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Coincidence spectra obtained from arrays of radiation detectors can be analyzed without 
resorting to projecting lower dimensional spectra. The techniques for two-dimensional 
analysis (peak searches and peak fitting) are described, and extensions to higher dimensions 
are discussed. Even for two-dimensional analysis it is most efficient to compare predictions 
from a model, such as a scheme for radioactive decay, with the data by backcalculating the 
data from the model. 

Nuclear and subnuclear processes are perhaps unique among quantum-level 
events in the opportunity to characterize single events-the decay of a radioactive 
atom or the interaction of an energetic particle. This opportunity extends to 
simultaneous measurements of more than one feature of single events, namely, the 
coincidence method. 1 The combination of many coincidence events leads to 

multidimensional spectra in the sense used in this paper, even if the events remain 
as a list rather than a histogram. 

Detector arrays 2 have been developed to study deexcitation of nuclides produced 
in nuclear reactions. Current emphasis on nuclear rotational features at high angular 
momenta leads to highly segmented detectors in order to avoid excessive "double 

hits" from the large number of coincident gamma rays. In general, radioactive 

decay does not involve such large numbers of coincident emissions, but the 

availability of these arrays has led to the construction of decay schemes far too 
complicated to have been worked out in a reasonable time by measurements with 
pairs of detectors. For example, the spontaneous fission of 248Cm has been studied 3 

in EUROGAM 1, which was an array of 45 suppressed Ge detectors and 5 Ge 
detectors with good efficiency and resolution at x-ray energies. We can consider 

spontaneous fission to be a form, albeit extremely complicated, of radioactive 
decay. 

Data obtained from these arrays contain an enormous amount of information, but 
extracting that information is a major challenge. Two-fold coincidences among 50 
detectors involve 1225 two-dimensional spectra, each of which might require 100 
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megabytes for storage as histograms. The number and sizes of spectra of three-fold 
coincidences are even more impressive, but three-fold coincidences are necessary 
for constructing complex schemes. 3 Of course the data are recorded as lists (of 
pulse heights, times, and detector IDs) which can be considerably shorter than the 
histograms they imply. In practice histograms are combined; if angular distributions 
are not being sought, all of the similar detectors can be normalized to the same 
calibration and events of a given fold can be combined into a single histogram. 

How are the histograms analyzed? A portion of a 2D histogram is given in 
Fig. 1. Main features to note, in addition to the obvious peaks, are the ridges and 
the 2D continuum. The most common method for analyzing coincidence spectra is 
to set "gates" on one or more of the parameters and obtain lower-dimensioned 
spectra, which in turn are analyzed by familiar techniques (e.g., SAMPO, 4 
GAMANAL, 5 and HYPERMET6). The logic of "gating" can be illustrated by its 
application to the reduction of a 2D peak to the net number of counts in the peak. 
Consider the diagram in the right side of Fig. 1. In this case the peak in each 
dimension comprises four channels, and two channels to either side of the peak can 
be used to correct for the continuum. The sequence is: start with one of the 
parameters, add the spectra in the peak channels, and subtract the spectra in the 
continuum channels (if such can be found). The process is continued with the second 
parameter, with counts being added and subtracted. The net effect is to equate the 
intensity (volume) of the peak to ~e  sum of the counts in the shaded channels minus 
the counts in the unshaded channels. The 2x2 portions at the corners arise from the 
product of two subtractions and contribute to the noise (statistical errors) but not the 
signal. A better result would be obtained by subtracting one third of the sum of 
surrounding 48 channels from the 16 peak channels if, as in single parameter 
spectra, features were confined to peaks and continuum. However, without taking 
the ridges into consideration, the intersection of the ridges from non-coincident 
gamma rays would look like a peak. 

