) - A aia %—2 = -A % ) (2.18)
2 (Aas) +Baan P = &2, (2.19)
5% (B azs) - A a1g —2—:— = %% : (2.20)

From (2.15) we see that if the angles between the coordinate lines, a =
variable and & = variable, B = variable and ® = variable, are ﬁ/2, then
A aj;g = B agg = 0. The above relations show that in this case, o, A,
and B are all independent of & (as is to be expected). The relations
(2.4), (2.5), and (2.18) through (2.21) imply that the Riemann tensor
vanishes in the o,B,d system.

To determine formulas (4.3),* (4.9),* (4.10),* and (3.9)* in
terms of the congruences tJ, fJ, nd, we must evaluate the curvature terms.
Since the nd congruence consists of straight lines parallel to the z-axis,
the curvature vector of these curves, uk, vanishes. Further, the second
fundamental tensor of the planes (z = constant) is sjk = O3 also, the
mean curvature M of these planes vanishes. By definition, the curvature

vector Ux of the £j (or -£3) congruence is

%3 25 = T Kty o,

or

(2.22)

ct
.
[

|



Finally, we consider the curvature K of (5.15)*:
K = P 2¥ (3t - tp)
Since the vector tJ lies along curves in the planes z = constant,
Py 1, = 0

That is, the vector lkaktp has no component along nP. Further, np%tk
represents the directional derivative of ty in the z-direction. From

geometric considerations and the fact that the ordered pair (ty, -ILk)

form a right-hand set, it follows that

Fo4)
b - 2=
n Bp tk = 82)}( Ly

2

Using the above results and (2.13), the formula for K reduces to

K = é}.a%—ag-+azsg—g'g—§> . (2.23)

Finally, we note that

9 - 9 a9
x "X ¥ TPy o
(2.24)
2 _ 3 2 2. 2
on Az, o T T813 )y "823938 t 3
Using (2.4), (2.5), (2.22), and (2.24), we find that (4.3)%
becomes
el e . @  3mB . —2L  [ono T3S
o \/qz - c2 \/?12 - c2 oQ + .\/qg - c2 da - X . (2'25)

Further, (%.9)" reduces to



(y -3)g2+4c® [ 9 O . O\.JaZ - a2 _
oo 1) §2 — ais % az3 % + % q c =

cNg2 - c2 Jd1n B + (7-5)‘12' (7—5_)c2 <a

A o (r-1)(a®-c®)

29% - (y + 3) ¢ 3 )
O D (@ - D Tles 55 - 22 »® "B 5

(2.26)
In order to evaluate (4.10)*, we note that
R A TR T A
Thus using (2.4) and (2.23), we find that (4.10)* becomes
9 _ dho _ TS _ (2 _.2) OlnA
% "% w0 o T
(2.27)

+ cNg® - c2Blaa gg + az3 %g - §§>

Finally, (3.9)* reduces to

Ng2 - c2 oho dho dho _
<ic ais + " ~ c ass iﬂg +c S5 - o . (2.28)

Evidently, the differential equations of the stream lines are

do ap

2
-a;3 + M= - 1 ~823
A

as |, (2.29)

where M is the Mach number, q/c. Since (2.29) may be written as

Ado Bap

-A 3-13+VM2-1 -B az3

and Adx, BdB, dd are the arc-length elements along the coordinate lines,
and A a;sz, B aps are cos (@,8), cos (B,d), it follows that the stream

7




lines are space curves. If cos (S,x) denotes the cosine of the angle
between a stream line and the & = variable coordinate line, etc., then

cos(S,a) : cos(S,B) : cos(S,8) = - cos(Q,d) + NM2-1 : - cos(B,d) : 1 .

3. A FAMILY OF ISENTROPIC IRROTATIONAL FLOWS WITH PLANE CHARACTERISTIC
SURFACES (HELICAL STREAM LINES, CONCENTRIC CIRCULAR BICHARACTERISTICS)

We shall consider those flows of section 2 for which

h, = constant , S = constant, a;3 =ass =0 . (3.1)

(¢]

As noted earlier, (2.18) through (2.21) imply that

JA OB 00
% - % - % - ° (3.2)
that is, the curves, & = variable, are orthogonal to the planes, z =
constant. We shall show that every family of «% bicharacteristics

(8 = variable, a = variable) forms right circular cylindrical surfaces
with generators parallel to the z-axis. From (2.26), (3.1), and (3.2),
we see, by the use of a simple argument, that

oq  _
86 - O J (5'5)
OB
< - o . (3.%)

From (3.2) and (3.4), and the fact that B is independent of &, we see
that by the proper choice of a scale factor along the B = variable curves,

B = 1 . (3.5)

Further, (2.5) implies that the orthogonal trajectories of the bicharac-
teristics are straight lines, or

Kk = 0, © = e(ad) . (3.6)

Returning to (2.25) and (2.27), we see that (3.1), (3.3), and (3.5) im-
ply that (for M = gq/c)



M2 a M2 d
SEL) 3 Py ® - ¥ BA o (3.8)

Integrating (3.8), we obtain
l/y+l
2 -1) M2
F(a)[ . ] - A, (5.9)

where F(a) is an arbitrary function of & . By the proper choice of a
scale factor along the curves a = variable, we can select F(@) = 1.
Hence, A is a function of B only, and M is determined by

A(+1)  _ [2 +Jg-l) Ma] _ (3.10)

M=-1

Again, since 6 = (@), (2.4) implies that
A = c1 B+ca (3.11)
® = c3 aA+cg , (3.12)

where ci, Cz, Ca are arbitrary constants. If c; # 0, then M is not con-
stant and the relations (2.3) lead to

= cab + c2 sin (c10 + c3)

Ci

-c1f + ¢
y = Caf + ez cos (c1Q + c3)

Ci
The bicharacteristics B = constant, & = constant are concentric circles.

