
Journal of Systems Integration, 8, 255–285 (1998)
c© 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

The Algebraic Framework for Object-Oriented
Systems

D. H. H. YOON dhyoon@umdsun2.umd.umich.edu
Department of Computer & Information Science, University of Michigan–Dearborn, Dearborn, MI 48128

Abstract. Category Theory is introduced as the mathematical model for object-oriented systems which are dis-
tributed, heterogeneous, real-time, embedded, and open-ended. Each object can be represented as an algebra.
A collection of algebras with morphisms form a category if they satisfy some conditions. After a brief intro-
duction of categorical concepts which are needed to formulate the framework for object-oriented systems, they
are explicated in terms of objects. Then some system design methodologies such as SADT, JSD, MASCOT 3,
OOD, HOOD, MOON, ADM 3, and Petri nets are examined in the categorical framework and classified into four
groups: functional, process-based, object-oriented, and net-based. Combining theoretical and practical results,
the interactive system design tool OBJ-NET is briefly introduced.

Keywords: Algebras, category, object, composition, union, system, design language, diagram

1. Introduction

Objects have emerged as a new computing paradigm generalizing the notions of a Turing
Machine and an algorithm [7]. For this reason they have been employed in all branches of
Computer Science, hardware design, software engineering, database, information systems,
networks, computer graphics, system design, etc. Due to the wide variety of applications,
no two people agree on the notion of an object. It is imperative to establish the theoretical
foundation of Object-Oriented Computing at least for two reasons: First, to bring order
out of the chaotic activities in object-oriented technology. Second, to shed light on future
research directions in the area.

Most literature on object-oriented technology deals with methodologies rather than its
essence. Consequently it results in a methodology jungle. Application oriented users are
often left with the impression that objects are something new and are not related to traditional
computing paradigms such as Turing Machines and algorithms which are implemented using
primitive data types (PDTs) and abstract data types (ADTs). On the contrary, objects have
evolved from all of the above and generalize them. In order to establish the continuity
between traditional and object-oriented computing, their fundamental computing models
are examined in the algebraic framework in which objects and the similar entities such
as PDT, ADT, and module are represented as algebras [1–6]. In practice, objects rarely
exit in isolation. Instead, they co-exit with other objects, communicate with one another,
and form a community or society of objects. The notion of a category is introduced to
represent a community of objects. Once categorical concepts are introduced, the graphical
representation technique of the objects in a category is readily available. This is crucial
because diagrams have been employed as a design tool for many years in Engineering,
yet they have not been treated systematically. Category Theory allows one to integrate

256 YOON

Figure 1. The hierarchy of computational models.

algebraic specification, diagramming, and programming into one entity. Most system
design methodologies employ design languages and graphical notations. In this paper,
major system design methodologies such as SADT, JSD, MASCOT 3, MOON, HOOD,
ADM and Petri Nets are examined in the category-theoretical context concentrating on
their views of a system, design languages and graphical notations [3]. It turns out that
the notion of a system evolves along with the changing computer technology, and design
languages and graphical notations become more sophisticated as time goes on.

In the next section, an algebra is introduced as the canonical form for representing PDTs,
ADTs, modules, and objects. This is the common concept which underlies both tradi-
tional and object-oriented computing. Hence, it is not hard to represent Turing Machines,
algorithms and objects in the algebraic form [7].

An Open Systemis defined as a net of objects. Then, some important system design
methodologies are examined in the categorical context. It turns out that all of the above de-
sign methodologies use textual and graphical representation schemes, which are equivalent
to algebras and diagrams, respectively, in the categorical framework. Finally, OBJ-NET, an
interactive system design tool, is introduced, which utilizes both theoretical and practical
findings on objects [3, 4].

2. Algebras

Through a series of papers [1–3], the author has established an object asan abstraction or
computational model of a real world entity. This definition of an object is broad enough
to include the various views of an object such as Alan Kay’s stating that everything is an
object [8], an object as a model of a real world entity shared by many [11–12], Hewitt’s
actors [13], Shoham’s agents [14], and Krief’s prototypes [15].

Ever since objects were introduced in SIMULA [16] in 1967 the idea of an object has

OBJECT-ORIENTED SYSTEMS 257

OBJ stack
SORTS item, list;
OPNS

push : list∗ item−→ list;
pop : list−→ item;

EQNS
for all i ∈ item, l∈ list,
push (l,i)−→ l;
pop (l)−→ i;

ENDOBJ.

Figure 2. The algebraic specification of object STACK.

evolved continuously. As one can easily see from the above variants, new names have been
introduced as new features were added to the original objects. For instance, an actor is
an object with communication capability added and an agent is an actor with intelligence
added. There are almost infinitely many terminologies introduced in conjunction with
objects. This is very confusing. In order to avoid this type of confusion and to put object-
oriented technology on the firm theoretical foundation, the author has been advocating the
algebraic framework for the technology.

As Fig. 1 illustrates, an object is based on one or more abstract data types (ADTs) and
an ADT consists of a few primitive dat types (PDTs). Modules play the major role in
specifying an ADT in terms of PDT’s and an object in terms of ADTs. Procedures and
functions in programming languages are typical examples of modules. In general, a module
refers to “a separable component, frequently one that is interchangeable with others, for
assembly into units of differing size, complexity, or function” [16]. There is a common
structure among these entities, PDT, ADT, module, and object, which can be expressed as
an algebra.

To be specific, consider the following representation of PDTs: Boolean= 〈B, {AND,
OR,NOT}〉, Char = 〈C, {ord, chr,pred, succ}〉, Integer = 〈I , {+,−, ∗, /}〉, Real =
〈R, {+,−, ∗, /}〉, where B, C, I , and R represent boolean, character, integer, and real
variables, respectively. Similarly, ADTs can be represented in the same form: stack=
〈list, {push,pop}〉 and queue= 〈list, {insert,delete}〉. One can easily see the common
structure underlying both PDTs and ADTs: an entity is represented as an encapsulation of
a set of data and operations defined on the set, i.e. entity= 〈data,operations〉.

An object can be represented in a similar form. The specification of the stack object in
Fig. 2 uses the UMIST OBJ notation [18] and introduces terminologies that we need to
define an algebra. In the above specification, OBJ, SORTS, OPNS, EQNS, and ENDOBJ
are reserved words. The object stack is specified in the algebraic form which consists of
SORTS and OPERATIONS. A sort is equivalent to a data type in programming languages,
and the operation section, denoted by OPNS, is equivalent to the declaration part of a
programming module in which all the variables, functions, and procedures are declared.

