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Degenerate perturbatlon theory is employed to discuss the motion
of a charged particle in a constant magnetic field on which is super-
imposed a weak, transverse, spatlally perlodlc magnetic field. A
first order solution of the equatlons of motlon is presented. It is
shown that the secular motlon 1s perlodle in time, The sdignificance
of this result with respect to;theﬁstabllity of protons in the inner

Van Allen belt is discussed.

1. INTRODUCTION

In the preceding paperl (henceforth cited as I) we
have presented a new formulation of classical perturbation

theory. There we illustrated the non-degenerate form of this



theory by discussing the van der Pol equation. The van der
Pol equation has, of course, been adequately discussed by
many authors using a variety of techniques. In the present
paper, however, we shall discuss a problem which has not
been adequately treated in previous publications. Hefe we
shall employ degenerate perturbation theory to discuss the
interaction between a charged particle and a constant mag-
netic field on which is superimposed a weak, transverse,
spatially periodic magnetic field.

This interaction has played an important role in
recent discussions of the stability of protons in the inner
Van Allen belt. For example, Dragt2 and Wentzel3 have argued
that a resonant interaction between the charged particle and
a periodic magnetic field would cause g breakdown of the
adiabatic invariance of the particle's orbital magnetic
moment. They further argue that such a breakdown of the
adiabatic invariance of the magnetic moment would destroy
the magnetic trapping effect. This reasoning has led them
to assert that a periodic disturbance (produced, for example,
by a hydromagnetic wave) on the geomagnetic field is
responsible for the removal of protbns, which would other-
wise be trapped, from the inner Van Allen belt. Of crucial
importance to their assertions is the assumption that a
weak periodic disturbance can cause a large change in the

orbital magnetic moment.



In what. follows we shall obtain a complete first order
solution of the equations of motion in the case where the
periodic field is a sinusoid. We shall find that the secular
changes produced by such a field are of bounded variation.
In particular, the "average" magnetic moment is a periodic
function of time. The relative fluctuation in the "average"
magnetic moment depends upon the ratio of the particle!s
cyclotron radius to the wavelength of the periodic disturb-
ance: The fluctuation is large when the ratio is small and
smgll when the ratio is large. The essential point is that
a resonant interaction between the particle and the periodie
field is not sufficient to cause large changes in the
magnetic moment. This is contrary to the assumptions of
Dragt and Wentzel.

Aside from its application to the question of stability
of protons in the inner Van Allen belt, the example which we
shall discuss is an interesting mathematical exercise. It
illustrates quite nicely many of the phenomena which are
characteristic of non-linear oscillatory systems. For
example, the ideas of secular growth, stability and in-
stability, and synchronous and non-synchronous behavior
arise in a very natural way. The example also illustrates
that a non-linear resonance is considerably more complicated
than a linear resonance.

Our program is as follows: In section 2. we derive

Hamilton's equations of motion which describe the



interaction between the particle and the field. In section
3. we introduce the appropriate perturbation theory and
obtain the differential equations which describe the secular
motion. In section 4. we perform a phase plane analysis

in order to characterize the secular motion. In section 5.
we obtain an explicit solution of the differential equations
which describe the secular motion. In section 6. we discuss
the behavior of the secular motion under resonance condi=-
tions. The final section summarizes the main conclusions of

the paper.
2., THE EQUATIONS OF MOTION

In the Cartesian reference frame x, y, 2z the magnetic

field is taken to have the form
B = [Blsin kz, O, B‘l-'. (2.1)
This field can be described by the vector potential
A= [—Boy, (Bl/k)cos kz, O-_] . (2.2)

The non-relativistic Hamiltonian H which describes the

gystem is

2

B = (1/2m){p - (/o } (2.3)

2 2
(l/2m){ [px + mwoy] + {py - (mwl/k)cos; kz] + pg} .



where

W, = eBo/mc y ©) = eBy/mc . (2.4)

In order to prepare the system for perturbation theory

we introduce the new canonical momenta J, Py PZ and their

conjugate coordinates 4/, r, and Z as follows:

X=71 - (2J/mwo)l/?cos‘ﬂ/, D, = Dp (2.5)
y = -(l/mwo)pr + (2J/mw0)1/2sin’W', Py = (meoJ)l/zcos’q/,
zZ =2, P, = PZ'

The quantities r, pr/mwo, and Z are the Cartesian coordin-
ates of the guiding center. In the unperturbed state the
particle gyrates about this center with angular velocity
W, in a circle of radius (2J/mmo)1/2. We shall measure the
time in units of the rotation period. To do this we intro-

duce a new independent variable

It is straightforward to show that the Hamiltonian h which

is appropriate to the new vgriables is



h=J+ (l/2mwo)P§ - (e/k)(meoJ)l/2cosfﬂlcos kZ
+ (ezmmo/ka)cos? kZ, (2.7)
where
€ = (1)1/(1)0 = Bl/BO. (2.8)