The same statistical considerations apply when the gates are used to reduce the 
data to one-dimensional spectra, which are analyzed by the same peak-fitting 
programs that have been developed for simple one-dimensional spectra. These 
fitting programs are certainly more sophisticated than simple sums-and-differences, 
but neither the absolute values of the peak intensities nor the reported uncertainties 
in energies and intensities .can be trusted if the analysis is based on the assumption 
that the counts per channel have statistical uncertainties proportional to the square 
root of the counts. In fact the counts may be the difference between two large 
numbers and the uncertainty would be the square root of the sum of the numbers. 
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Fig. 1. Graphical representations of coincidence data and gating analysis. The left portion of the figure is 
a 22 channel by 22 channel section of a gamma-gamma coincidence matrix. Each channel is 
1 keV wide. The number of counts in each of the 484 2D channels is given along the vertical 
axis. The right portion shows how gates might be combined to obtain the net counts in a peak. 

Several advantages can be anticipated for multidimensional analysis. Excessive 
statistical noise is avoided. Direct analysis of the histogram prior to any subtractions 
permits uncertainties to be inferred from the data. Peak separations (diagonal) may 
be significantly larger in two dimensions. Finally, CHEMALY 7 and RADFORD 8 
point out that the larger number of degrees of freedom in multidimensional spectra 
permits better tests of data models. 

Even with large arrays of detectors, radioactive decay (fission excepted!) will 
yield primarily 2-fold coincidences, and these are the basis for most of the 
description of the method in the following sections. Some of the steps have been 
reported 9A~ and Radford's methods, 8 although only recently reported in detail, have 
been broadly used by in-beam spectroscopists and are known as "Radware". 11 

Peak search and fitting procedures 

In many ways multidimensional fits are simple extensions of one-dimensional 
methods. There must be some definition of a peak, which must be sufficiently 
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different from non-peaks to permit detection by numerical methods. Regardless of 
the number of dimensions, we can separate analysis into peak search and peak 
quantification. The main difficulties with both peak detection and quantification of 
singles data are overlapping peaks and the lack of obvious background among 
closely spaced peaks. In higher dimensions both problems are less serious because 
peaks do not spread as rapidly as the background. There are more pure background 
regions and higher (peak)/(local background) ratios. 

One-dimensional fits 

Major non-proprietary programs for analysis of 1D gamma-ray spectra include 
SAMPO, 4 GAMANAL, 5 and HYPERMET. 6 As preparation for our development 
of multidimensional analysis procedures, we have written a suite of programs 7 to 
analyze single parameter spectra. Since the methods are not new and the parts 
applicable to 2D analysis are given below, no details will be given here. In brief, 
the peak search technique is that developed by MARISCOTT112 and based on local 
extrema in the smoothed second difference. The peaks reported by the search 
program and those expected from the experimental context (e.g., the energy 
difference between two known levels) are taken over to a fitting program. Peaks 
that are close together (+5  e) are fitted as a group. The group is described as a set 
of simple gaussians on a quadratic lOcal continuum, and the best parameters are 
obtained by the Levenberg-Marquardt method. 13 

Two-dimensional analysis 

In brief, the analysis consists of computing the continuum 9 and the ridges t~ in 
the full 2D spectrum, then searching for peaks in the difference spectrum (data 
minus continuum and ridges), and finally fitting each peak (or group of overlapping 
peaks) by a weighted least squares technique. 

The peak search is based on numerical second differences calculated for 
positions i and j along the respective axes. Just as for one-dimensional data, the 
method can find isolated peaks and most multiplets, but cannot resolve the 
components of multiplets. This resolution is deferred to the fitting stage. After the 
peak search gives the preliminary coordinates for the coincidence peaks, a two- 
dimensional Levenberg-Marquardt method is used to refine energies and intensities. 
The function used to model the peaks is the product of two simple gaussians 
superimposed on the ridges and two-dimensional continuum found in separate steps 
of the analysis. In general the FWHM function for each axis is fixed during the 
fitting, but it can be fitted as well (such as to find effects which will broaden peaks 
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beyond the simple detector resolution. The fitted region includes +2 o along both i 
and j and is expanded to include any peaks within 4 o in any direction. When the 
peak shape is not being sought in the fit, such as when the FWHM is assumed to be 
given by the function describing experimental resolution, the 'peaks' do not need to 
be assumed to be gaussian. 