258 YOON

The OPNS section is equivalent to asignatureof an algebra. The EQNS section is equivalent
to the body of the module in which all the functions and procedures are defined.

Using the above intuitive meanings of a sort and a signature, an algebra is formally defined
as follows:

Definition 1. If 6 is a signature, a6-algebra is a pair〈S, 6S〉 where

i. S is the set of sorts,

ii. 6S is the set of operations{ f } such that if arity(f) = n, then fS: S1×S2×· · ·×Sn→
Sk, where 1≤ k ≤ n.

One can easily see that in the stack specification (Fig. 2),S = sorts and6S = EQNS.
An algebra is a mathematical mechanism to encapsulate data and operations and forms
the basis of both procedural and object-oriented computing. Furthermore, it implies the
existence of hardware devices which provide the space for data or perform the operations.
To be specific, a set of data requires a block of memory in RAM or ROM and the operations
are carried out by CPU or an I/O processor. Although in this paper the emphasis is placed
on the software aspects of object-oriented technology, it is beneficial to keep in mind that
there are hardware devices associated with software components.

A set of objects form a category if they satisfy some conditions. In the next section, a
few categorical concepts, which are relevant to object-oriented technology, are introduced.

3. Some Categorical Concepts

Category Theory enjoys a wide range of applications in Computer Science including the
design of programming languages, the development of concurrent models, type theory,
polymorphisms, automata theory, database, etc. The advantage of Category Theory is that
it can be easily applied to a specific domain without introducing the entire body of the
theory. In this section only a few very fundamental concepts of Category Theory, which are
relevant to Object-Oriented System Theory, are introduced. The reader who is interested
in this line of research is referred to Pierce [19] or Barr and Wells’ book [20].

Definition 2. A categoryC comprises:

1. A collection of objects (algebras);

2. A collection of arrows (morphisms);

3. Operations assigning to each arrowf an object domf , its domain, and an object cod
f , its codomain (we writef : A −→ B to show that domf = A and codf = B).

4. If arrows f : A→ B, g: B→ C, andh: C→ D exist, thenh ∗ (g∗ f) = (h ∗ g) ∗ f .

5. For each objectA, an identity arrow idA: A→ A satisfies the following law: For any
arrow f : A→ B, idB ∗ f = f and f ∗ id A = f .

OBJECT-ORIENTED SYSTEMS 259

Figure 3. A commutative diagram.

Since an object can be represented as an algebra, a category can be viewed as a set of
algebras along with morphisms defined on them. The algebraic representation of a cate-
gory becomes complicated very quickly and overwhelming. For this reason the graphical
representation technique, diagraming, has been used extensively in Category Theory.

Definition 3. A diagramD in a categoryC is a collection of vertices and directed edges,
labeled with objects and arrows ofC.

For simplicity, a diagram and a category will be denoted as follows: DiagramD = 〈V, E〉
whereV is a set of vertices andE is a set of edges and CategoryC = 〈O, A〉 whereO is a
set of objects andA is a set of arrows.

Having defined a diagram, we explicate a category in terms of its diagram. Consider
a categoryC which consists of objects{X,Y, Z,W} and arrows{ f, f ′, g, g′}, i.e. C =
〈O, A〉, whereO = {X,Y, Z,W} and A = { f, f ′, g, g′}. Then its diagramD might look
like the one in Fig. 3. A DiagramD in a categoryC is said tocommuteif, for a pair of
verticesX andY with edgesf : X→ Z andg′: Z→ Y, there exist edgesg: X→ W and
f ′: W→ Y such thatg′ ∗ f = f ′ ∗ g, for someZ, W ∈ O and f, g, f ′g′A.

Example 1. Let us consider a system consisting of four heterogeneous objects which are
connected by a net. The system may be represented as a category:C = 〈O, A〉 where
O = {obj1,obj2,obj3,obj4} andA = { f : obj1→ obj2, g: obj2→ obj3, h: obj3→ obj4,
g ∗ f : obj1 → obj3, h ∗ g: obj2 → obj4, h ∗ (g ∗ f): obj1 → obj4}. Properties (1), (2),
(3) and (5) of Definition 2 are obvious. Only property (4) is explicated in some detail.

Since each object in the system is assumed to be heterogeneous, each object has its own
architecture and language. A typical example of this type of system is a manufacturing
system consisting of milling machines, lathes, transport systems, etc. [2]. Each piece of
equipment is represented as an object. In order for them to communicate, physical links

260 YOON

Figure 4. A system as a category.

Figure 5. A product of two objects.

and protocols are required. Because each object uses its own language, there is a need for
a translator which translates local languages to the universal language and vice versa.

In order to illustrate property (4) of definition 2, arrowsf : obj1→ obj2, g: obj2→ obj3,
andh: obj3→ obj4 represent the communication channels among the corresponding objects
(Fig. 4). Arrowsg ∗ f : obj1→ obj3, h ∗ g: obj2→ obj4, andh ∗ (g ∗ f): obj1→ obj4
indicate composite channels among the corresponding objects. One way of interpreting
h ∗ (g ∗ f) is that obj1 sends a message to obj3 first and obj3 sends it to obj4. On the other
hand(h ∗ g) ∗ f indicates that obj1 sends a message to obj2 first, and then obj2 sends it
to obj4. Hence obj1 can send a message to obj4 through different channels. Both channels
deliver the same message from obj1 to obj4. Fig. 4 is the diagramD of the categoryC.

A category needs to be built up from primitive objects. For this, two operations,product
andcoproductare defined. In order to define them, some notations are needed. LetA and
B be sets. Then the cartesian product of two setsA and B is A× B = {(a,b) | a ∈ A
andb ∈ B}. When the cartesian product of two setsA andB is formed, the corresponding
projection functionsπ1: A× B→ A andπ2: A× B→ B are implicitly defined.

OBJECT-ORIENTED SYSTEMS 261

Figure 6. A coproduct of two objects.

Unlike the cartesian product of two sets, a product of two objects requires the cartesian
product of the data sets along with the product of operations. For this, assume that for some
setC, there are two operationsf : C → A andg: C → B. Then we can form a product
operation〈 f, g〉: C → A× B such that〈 f, g〉(x) = 〈 f (x), g(x)〉. The operationsf and
g can be recovered from〈 f, g〉 by setting f = π1 ∗〈 f, g〉 andg = π2 ∗〈 f, g〉.