Hamilton's equations of motion are found from Eg.(2.7) to be
1/2 .
J' = -(8/2k)(2mmoJ) sin(V + kz) + 81n6ﬂ/-vkz) y (2.92)

= -(8/2)(2mw0J)1/2[;in64f+ kZ) - sinC#’-kZ?] (2.9Db)

Hd
1

+ (ezmwo/k)COS»kZ sin kZ,

kz!

kPZ/mwo, (2.9¢)
Y'=1- (8/2k)(mwo/2J)1/2[cos(‘\}’+ xZ) + cos(Y - kZi], (2.94)
where, for example,

Jr = dJ/daT . (2.10)

The system of differential equations (2.9) is in the

standard form to which the perturbation theory of I is



applicable. The parameter of smallness is € = Bl/Bo. We

see from equations (2.9) that the sum angle V+ k2
contributes only small amplitude, rapid fluctuations to the
motion. However, the difference angle V¥ - k7 can give rise
to secular motion when "' - kZ' = O(€). The system (2.9)
must, therefore, be treated by degenerate perturbation
theory. We shall carry out this treatment in the next

section.
3. PERTURBATION THEORY

In this section we shall perform first order pertur-
bation theory according to the formalism presented in I.
Our object is to separate the rapidly fluctuating motion
from the secular motion. In order to do this we introduce

new variables U, V, K, and @ as follows:

Kz = XU + €Dy (U,V,K,8) + 0(g°), (3.1a)
P, = V + 6B (U,V,K,@) + 0(e?), (3.1b)
J = K + &8y (U,V,K,8) + 0(e°), (3.1c)
V= & + €6, (U,V,K,8) + 0(e?), (3.14)

where Dl’ El’ Fl, and Gl are required to be periodic
functions of @ and of kU with period 2TT. The variables U,

'V,K, and # are to contain the secular motion and Dl, El’ Fl,



and G, are to contain the rapidly fluctuating motion. In
order to guarantee that U,V,K, and @ represent the secular

motion we require that

KUY = (kV/mo,) + eay(U,V,K,8) + (%), (3.2a)
V' = €by (U,V,K,#) + 0(e°), | (3.2b)
K' = sAl(U,v,K,ﬂ) + o(sz), (3.2¢)
gr = 1+ €B,(U,V,K,0) + o(ez). (3.2d)

The functionstal, bl’ Ay and B, are to contain only those
combinations of U and @ which can give rise to secular
motion. The precise manner in which this choice is made is
fully described in I.

If we substitute the ansatz (3.1) and (3.2) into
equations (2.9) and retain only terms through first order

in €, then we obtain the following set of equations:
Ay + ) P, = -(l/2k)(2mwoK)l/2 [sin(¢ + KU) (3.3a)
+ sin(g - kUﬂ ,
by + ° B = -(1/2)(2mwoK)1/2 [sin(ﬁ + kU) (3.3b)

- sin(g - kUi] ,



0 Dl = (k/mwO)El’ (3030)

[ Y]
)
+
o

By + 0 Gy = -(1/21:)(me/QK)]‘/2 {cosﬁ(ﬂ + kU) (3.34)
+ cos(f - kU)] ,

where the operator
0 = (xv/mu )o /okU + 0 /of . (3.4)

The difference angle © = @ - kU can give rise to
secular behavior when it is slowly varying. In order that
U, V, X, and # shall contain all of the secular motion we
must absorb the & dependence into the functions Al, 19 bl’

and By. We, therefore, choose

A = —(1/2k)(2mwoK)l/Zsin 9, (3.5a)
B, = -(1/2k)(mwo/2K)l/2008=9, (3.5b)
a) = 0, (3.5¢)
by = (1/2)(2m0 k) 2sin . (3.5d)

With this choice of Al, Bl’ 8y and b1 we find that



1/2

Dy = (k/205)(2k/m ) 2sin(g + xU), (3.6a)

E, = (1/2w§)(2mwoK)i/zcos(¢ + XU), | (3.6b)

P, = (1/2k,)(2m0 1) 2con(d + 1), (3.6¢)

G, = -(1/2kw2)(mwo/zx)l/zsin(ﬂ + XU), (3.64)
where

Wy = 1 + (kV/mmo). (3.7)

When our choice for Al’ Bl’ ay and b1 is substituted

into equations (3.2) we find that

1/2

’K' = -(s/2k)(2mwoK) gin o, (3.8a)