The location of a peak centroid is defined as the channel (io,Jo) where the 
smoothed second difference 

ddid/ /  
ssi, j = / s d i , j  (1) 

reaches a local maximum. The numerical second difference is calculated from 

l 

ddi,j -- E Ck Ni+k,j q" ~ CmNij+ra (2) 
k = - I  m = - n  

and its standard deviation 

sdi,  j = Ni+k, j + C2m Ni,i+ m , 
? n = - n  

(3) 

where N/j is the number of counts at channel (i , j) .  The coefficients C k an C m are 

given by 

[k2] -100(k 2 - 0 2  ) _ . ~ i 2  
C k = o2 exp (4) 

and 

aO'm  [ 
Cm = 2 J e x p -  (5) 

o j  

with <r i and oj are the appropriate gaussian parameters in the region. The series are 
terminated when the coefficients drop below Co/100. With this termination the sum 
of the Cs is no longer zero, but the bias (0.3 % of the sum of the absolute values) is 
small for data that rarely have counts with statistical errors of less than 1%. 
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The peak search gives preliminary coordinates for the peaks in the matrix. The 

function 

peaki j = height exp I "  (i~ - i)z ] [ (j~ - cr~ exp 2cr~ ~ 

is used to model the peaks and is superimposed on ridges and continuum 

(6) 

y ij hei htexp E 'i~176 2cy~o exp 2 ~ o  (7) 

+RI(i,j)+RJ(i,j)+C(i,j) 
and compared with the data. The quality of the fit during application of the 
Levenberg-Marquardt technique is given by 

x2(a)=~IYi'J CYi,J _] (8) 

The adequacy of the model - in particular, the proper number of components 
and their energies and intensities - is inferred from the reduced chi square and a 
goodness-of-fit parameter which computes the probability that a chi-squared as poor 
as that obtained would occur by chance. Multiplets must be handled by adding more 
components to the model of the fitted region and repeating the optimizations. 

Care must be given to testing the quality of the peak search results to avoid 
being trapped in a local minimum around a poor approximation. 7 In some cases one 
or more of the gaussians in the set to be optimized might be chosen because of 
possible transitions based on the best level scheme. 

The functions which describe peaks need not be gaussians and can be different 
for the two axes. We have used the technique with coincidences between large Ge 
detectors (grouped to form on parameter) with small, high-resolution detectors 
(LEPSs). For x rays the function to be optimized was the peak shape for the four K 

components seen in moderate resolution (cq, ae, 131, 132). Discontinuities in channel 
size can be accommodated as well. 
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Higher dimensions 

All of the techniques we have used for 2D spectra can be extended to three 
dimensions as long as the fitting region can be addressed during the computation. 
RADFORD 8 has described storage needs for "cubes" constructed from 3 and higher 
fold coincidence data. It is particularly important that when the analysis is driven by 
the goodness-of-fit between the predictions of a level scheme and the data, that both 
the data and the computed spectrum in the fitting region be in fast memory during 
the fit. 

Interpreting data 

Each two-dimensional peak yields a pair of energies and an intensity. Fitting a 
two-dimensional matrix yields a list of these peaks. This list is not easy to interpret. 
Even though enough components may have been added to give good fits throughout 
the matrix, some of the peaks may in fact be multiplets involving components with 
energies much further from the centroid than the statistical uncertainty in the 
centroid would suggest. It is hard to organize the list in such a way that associated 
peaks can be recognized. The list for three-fold coincidences would be even more 
complicated and difficult to interpret. RADFORD 8 has solved this problem by 
making the level scheme the primary reference and comparing it with data by 
computing gated spectra that experimentalists are accustomed to using. We also use 
the level scheme as reference (see below), but our comparison does not use gated 
spectra. 

The power of the interaction data with models has been shown for HELMER 14 
for single parameter data. His GAUSS VIII suite of programs combines nuclide 
libraries with conventional spectrum analysis routines to obtain state-of-the-art 
assays of radioactive materials. 