Definition 4. A productof two objectsA and B is an objectA× B, together with two
projection arrowsπ1: A×B→ Aandπ2: A×B→ B, such that for any objectO and pair of
arrows f : C→ Aandg: C→ B, there is exactly one mediating arrow〈 f, g〉: C→ A×B
making the diagram commute, i.e.,π1 ∗〈 f, g〉 = f andπ2 ∗〈 f, g〉 = g.

A product of two objects is similar to the cartesian product of two sets. However, since
each object has morphisms associated with it, a product of two objects requires the cartesian
product of two sets of sorts and the product of the morphisms associated with the two objects.
This concept is illustrated in terms of the bivariate normal distribution function.

Example 2. Let X andY be independent random variables on the real line with the standard
normal distribution, i.e.,X ∼ N(0,1) andY ∼ N(0,1). Then objectsA = 〈X, fx()〉 and
B = 〈Y, fy()〉, where f (u) = 1/(2π)1/2 exp(−u2/2), where−∞ ≤ u ≤ ∞. Then
the productC = A × B = {X × Y, 〈 fx(), fy()〉}, where〈 fx, fy〉 = fx(u) ∗ fy(v) =
1/2π exp−(u2+ v2)/2 and−∞ < u, v <∞.

The dual notion,co-product, corresponding to set-theoretic disjoint union is defined as
follows:

Definition 5. A co-productof two objectsA andB is an objectA+ B, together with two
injection arrowsι1: A→ A+ B andι2: B→ A+ B such that for any objectC and pair of
arrows f : A→ C andg: B→ C there is exactly one arrow [f, g]: A+ B→ C making
the following diagram commutes:

The co-product of two objects is very similar to the disjoint union of two sets except that
it involves combining morphisms. The following example from Computer Network will
illustrate the concept.

262 YOON

Figure 7. A graphical representation of an object.

Example 3. Group Communication refers to the communication mechanism in which a
member of a group communicates with the rest of the members by broadcasting a message to
everyone in the group. Other members, upon receiving the message, respond to the message
only if it is addressed to them. LetA = 〈G1, f 〉 be an object whereG1 = group1=
{m1i , i = 1 . . .a} and f = the broadcasting mechanism defined onG1, andB = 〈G2, g〉
be another object withG2 = group2= {m2 j , j = 1 . . .b} and g = the broadcasting
mechanism defined onG2. Then the composite objectC = A+ B = 〈G3, [f, g]〉, where
G1∪G2 = G3 and [f, g] = the broadcasting mechanism defined onG3. The new groupG3

includes groupsG1 andG2 and the broadcasting mechansim [f, g] includes the mechanisms
f andg defined onG1 andG2, respectively [10].

In this section, a category, a diagram, and product and co-product are introduced. They
are sufficient to formulate the framework for object-oriented system theory which permits
to integrate diverse activities in object-oriented technology. In the next section, the above
categorical concepts are interpreted in terms of objects and their block-diagrams.

4. The World of Objects

Putting together what has been presented so far, we introduce three representation tech-
niques of an object: algebraic, graphical, and modular [1–3]. The algebraic representation
of an object leads to the area called algebraic specification [6], the graphical representa-
tion encompasses various diagraming techniques, and the modular representation includes
object-oriented programming languages. A great deal of work has been done on alge-
braic specification and object-oriented languages. Although diagrams have been employed
widely in practice, they have never been treated formally. Category Theory allows one to
unify the three representation techniques into one.

As Fig. 2 illustrates, the algebraic specification of an object consists of the object name,
sorts, operations (OPNS), equations (EQNS), i.e., OBJ= 〈SORTS,OPNS,EQNS〉. An

OBJECT-ORIENTED SYSTEMS 263

object can be represented as a black box and viewed as a miniature system. Fig. 7 employs
the HOOD notation to represent an object pictorially.

4.1. Operations on Objects

In order for objects to be useful, they need to be related to other objects. Two operations,
productandco-product, introduced in the previous section provide the two fundamental
ways of building larger objects from small ones. Instead of using the generic category
theoretical terminologies, two new, but equivalent terminologies,compositionandunion,
which are more familiar to computer professionals, are introduced.

4.1.1. Composition

The compositionof two objects is equivalent to theproduct introduced in the previous
section. It allows one to come up with a larger object by combining two smaller ones. To
be specific, let us consider the following examples:

OBJ O1 OBJ O2
SORTS1 ---; SORTS 2 ---;
OPNS 1 ---; OPNS 2 ----;

-----; ----;
-----; ----;

EQNS 1 ----; EQNS 2 ----;
----; ----;

ENDO1. ENDO2.

OBJ O3
USES O1, O2;
SORTS3 -----;
OPNS 3 ----;

-----;
EQNS 3----;

----;
ENDO3.

OBJ O3 is obtained by composing OBJs O1 and O2. A Composition of O1 and O2 into O3
maybe interpretedasaproductof twoobjectsas follows. NoticeO1= 〈SORTS1,OPNS1,
EQNS1〉, O2= 〈SORTS2,OPNS2,EQNS2〉andO3= 〈SORTS3,OPNS3,EQNS3〉.
SORTS1, SORTS2 and SORTS3 are simply sets of data types, both primitive and ab-
stract, and OPNS1, OPNS2 and OPNS3 are sets of operations. Now, SORTS3 ⊃
SORTS1× SORTS2, where the ‘×’ indicates the cartesian product of two sets of data
types. OPNS3 ⊃ OPNS1× OPNS2 where OPNS1 = π1 (OPNS1× OPNS2) and
OPNS2= π2 (OPNS1×OPNS2).

The following example in C++ further illustrates this concept.

264 YOON

Figure 8. The composition of two objects.

Example 4. The following C++ code declares object PC as a composition of sub-objects
DISK, KEYBOARD, and SCREEN.

class DISK { int rpm;
float price;

public
DISK (int R, float P); rpm (R), price (P){}:

}

class KEYBOARD { int numkeys;
float price;

public
KEYBOARD (int N, float P);
numkeys (N), price (P){};

}
class SCREEN {char colorflg;

float price;
public

SCREEN (int C, float P);
colorflg (C), Price (P) {}:

}
class PC { long RAM;

long ROM;
char * cpu type’
float price;
DISK storage; // three sub-objects

OBJECT-ORIENTED SYSTEMS 265

KEYBOARD kb;
SCREEN crt;

public
PC (long, long, char *, float, int, float, int,

float, int, float);
~PC;

}

The above code is the skeleton of the declaration of class PC as a composition of sub-objects
DISK, KEYBOARD, and SCREEN. For the complete one, the reader should refer to [9].