1/2

V' = (s/2)(2mwOK) gin o, (3.8b)

1/2

o' =1 - (kV/mwo) - (€/2k)(mwo/2K) cos 6, (3.8¢)

where 8! gr - xU'. It follows from equations (3.8a,b)

that
K+ (Vk)=1, (3.9)

where I is a constant. The system of equations (3.8),

10



therefore, reduces to two equations relating the two
variables K and 6. In the next section we shall use these
equations to obtain some general information concerning

K and @ without producing an explicit solution.
4. PHASE PLANE ANALYSIS

We begin this section by introducing the new variables

a and b which are defined by the equations
a=Rcose, b=R sin @, (4.1)
where
R = k(2K/mwo)1/2. (4.2)
The quantity R measures the ratio of the cyclotron radius

to the fundamental period of the disturbance. The equations

of motion for a and b are found from equations (3.8) to be

al = =(1 - C + R%/2)D, (4.%a)

b = (1L -C + RS/2)a - /2, (4.3b)
where

C =k21/mwo (u'5c)

is a constant. These equations give rise to the differential form
1-c- (R2/2)]bdb +{[1 -C+ (R2/2)]a - (e/2)}da = 0. (4.4)

This is an exact differential whose integral is

11



R* + 4(1 - C)R? - 4ea = W, (4.5)

where M is a constant. Eq. (4.5) expresses the conservaw

tion of energy through first order. It follows from the

Hamiltonian (2.7) that, to first order in €,
2 2
M= (8k h/mwo) - 4C°. (4.6)

The important aspects of the motion can be illustrated
by plotting Eq. (4.5) in the a-b plane. Before doing this
it is useful to examine the points where a' and b' are
simultaneously zero. These are the points of equilibrium
and are usually termed singular points. It follows from
equations (4.3) that the singular points are to be found

from the equations
b = 0, (4.7a)
a’ +2(1 -Cla-¢€=0. (4.7b)
If € is sufficiently small the cubic equation: will have
three real roots; we shall assume this to be the casse.

These roots, which we shall call a1y 8py 8z, are approxi-

mately as follows:

1/2
a) = 2 [-2(1 - c)/’;’J [33/4)1/2 - 5/6] + 0(52)>0, (4.8a)

12



1/2
ay =2 [-2 - 0)/5) " [~(3/00%2 - /6] + 0(e?) <0, (4.8D)

1/2
8z = 2 |=-2(1 - C)/3] ( 5/3) + 0(82)<0, (4.8¢c)

where

| 3/
8 = —(g/2) [-2(1 - c)/3] / . (4.9)

The nature of these singular points can be determined
by examining the behavior of the motion in their vieinity.

In order to do this we let
a=2a; +§% , b=", (4.10)

where a; is one of the singular points and € and M
represent small displacements from this singular point.
Upon substituting equations (4.10) into equations (4.3) and

retaining terms through first order in E and "? we find that

§\ -[l -C + (35/2)]’7 , (4.11a)

7 -c+ (3a22)8. | (4.11b)

We seek solutions in the form

§= §°e7‘T ’ "] = "}oext . (4.12)

13



These solutions are valid if

A\ = i{-[l - C + (a?_/Z)]El -C + (3a§/2}}1/2. (4.13)

When the values of a; as expressed by equations (4.8) are
substituted into equations (4.13) we find that we can
classify the singular points as to their stability. This

classification is given in Table I.

Singular

Points jzl Nature of Singular Point
ay complex Center (stable)
a, real Saddle point (unstable)
az complex Center (stable)

Table I. Classification of singular points

Table I. shows that the trajectories must close about
the point as and they must also close about the point aye
Purthermore, it follows from Eq. (4.5) that, for large values
of R, the trajectories have the form

4 _ constant (4.14)

R
and are, therefore, circles centered about the origin. The
manner in which these requirements are satisfied is shown in
Figure 1. There several trajectories are plotted for a

particular physical situation. The parameters such as the

14
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Figure 1. Trajectories of a 50 Mev proton in the a-b plane.

1

k = 6.28x107C en™l, o = 370 rad/sec, € = .OL.
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energy, background field strength, etc., have been assigned
values which are appropriate to a proton which is.moving in
the inner Van Allen belt at a distance of two earth radii.
However,the value of € which was used in Figure 1. was
chosen to be about ten times larger than what one would

expect at two earth radii.4

This larger value of € was used
to facilitate the plotting of the trajectories.