Representation of models 

As pointed out above, the data can be interpreted only in the context of some 
model. For radioactive decay the model is a combination of one or more decay 
schemes coupled to the detection system (energy and time resolution, detector 
efficiency, angular positions, inter-detector scattering, etc.). We have used the 
matrix representation of decay schemes 15 and have extended it to include level-to- 
level feeding patterns. As WAPSTRA 1 has shown, placement of a transition in a 
decay scheme can imply many coincidences in addition to those between transitions 
in and out of a given level. The intensities depend on branching ratios, conversion 
coefficients, and sometimes lifetimes. CHEMALY 7 has written X Windows routines 
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to display a matrix decay scheme and to allow selection and modification of 
particular transitions. The modified values are used to compute the coincidence 
spectrum, the spectrum is compared with the data, and the goodness-of-fit is 
compared with the goodness-of-fit before the modification. Since all of the 
coincidences implied by the placement are used in the comparison, incompatibilities 
are quickly recognized. RADFORD 8 has developed extensive interactive tools based 
on graphical representations of bands and interband transitions. 

An important aspect of matrix representations of the decay schemes is that the 
upper limits of intensities of unobserved transitions are included in the schemes. It 
would be difficult to show these limits on a conventional lines-and-arrows scheme. 
Some of the limits have no value, such as the limit for a transition between states 
with very different spins, but those cases are easy to recognize (large upper limit on 
single particle strength) and do not expand the physical size of the scheme. 

Discussion 

Two rather different situations can arise in studies of radioactive decay by 
coincidence techniques. At one extreme the object might be to find low probability 
events in otherwise rather simple decay schemes. At the other extreme, the scheme 
might be so complicated that new levels or bands of levels await detection by 
improved techniques. 

Our procedures 7,9-1~ and those of RADFORD 8 were developed for complex 
coincidence data with many overlapping peaks in single-parameter projections. 
Analysis of spectra involves finding the relevant spectral components and 
determining their intensities. The process is not linear. Interpreting the results of 
analysis proceeds in stages, the most important being the construction of a fragment 
of gamma-ray cascades. Some peaks are obvious in the projections, others are 
predicted by existing level schemes, and others must be found by searching the N- 
dimensional space. Such searching requires a mathematical distinction between 
peaks and other features and benefits from treatment of the continuum before peaks 
are analyzed. Because the continuum is the sum of small contributions from a large 
number of different coincidences, it takes on rather simple average properties. 

Different techniques would be appropriate for simple decay schemes. For 
example, the gamma-ray spectrum of 65Zn is dominated by the l l l5 .6-keV 
transition from the second excited state of 65Cu to its ground state. STELSON 16 
measured the intensity of the 344.9-770.7 cascade (0.006% of the l l l6-keV 
decays) by conventional coincidence techniques. If the measurement had been done 
by 2D spectrum analysis, the analysis could have concentrated on the 345-771 and 
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771-345 peaks, The continuum under the peaks (chance coincidences plus 1116-keV 

gamma rays scattered between detectors) could be determined by numerical 

interpolation from regions near the peak. In any event, the techniques used to 

compute the continuum in in-beam spectra would not apply here. Note that 

coincidence techniques could not give information on the intensities not associated 

with the cascades, such as decay following electron capture of  65Zn directly to the 

771-keV level. This limitation of  coincidence measurements is analogous to the 

difference between relative and absolute gamma-ray intensities. 

These techniques for multidimensional analysis are steps toward the "complete" 

spectroscopy HIRSKIND 11 anticipates for heavy ion reactions studied with large 

arrays of  detectors (such as G A M M A S P H E R E  17 and EUROBALL18). An important 

aspect of  completeness is the close interaction between models and data; the data 

cannot be interpreted without making many assumptions about the "physics",  and 

the main flow of  logic is to show that the data are consistent with a particular,  albeit 

detailed, model. For  high spin states, more complete spectroscopy will reveal non- 

yrast bands produced in low intensity and low intensity inter band transitions which 

are evident for intra band intensities but are individually below detection thresholds. 

For  radioactive decay (again, fission excepted), 'complete '  spectroscopy will 

involve relatively few additional levels but much more complete characterization of 

transitions among levels. 

The author is grateful to David RADFORD for providing an preprint of his papers on "Radware" 
and to Mike CHEMALY for developing the computer programs for two-dimensional analysis. 
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