Another very useful operation on objects isunionwhich enable use to link two or more
objects. Unlikecomposition, this operation requires an entity encapsulating hardware,
software, and interface components. In the example (Fig. 4) in which a net of objects is
illustrated as a category, the reader has seen that in order to link two objects a network
bus and translators were employed. This is true at any level of systems. When system
components are linked, it requres a system bus and sending and receiving mechanisms
should be worked out at the software level. In the next section, the concept of a union is
further explained.

4.1.2. Union

Union is equivalent to the co-product defined in section 3 and enables one to connect two
or more independent objects in terms of a communication link. The client-server model is
a typical example of this operation. In this example, the client and the server are linked
together in terms of a net or channel. Hence, LAN, MAN, and WAN are special kind of
nets. The union of two objects will be denoted byO3 = O1+ O2. The communication
between the client and the server is achieved through remote procedure calls or a group
communication mechanism.

When dealing with processes which are also objects, the communication between them is
achieved through inter-process communication mechanism such as pipes, FIFO’s, message
queues, semaphores, and shared memories. When a process is broken down into modules,
modules communicate with each other through parameter passing.

A union (notice that it is not ‘the’ union) of two objects involves the disjoint union of
two sets of sorts and combining the corresponding operations. Using the same notation
as in the previous section, SORTS3 ⊃ SORTS1∪ SORTS2, where the∪ indicates the
disjoint union of two sets. OPNS3 ⊃ OPNS1∪OPNS2 where OPNS1 = π1 OPNS3
and OPNS2 = π2 OPNS3. Example 5 below along with example 3 should illustrate the
notion of a union pretty clear.

Example 5. As an example of a union of two objects, the client-server model is discussed.
In Fig. 9, O1 = client andO2 = server. In order to connect heterogeneous objects, the
physical link (or network bus) and translators (commonly known as stubs) are required.O3
is the new system obtained by linkingO1 andO2 through other entities such as the physical

266 YOON

Figure 9. ObjectO3 as a Union of ObjectsO1 andO2.

link, translators, and network servers. The entire operations available in the network are
the collection of operations provided byO1 andO2. That is, OPNS3 = OPNS1∪OPNS2.

The following code illustrates how the client requests the server for service [10]. How-
ever, in order to avoid the considerable overhead of the connection-oriented protocols, the
following code is based on connectionlessrequest/replyprotocols. The client sends a re-
quest message to the server asking for some service. The server does the work and returns
the data requested or an error code indicating why the work could not be performed.

//
// Both the client and the server should include the following
// header file.
//

#define MAX PATH 255 // maximum length of a file name
#define BUF SIZE 1024 // how much data to transfer at once
#define FILE SERVER 243 // file server’s network address

//
// Definition of the allowed operations
//

#define CREATE 1 // create a new file
#define READ 2 // read a piece of a file and return it
#define WRITE 3 // write a piece of a file
#define DELETE 4 // delete an existing file

OBJECT-ORIENTED SYSTEMS 267

//
// Error codes
//

#define OK 0 // operation performed correctly
#define E BAD OPCODE 1 // unknown operation requested
#define E BAD PARAM 2 // error in a parameter
#define E IO 3 // i/o error

//
// Definition of the message format
//

struct message {
long source; // sender’s identity
long dest; // receiver’s identity
long opcode; // which operation: CREATE, READ, ETC
long count; // how many bytes to transfer
long offset; // where in a file to start reading

// or writing
long extra1; // extra field
long extra2; // extra field
long result; // result of the operation reported here
char name[MAX PATH]; // name of the file being operated on
char data[BUF SIZE]; // data to be read or written
};
//
// The Declaration of the Server;
//

#include <header.h>

void main (void)
{
struct message m1, m2 // incoming and outgoing messages
int r; // result code
while (1) { // server runs forever
receive (SILE SERVER, &m1) // block waiting for a message
switch (m1.opcode) { // dispatch on type of request
case CREATE: r=do create (&m1, &m2); break;
case READ: r=do read(&m1,&m2); break;
case WRITE: r=do write (&m1,&m2); break;
case DELETE: r=do delete (&m1,&m2); break;
default: r=E BAD OPCODE;
}
m2.result = 4; // return result to client
send (m1.source, &m2); // send reply

}

268 YOON

//
// The declaration of the Client
//

#include <header.h>

int copy (char *src, char *dst) // procedure to copy file
// using the server

{
struct message m1; //message buffer
long position; // message buffer
long client = 110; // client’s address
initialize (); // prepare for execution
position = 0;
do {
// get a block of data from a source file
m1.opcode = READ; // operation is a read
m1.offset = position; // current position in the file
m1.count = BUF SIZE; // how may bytes to read
strcpy (&m1.name, src); // copy name of file to be read to

// message
send (FILE SERVER, &m1); // send the message to the file

// server
receive (client, &m1); // block waiting for the reply
// Write the data just received to the destination file
m1.opcode = WRITE; // operation is a write
m1.offset = position; // current position in the file
m1.count = m1.result; // how many bytes to write
strcpy (&m1.name, dst); // copy name of file to be written

// to buf
send (FILE SERVER, &m1); // send the message to the file

// server
receive (client, &m1); // block waiting for the reply
position += m1.result; // m1.result is number of bytes written

} while (m1.result > 0); // iterarte until done
return (m1.result > = 0 ? OK: m1.result); // return OK or

// error code
}

In this particular example it is assumed that there are only one client and one server.
However. this can be generalized to a situation in which there are multiple servers and
clients. Then the network server maintains a list of member objects along with operations
they perform.

OBJECT-ORIENTED SYSTEMS 269

4.2. An Open System

Applying repeatedly the two operations,compositionandunion, one can easily build up an
open system and define it as follows:

Definition 6. An open system is a net of objects, interacting with its environment.

The net in the above definition is a realization of the union operation on objects and connects
two or more objects. The above definition generalizes various views on a system:

i. a system as a black box [21],

ii. A system as a society of communicating sequential processes (CSP) [22–23],

iii. A system as a collection of communicating experts [24],

iv. A system as a collection of modules [25–26],

v. A system as an interconnection of objects [27].