From (2.29), the differential equations of the stream lines are

Ado
ME-1

= 45 , P = constant ,

or by integration (where c, is a constant),

Ao = NMP-1 & +c4 , B = constant



Since «a = cl'l(G-cs), 8 = z, and the surfaces B = constant are right
circular cylinders, the stream lines are helices lying on these cylin-
ders and cutting the generators of the cylinders in the constant angle
p where

1
cot = . — .
e Cy M2-1

Finally, using polar coordinates © = c;, r = A/cl, we see that the Mach
number M depends only on r. That is, for air, y = 1.4, if

u=M2-l;

then (3.10) leads to

(c1 r)E.u = [?;E—%;;&-%] .

We note that for ¢ =1l as M~»>1, u>0, r >3 M=2, u=3,r = (1.2)1/2'%
It is easily shown that as r decreases, M increases. Evidently q is con-
stant along any stream line.

4. A SECOND FAMILY OF IRROTATIONAL, ISENTROPIC FLOWS WITH PLANE
CHARACTERISTIC SURFACES (STREAM LINES LYING ON
RIGHT CIRCULAR CONES, CONCENTRIC CIRCULAR BICHARACTERISTICS)

We shall now consider those flows of section 2 for which

h, = constant , S = constant ,

B apg = k 3 A aig = 0 ’ (h.l)

where k is a constant such that O < |k| < 1. Since B aps, A a;s are the
cosines of the angles between the B,8 and @,5 coordinate lines, respec-
tively, the conditions (4.1) imply that the coordinate surfaces B = con-
stant are surfaces with straight-line generators (& = variable) which
make an angle Q:with the z-axis where

cos § = N1 - k2

The relations (2.18) through (2.21) become

10



0 = % ) (k.2)
k2.2 (4.3)
o = &, (h.4)
g -2 (k.5)
From (4%.5) and (4.2) we see that

6 = o(a) . (4.6)

Further, the relation (2.5) becomes
S .0 . (4.7)

The relations (4.4) and (4.7) imply
B = B(@) . (4.8)

Thus, the orthogonal trajectories of the bicharacteristics o = variable

are straight lines. The relation (2.4) becomes

de 1 0A
T -3 » - (%.9)
Integrating (4.9), we find that
B
A = o f B dp + G(5,a) , (&.10)

where ©' = dg/da and G(d,a) is an arbitrary function of 5,a. Differen-
tiating (4.10) with respect to & and using (4.3), we find that

G(d,2) = kd @' + H(a) , (%.11)

where H(a@) is an arbitrary function of a. Thus, (4.10) becomes

A = Q'fBBdB+k8 e' + H(a) . (4.12)

11



Since a;s = 0, 8 = 6(a), B = B(B), we find that (2.25) implies
that

a = a (B,3) . (k.13)

From (2.27), we see that H(x) = constant = £, and also that @' = de/da =
constant = p. The relation (4.12) becomes

A=p[fBBdB+k6]+£ , (4.14)

and (2.27) reduces to (in terms of M)

M= 1 (y ~1) M M
T -1) | M 2+ (y -1) M| o8

B
= Trp Ee (4.15)
p[]ﬁ B adapg + ké] + 1
Now the operator
o) ) o
-813 §y " 823 gg Y
is [see (4.1)]
-
B B 3%
Thus, for any function F of
RURER
p Bdg + kpd| + ¢ ,
we find
_k oF  oF . ([ keB -
B ® ® B+k1>=0- (4.16)

If we require that M, the Mach number, be a function of

12



p
A = p\]r Bag + kpd + £ , (b.17)

then (2.26) is identically satisfied. Integrating (4.5), we obtain
[see (3.9)]

2+ (y -1) M _ _ 7+l
M -1

’ (4.18)

where a s a constant. As M goes from 1 to », A goes from « to
[(y-1)/a]t/7+L.

By integrating (2.3), we obtain

n

X = ﬂ%L&)- sinpa ,

. = -M%ﬂ cospa , - (4.19)
zZ = 8 U

Thus the bicharacteristics (B = constant, & = constant) are again con-
centric circles of radii A/p. The differential equation of the stream
lines is [see (2.29)]

Ao s , B = constant . (4.20)
-k + NM-1

Since A = A(B,d), we find that (4.20) reduces to

f -k +NM2-1
a = — 4%

N s B = constant . (k.21)

From (4.14) and (4.19), it follows that the surfaces B = constant are
right circular cones. Hence, the stream lines cut the generators (a =
constant, B = constant) of the cones in the angle p where

Adcx
tanp = FF = k+VMR -1 . (k.22)

13



Since A/p is the radius of any cross section of a cone, as the radius
increases, M decreases [see (4.18)]. Further, (4.22) shows that as the
radius increases, the angle p decreases. Thus, every stream line winds
along a right circular cone and always becomes steeper. In the limit
(as the radius of a cone approachés infinity and M approaches one),
the stream lines cut the generator in a constant angle.

5. OSOME GENERAL REMARKS

In section 3, we showed that if the characteristic surfaces
are parallel planes and if two families of ol cylinders, perpendicular
to these planes, can be passed through the bicharacteristics, then one
family of these cylinders consists of right circular cylinders. Fur-
ther, in section 4, we showed that if two special families of ' cones
can be passed through the bicharacteristics then one of these classes
of cones consists of right circular cones. Two other cases of cones
remain to be discussed. These are given by

a33 = 0, Bazz = k , (5.1)
Aag = ¢, Baxg = k , (5.2)
where k and f are constants. In the first case, it is easily seen that

the bicharacteristics are radial lines. However, the equations of fluid
flow cannot be satisfied in this case.
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