When an object is employed as a component of a system, it is considered as a computing
agent which is autonomous and capable of communicating with other agents. An object is
autonomous in the sense that it possesses its own hardware, software, and interfacing com-
ponents. The definition above essentially states that a system is a collection of autonomous
objects. Hence, the system is distributed in that each object has its own hardware, software,
and interface and also heterogeneous in that the architectures of the objects in the system
are distinct. Once a system is developed, it is often incorporated into a larger system. For
example, an engine controller is incorporated into an automobile. This type of system is
called embedded. Our definition of a system is broad enough to include the following
systems:

i. distributed

ii. heterogeneous

iii. real-time

iv. embedded

v. open-ended.

A system is open-ended if some components can be added or deleted without damaging the
integrity of the system and real-time if it requires that computation be correct and completed
within a time limit.

A typical example of an open system is a Computer Integrated Manufacturing (CIM)
system which consists of robots, milling machines, lathes, a transport system, computers,
etc. [2].

270 YOON

5. System Design

Ever since computers were introduced to the mankind, they have been used as the controllers
of various systems. For example, digital watches, microwave ovens, dishwashers, automo-
bile engine controllers, automatic pilot systems, CIMs, etc are controlled by computers or
microchips. Simple systems can be modeled as finite-state machines. However, for large
and complex systems the finite-state model alone is not adequate. As systems become more
complex, there have been infinitely many design methodologies introduced and they have
formed the “methodology jungle.” We propose the uniform system theory based on objects
and nets.

Our object-oriented system theory incorporates most existing system design methodolo-
gies as special cases. Two operations, composition and union, allow objects to be composed
(or decomposed) and linked (or unlinked). These operations along with their inverses allow
one to specify the structure of complex computer controlled systems which are special cases
of object-oriented systems and bring order out of the chaotic design activities.

Elaborating on the definition of a system stating that it is a net of objects interacting with
its environment (definition 6), Fig. 10 demonstrates the hierarchy of a system along with
the primary object at each level. A system consists of subsystems, a subsystem consists
of hardware, software, and interface, a software system comprises of objects, an object
consists of processes, a process can be viewed as a special kind of an abstract data type
(ADT) defined in terms of a number of PDTs.

There are numerous system design methodologies proposed, most of which deal with
designing software systems and can be classified in terms of how they view a system as
follows:

1. Functional approach: SADT

2. Process based approach: JSD, MASCOT 3

3. Object-Oriented approach: MOON, HOOD, ADM

4. Net based approach: Petri net

Each of the above approaches has its own view of a system, a design language which is
equivalent to an algebra, and a graphical representation which is equivalent to a diagram.
In the next section, they are examined in terms of their views of a system, design languages,
and graphical notations.

5.1. Functional Approach

Traditionally, a system has been viewed as a black-box which transforms input to output.
In the functional approach, the black-box is considered as a function, and what a system
does or the function of a system is the major concern of a designer.

This approach has a deep root in the functionality of CPU whose primary task was con-
sidered to perform mathematical functions by executing arithmetic and logical operations.

OBJECT-ORIENTED SYSTEMS 271

Figure 10.The hierarchy of system components.

Coupled with the concept of a subroutine, large functions are decomposed into smaller
ones.

The purpose of a system is believed to do something or to perform some function. The
essential content of a system specification is a statement of system function using both a
design language and a graphical notation. The system function normally is not simple and
needs to be decomposed into smaller ones. The system function is organized as a hierarchy
of subfunctions, and design involves elaborating this hierarchy in the top-down fashion.
The functional approach, in a way, is based on the external view of a system rather than its
internal organization.

272 YOON

5.1.1. SADT [28]

Among many system design methodologies of this approach, Structured Analysis and
Design technique (SADT) is best known. It was developed in the late 1960’s and used
successfully by the U.S. Air Force for the development of Integrated Computer Aided
Manufacturing (ICAM) in the mid 1970’s and the early 1980’s.

In SADT, a system consists of interacting components with relationships among them, i.e.,
system= 〈components, relationships〉. Although the system is viewed as a collection of
components along with their relationships, the activities or the functions of each component
are of supreme importance. SADT employs both natural and graphical languages to describe
the activities of the system. In particular, the SADT diagraming scheme uses boxes and
arrows, i.e., diagram= 〈boxes,arrows〉, where a box may represent an activity of the
system under development, a function, a process, or a real world entity, whereas an arrow
may represent an interface or interconnection between two boxes, a relationship between two
entities, input, or output. A box may be decomposed into many boxes and may have more
than one arrows. Arrows may take different shapes, branch, or join. For further properties
of the SADT boxes and arrows, Marca and Gowan’s book [24] is highly recommended.

SADT combines both diagrams and textual representations. The skeleton of a system
can be described in terms of a set of diagrams. However, details are left out in diagrams.
Natural languages like English are needed for communication between various groups of
people, for instance, designers, programmers, maintainers, and end-users.

SADT is one of the most successful system design methodologies and is employed even
in the 1990’s. The significance of SADT lies in the following:

(i) It lays down the groundwork for the development of computer controlled systems
by defining a system as a collection of components along with their relationships.

(ii) It employs a design language and a graphical notation which are the two major
tools of any system design methodology.

(iii) It planted seeds for the development of subsequent design approaches.

5.2. Process Based Approach

This approach has evolved out of the functional approach. In the functional approach, a
system is viewed as a collection of interacting components along with the relationships
among them. However, the emphasis is placed on the activities or functions of each com-
ponent. In the process based approach, the components themselves are emphasized. Of
course, each component performs one or more functions. In a way a process is a miniature
system. In this approach, a system is viewed as a collection of processes, each of which is
defined as a program in execution. Because a process is a program, it can be represented
as an algebra. Some of the major characteristics of a process include that it possesses its
internal states and that it can communicate with other processes. Theoretical properties
of communicating sequential processes (CSP) can be found in Hoare’s book [18]. In this
section, the discussion is limited to the process based design methodologies with emphasis
on their design languages and graphical notations.

OBJECT-ORIENTED SYSTEMS 273

There are a number of design methodologies belonging to this approach. However, only
two of them are discussed: JSD (Jackson System Development) [29–30] and MASCOT 3
(Modular Approach to Software Construction, Operation and Task) [31].

5.2.1. JSD

In JSD a system is viewed as a distributed network of processes, which interact with its
environment. Jackson believes that a static world can be described in terms of a database.
However, databases are not adequate enough for the description of dynamic worlds which
are changing constantly, and sequential processes are recommended.

JSD consists of three major phases: the modeling phase, the network phase, and the
implementation phase [25]. In the modeling phase the system under construction is modeled
in terms of the major components which are considered as processes. Each process either
performs some actions or suffers them.

JSD employs a natural language like English as its design language and a tree structure
as its graphical notation. In order to illustrate this point, Cameron’s library example [25]
is used here: A library consists of the book, member, and reservation process. The book
process is described using the English language and a tree:

ACTION DEFINITION & ATTRIBUTES

ACQUIRE The library acquires the book.
id, date, title, author, ISBN, price.

CLASSIFY The book is classified and catalogued.
id, date.

LEND Someone borrows a book.
id, date, borrower.

RENEW The borrower renews the book.
id, date.

RETURN The borrower returns the book to the library.
id, date.

SELL The book is sold.
id, date, vendor, price.

OUTCIRC The book is taken out of circulation as part of
the inter-library swap scheme.
id, date, destination

DELIVER The book is delivered to the other library.
id, date.

As one can easily see, JSD stands between the functional approach and the process-based
in that its view of a system is close to that of SADT, its design language is informal, and the
graphical notation is not so sophisticated as some of the design methodologies developed
later. For the complete discussion of JSD, Jackson’s book [26] is highly recommended.

274 YOON

Figure 11.The description of the Book Process in English and as a tree.

5.2.2. MASCOT 3

Another very important design technique of this approach is MASCOT 3 [27]. It stands for
Modular Approach to Software Construction and Operation and provides its design language
and graphical notation. It has been used for the design of the software for large, distributed,
embedded, real-time data processing system and has become a UK Ministry of Defense
standard. In MASCOT 3, a system is regarded as a number of interconnected components
which can be classified into two types of processes: activity and intercommunication data
area (IDA). An activity process is represented by a round cornered rectangle, while an IDA
is represented by a rectangle. To be specific, an example system is specified in terms of a
diagram and its design language.

SYSTEM example sys;
USES subsys 1, subsys 2, subsys 3, sida 1, sida 2;
IDA si1:sida1;
IDA si2:sida2;
SUBSYSTEM s2:subsys 2 (sp2=si1.sw, ap2=si2.aw);
SUBSYSTEM s3:subsys 3 (tp3=si1.tw, rp3=si2.rw);
SUBSYSTEM s1:subsys 1 (pp1=si1.pw, gp1=s3.gw3);

END.

SUBSYSTEM subsys 4;
PROVIDES gw4: get;
REQUIRES rp4:rec; otp4:out; tp4:trans;
USES pool 1, chan 1, a temp 1, a temp 2;

POOL p1:pool 1;

OBJECT-ORIENTED SYSTEMS 275

Figure 12.System examplesys.

CHANNEL ch:chan 1;
ACTIVITY a1:a temp 1 (fp=ch.fw, tp=tp4, pp=t1.pw);
ACTIVITY a2:a temp 2 (sp=ch.sw, otp=otp4, rp-rp4);
gw4=p1.gw;

END.

SUBSYSTEM subsys 3;
PROVIDES gw3:get;
REQUIRES rp3:rec; tp3:trans;
USES subsys 4, serve 1;
SERVERsv:serve 1;
SUBSYSTEM s4:subsys 4(rp4=rp3, otp4=sv.otw,tp4=tp3);
gw3=s4.gw4

END.

As illustrated above, the MASCOT design language is more precise and formal than those
of SADT and JSD and closer to an algebra, and also its diagramming scheme is much more
systematic than those of SADT and JSD.

5.3. Object-Oriented Approach

This is by far the most general and comprehensive approach incorporating techniques
developed in both functional and process based approaches and is suitable for developing
large, distributed, real-time, embedded and dynamic systems. There are a number of Object-
Oriented system development methodologies, for example, OOD [7], MOON [32], HOOD

276 YOON

[33], ADM-3 [34], etc. All of them employ their own design languages and graphical
notations, which are equivalent to algebras and diagrams in the categorical framework.

In this approach a system is viewed as a collection of objects. As pointed out earlier,
two objects can be composed to form a new one. Inversely, an object can be decomposed.
Furthermore, two or more autonomous objects can be linked together. Using the two
operations on objects, a system can be built up from primitive objects and defined as a net
of objects, i.e., system= 〈objects,nets〉. The graphical representation of the system is a
diagram, where diagram= 〈nodes,arcs〉, where each node represents an object and an arc
links two objects. Due to the fact that an object can be decomposed and the decomposed
entities are objects again, the shapes of a node and an arc may change depending on what
the node represents.

5.3.1. ADM 3 [30]

Of the object-oriented methodologies mentioned above, Firesmith’s ADM 3 [30] provides
the syntax and semantics of its design language and graphical notation, which may be
transformed to algebras snd diagrams. To be specific, a diagram consists of nodes and
arc, diagram= 〈nodes,arcs〉. ADM 3 provides designers with the freedom of defining
and altering the shapes of nodes as well as the arc. roundedrectangle, trapezoid). The
ADM 3 design language is based on the assumption that a system consists of assemblies,
sub-assemblies, and objects, and includes reserved words such asassembly, subassembly,
object, class, resource, etc. Instead of reproducing the syntax of the ADM design language,
an example is given in Fig. 15. The design language of ADM 3 is sufficiently algebraic
and its diagramming scheme is well strucutured. In this sense ADM 3 may be viewed as a
good realization of a category.

5.4. Net Based Approach

Ever since Petri introduced his net theory in the late 1960’s, the Petri net has been employed
as a tool for modeling computer controlled systems. A Petri net essentially consists of a
set ofplacesand a set oftransitions, and is defined as follows [35]: A Petri net structure,
P N, is a four tuple

P N = 〈P, T, I ,O〉 where

P = {p1, p2, . . . , pn} is a set of places,n ≥ 0,

T = {t1, . . . , tm} is a set of transitions,m≥ 0,

I : T → P∞ the input function,

O: T → P∞ the output function.

When a Petri Net is applied to Object-Oriented Systems, the set of places can be replaced
by the set of objects and the set of transitions can be replaced by the occurrences of events.

OBJECT-ORIENTED SYSTEMS 277

Figure 13.Different shapes of boxes and arrows in ADM 3.

278 YOON

Figure 14.The diagram for CRUISECONTROL.

OBJECT-ORIENTED SYSTEMS 279

Object THE CRUISE CONTROL
Parent Subassembly CRUISE CONTROL;
Specification

Message ACCELERATE;
Message DISENGAGE;
Message RESUME;
Message TURN OFF;
Exception FAILURE OCCURREDIN;
Exception INCOMPATIBLE PRIO STATE IN;

end;

Object THE CRUISE CONTROL
Needs CLOCKS.PREDEFINED;
Needs THE SPEEDOMETER.SPEEDOMETERIN;

body
type Desired speeds
type States is (Accelerating, Disengaged, Maintaining, Off);
variable The Desired Speed;
variable The State;
modifier operation ACCERLATE;
modifier operation DISENGAGE;
preserver operation MAINTAIN;
modifier operation ROUTE MESSAGEFOR
modifier operation TURN OFF;
object THE CLOCK;

start
CONSTRUCT (THECLOCK).CLOCKS;
ROUTEMESSAGEFOR;
MAINTAIN;

end;

Figure 15.The specification of THECRUISECONTROL in ADM design language.

However, the original Petri net is good for modeling and simulation of concurrent systems,
but not suitable for designing them because the Petri net lacks the notion of a hierarchy
which is quintessential in the design of any system. For this reason, the concept of a
hierarchy was introduced [36–37]. To the best of the author’s knowledge, Reisig [38] was
the first to use Hierarchical Petri Nets for the design of large systems.

In Reisig’s method, a net consists of nodes and arrows, i.e. net= 〈nodes,arrows〉, where
nodes represent objects and arrows represent relationships. There are two kinds of objects
in this scheme: active and passive. A rectangle represents an active object, whereas a circle
represents a passive object. An arrow, of course, represents a relationship between two
objects.

280 YOON

Reisig defines two operations on objects: refinement and embedding. Refinement is
equivalent tocomposition, while embedding is equivalent tounion in our system.

5.5. An Observation

In this chapter various system design methodologies are classified into four distinct ap-
proaches, functional, process-based, object-oriented, and net-based, and are considered in
terms of their views of a system, design languages and graphical notations, the latter two
of which may be considered as algebras and diagrams in the categorical context.

One of the advantages of using the algebraic framework is that it allows one to extract
essential features out of the “methodology jungle,” put them in the proper perspective, and
develop the much needed uniform design theory.

Due to the decomposability of an object, it may be decomposed into processes, each of
which may be decomposed into operations or functions. For this reason, the object-oriented
approach is based on the techniques associated with both process-based and functional
approaches.

The following list summarizes the major views of a system discussed in the paper:

Functional Approach: System =〈Components, Relationships〉

Process-based Approach: System =〈Processes, Interprocess Communication〉

Object-Oriented Approach: System =〈Objects, Nets〉

Net-Based Approach: System =〈Places, Transitions〉
In addition, Fig. 16 lists the design languages and graphical notations of the major system
development methodologies.

Combining theoretical and practical results on objects, the interactive system design
tool, OBJ-NET, has been proposed and currently under development at the University of
Michigan–Dearborn.

6. OBJ-NET [3, 4]

OBJ-NET is an interactive system design tool based on objects and nets. The theoretical
basis of this tool comes from Category Theory in which objects and arrows (or equivalently
algebras and morphisms) play the major role (see chapter 3). The theory provides the
theoretical framework for object-oriented technology. In particular, as illustrated in the
previous section, most software system design methodologies may be considered as special
cases in the categorical framework.

In OBJ-NET, a system is viewed as a net of objects interacting with its environment. Each
object can be decomposed into smaller ones and linked with other objects in terms of a net.
Due to the two operations,compositionandunionon objects, a system may be specified as
a hierarchy of objects as shown in Fig. 10, The major system components along with their

OBJECT-ORIENTED SYSTEMS 281

Figure 16.System design methodologies.

Figure 17.The OBJ-NET environment.

282 YOON

Figure 18.A three-level hierarchy of windows.

communication mechanisms are given below:

system= 〈subsystem,nets〉
subsystem= 〈objects,messages〉

objects = 〈processes, interprocesscommunicationmechanisms〉
process= 〈modules,parameters〉

As one can easily see, the composition operation on objects induces the hierarchical
relationship among objects, whereas the union (linking) induces the vertical relationship
among them.

OBJ-NET has been implemented in the X-window environment. Reasons for choosing
X-window are that it supports both hierarchical and vertical relationships and that it is
portable. OBJ-NET sits on the top of the X-window system and interacts with application
programs (Fig. 17). In OBJ-NET an object is represented as a window. The relationships
among objects are equivalent to those among windows. In Fig. 18 windowsA, B, andC
are the children of the root, while windowsQ and R are the children of windowA and
windowsX, Y, andZ are the children of windowC.

• Architecture Option

When this button is clicked, the user is presented with the architecture menu which
allows the user to specify the major components of a system uner development. The
menu displays nine icons indicating system, subsystem, process, etc in the first column
and seven functions across the top. The theoretical basis of this option is the algebraic
framework presented in this paper.

OBJECT-ORIENTED SYSTEMS 283

• Behavior Option

When this button is clicked, the user is presented with the behavior menu which has
three options again: control, flow, and quit. The control option allows the user to specify
the control rules among the objects and events, while the flow option lets the user to
specify how control flows. The theory behind this option is based on Event-driven
System Theory and Hierarchical Color Petri Net Theory.

• Simulator

This option combines information provided by the Architecture and Behavior options
and displays the flow of control by brinking lights as control flows from one object to
another. After viewing a simulation, the user may return to architecture or behavior
option and modify the design.

Further details on OBJ-NET may be found in Ref. 3 and 4.

7. Conclusion

Category Theory is introduced as the mathematical basis for Object-Oriented System The-
ory. As pointed out earlier, the theory can be applied to various areas of Computer Science.
The advantage of Category Theory is that one does not have to master the entire field of
Category Theory before applying it. In order to make this point and in order for mathe-
matically unsophisticated readers to be able to employ the category-theoretical framework
to their work, the minimum number of category-theoretical concepts are introduced in this
paper.

The necessary categorical concepts have been re-interpreted in the Object-Oriented frame-
work. Then anopen systemis defined as a net of objects interacting with its environment.
Applying recursively the two operationscompositionandunionon objects, the hierarchy
of an open system has been established in Fig. 10. The hierarchy enables us to clas-
sify existing major system design methodologies into four distinct approaches: functional,
process-based, object-oriented, and net-based. When they are examined in the algebraic
framework, one can easily see that the notion of a system has been evolving from that of
the functional approach to that of the net-based approach, that design languages have been
developed from informal to formal (or algebraic) ones, and that diagrams have emerged
as a systematic means of communication among end-users, designers, implementors, and
maintainers of systems.

The immediate contribution of the algebraic or categorical framework might appear to be
limited to the specification of the architecture of a system. On the contrary, by introducing
Petri Nets as a special case of a category, one can easily incorporate the huge body of
knowledge obtained from Distributed and Concurrent systems. However, this aspects of a
system are beyond the scope of this paper and will be treated in a separate paper.

In this paper the application of Category Theory is limited to the design and specification
of a system. However, the theory can be applied to various areas of Computer Science.
The power of the categorical framework appears to lie in the fact that it provides us with
mechanisms to integrate various activities in Computer Science.

284 YOON

References

1. D. H. H. Yoon, “The categorical framework of object-oriented concurrent systems.”Computers and Math-
ematics with Applications: An International Journal25(2), pp. 33–38, 1993.

2. D. H. H. Yoon and L. S. King, “An object-oriented approach to computer integrated systems.”Journal of
Systems Integration6(3), 1996.

3. D. H. H. Yoon, Q. Zhu, and J. Cheng, “OBJ-NET: An object-oriented system design tool,” inProc. Int.
Conf. on Modelling and Simulation, Pittsbugh, PA, April 24–27, 1996, pp. 151–159.

4. D. H. H. Yoon, Q. Zhu, V. Mohanram, and J. Cheng, “OBJ-NET: An object-oriented system design tool.”
To appear inJournal of Systems Integration.

5. H. Ehrig and B. Mahr,Fundamentals of Algebraic Specification I, II, Springer-Verlag, New York, 1985.
6. R. M. Burstall and J. A. Goguen, “Algebras, theories and freeness: An introduction for computer scientists,”

M. Broy, G. Schmidt, eds.,Theoretical Foundations of Programming Methodology, D. Reidel Pub. Co.,
1982.

7. G. Birkhoff and J. D. Lipson, “Heterogeneous algebras.”Journal of Combinatorial Theory8, pp. 115–133,
1970.

8. A. Goldberg and A. Kay,Smalltalk-72 Instruction Manual, Palo Alto, CA, XEROX PARC.
9. G. Perry,Moving from C to C++, Sams, Indianapolis, 1992, Chap. 16.

10. A. S. Tanenbaum,Distributed Operating Systems, Prentice-Hall, Englewood Cliffs, 1995, pp. 52–55.
11. G. Booch,Object-Oriented Design with Applications, Benjamin/Cummings, Menlo Park, CA, 1991.
12. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lrensen,Object-Oriented Modeling and Design,

Prentice Hall, Englewood Cliffs, NJ, 1991.
13. G. Agha and C. Hewitt, “Actors: A conceptual foundation for concurrent object-oriented programming,” in

B. Shriver, P. Wegner, eds.,Research Directions in Object-Oriented Programming, MIT Press, Cambridge,
MA, 1987.

14. Y. Shoham, “Agent-oriented programming.”Artificial Intelligence60, pp. 51–92, 1993.
15. P. Krief,Prototyping with Objects, Prentice Hall, New York, 1996.
16. O. H. Dahl and K. Nygaard, “SIMULA—An ALGOL-based simulation language.”Comm. of ACM9(9),

September, 1966, pp. 671–678.
17. Webster’s Encyclopedic Unabridged Dictionary, Portland House, New York, 1985.
18. R. M. Gallimore, D. Coleman, and V. Stavridou, “UMIST OBJ: A language for executable program speci-

fications.”The Computer Journal32(5), pp. 413–421, 1989.
19. B. C. Pierce,Basic Category Theory for Computer Scientists, MIT Press, Cambridge, MA, 1991.
20. M. Barr and C. Wells,Category Theory for Computing Science, Prentice Hall, New York, 1990.
21. M. A. Arbib and E. G. Manes, “Foundations of system theory: Decomposable systems.”Automatica10,

pp. 285–302, 1974.
22. C. A. R. Hoare,Communicating Sequential Processes, Prentice-Hall, Englewood Cliffs, NJ, 1985.
23. E. W. Dijkstra, “The structure of the ‘THE’ multiprogramming system.”Comm. of ACM11(5), May 1968,

pp. 323–344.
24. C. Hewitt and P. deJong, “Open systems,” in M. L. Brodie, J. Mylogoulos, J. W. Schmidt, eds.,On Conceptual

Modelling, Springer-Verlag, New York, 1984.
25. D. C. Parnas, “A technique for software module specification with examples.”Comm. of ACM15(5),

pp. 330–336, 1972.
26. D. C. Parnas, “On the criteria to be used in decomposing systems into modules.”Comm. of ACM15(12),

1053–1058, 1972.
27. S. Ginali and J. Goguen, “A categorical approach to general systems,” in G. J. Klir, ed.,Applied General

System Theory, Plenum Press, New York, 1978.
28. D. A. Marca, C. L. McGowan, and D. T. Ross,SADT, McGraw Hill, St. Louis, 1988.
29. J. Cameron, “An overview of JSD.”IEEE Trans on Software EngineeringSE-12(2), February 1986.
30. M. Jackson,System Development, Prentice-Hall, Englewood Cliffs, NJ, 1983.
31. G. Bate, “MASCOT 3: An informal introductory tutorial,”Software Eng. J.1(2), 1986.
32. M. Hall, P. O’Donoghue, and B. Hagan, “MOON—Modular object-oriented notation.”Software Engineering

JournalSE-6(1), January 1991.
33. B. Delatte, M. Heitz, and J. F. Muller,HOOD, Reference Manual 3.1, Prentice Hall, London, 1993.
34. D. G. Firesmith,Object-Oriented Requirements Analysis and Logical Design, John Wiley & Sons, New

OBJECT-ORIENTED SYSTEMS 285

York, 1992.
35. J. L. Peterson,Petri Net Theory and the Modeling of Systems, Prentice Hall, NJ, 1981.
36. P. Huber, K. Jensen, and R. M. Shapiro, “Hierarchies in Coloured Petri Nets,” in K. Jensen, G. Rozenberg,

eds.,High-Level Petri Nets: Theory and Application, Springer-Verlag, New York, 1991.
37. V. O. Pinci and R. M. Shapiro, “An integrated software development methodology based on hierarchical

colored Petri nets,” in G. Rozenberg, ed.,Advances in Petri Net 1991, LNCS vol. 524, Springer-Verlag, NY,
1991.

38. W. Reisig,A Primer in Petri Net Design, Springer-Verlag, New York, 1992.