The trajectories in Figure 1. consist of a family of
closed curves. This means that XK, and consequently V, is a
periodic function of timej; we shall obtain the period in
the next section. The trajectories can be divided into two
groups: those which are centered about the point a3 and those
which are centered about the point e mhe motion correspond~
ing to the first group is non-synchronous since the differ-
ence angle: & increases without bound. The motion correspond-
ing to the second group is synchronous since, for these
trajectories, the angle & oscillates between well defined
limits. The synchronous and non-synchronous regions are
separated by the trajectory, called a separatrix, which
passes through the unstable point e

The largest fluctuations in Kocecuron trajectories
which pass close to the separatrix. As one moves away from
the separatrix into the non-synchronous regions the trajec-
tories rapidly become circles centered about the point a3.
As one moves away from the separatrix into the synchronous
region the fluctuations in K and 6 become smaller until,
at the point s they vanish. The separatrix, therefore;,

determines the range of values of K and 6 for which maximum

16



regonance occurs. In the following sections we shall obtain
the time dependence of K and we shall estimate the total

fluctuation in X under resonance conditions.
5. TIME DEPENDENCE OF THE MOTION

In order to find the explicit time dependence of K
and an expression for the period T we introduce a new

variable

S = R2 = (2k2/mwo)K-. (5'1)
It follows from equations (3.8) that

S' = -SRSiJl g . (5.2)

The right hand side of Eq. (5.2) can be expressed as a
function of S alone by making use of equations (4.5) and

(4.6). A straightforward calculation gives
St = -(1/4)[-34 - 8IS’ - (8N + 1612)s° (5.3)

1/2
- 16(2IN - €°)s - 16N2] .

where

2

L=1~-C, N=20C6 - 2Ch/I. (5.4)

If we denote the roots of the quartic in the square bracket in (5.3)

17



by Sy, S, 83, and §), then Eq. (5.3) becomes

1/2
st = =(/4)[(8, - 5)(5 - 5)(5 - 85)(5 = 8| +(5.5)

This is a first order differential equation for S(T) which is solvable
in terms of elliptic functions. The solutions depend upon the nature
of the roots S, Sy, 85’ and S); we must distinguish the case of two

real roots from the case of four real roots.

Case of two Real Roots
It should be clear from Figure 1. that two real roots
corresponds to motion in the synchronous region. We shall
arrange the real roots S; and S, such that S;2S,. The

complex roots S3 and S4 may be written as

In this case Bq. (5.5) has the solution’

S1B + SyA + (S,A - SyB)en [(’t 'To)/d'g], (5.7)
A+B+ (A~ B)Cn[('t -To)/4g]

S('ﬁ) =

where

2

¢, B =(s5,-m%+n% (5.8)

2% =(s; -m)?+n

18



and
-1/2
g = (43)Y2, (5.9)
The function en(x) is a Jacobi elliptic function. Lhe modulus

K of the elliptic function is given by

2 2
2 Baz %) - B (5.10)
4AB

The constant ’tois chosen to satisfy the initial conditions.
The function en(x) is periodic in x with period 4 K, K being
the complete elliptic integral of the first kind. It follows
that S(?), and hence K(T), is a periodic function of T with

period T given by

-1/2
T = 16 A(AB) , (5.11)

where the modulus k of the complete elliptic integral

is given by Eg. (5.10).

Case of four Real Roots
Four real roots corresponds to motion in the
non-synchronous region. We consider first the case where
51282852 332 S4e In this case the solution of Eq. (5.5)

is.6

SQ(S]_ - 33) - 53(31 - S‘2)Sn2[('t -tﬁ)/%] ,(5.12)
Sy = S5 = (87 - Sp)sn° [(z -1,)/4g]

s(t) =

19



where
=1/2
g = 2[(3l - ss)(s.2 - 343 . (5.13)

The modulus K of the Jacobi elliptic sine function is

given by

r2= (Sl - 52)(33 - 34) . (5.14)
(Sl - 33)(32 - 34)

The function sn2(x) is periodic in x with period 2 K, K
being the complete elliptic integral of the first kind.
It follows that S(T), and hence K(T), is a periodic
function of T with period

-1/2
In the remaining case where S]_Z 822832 SZS4 we

£ind that |

5,(81 = S3) + 8,(85 - s4)sn2[(¢: -TQ/%] ,(5.16)

S(’C) =
Sy = S5 + (S5 = s4)sn2[(’t -To)/4g]

where g is given by Eq. (5.13) and where the modulus K

of theJacobi elliptic sine function is given by Eq. (5.14).
It follows that S(t) is a periodic function of T with
period given by Eq. (5.15).

We have now determined the function S(T) in the

20



synchronous and non-synchronous regions. A knowledge of the
function S(T) immediately determines K(T), V(T), and cos 6(T).
These latter functions allow us to find the explicit time
dependence of @(T) and kU(T). We shall not attempt to do

‘this gince the resulting expressions would add little to our
understanding of the motion. The significant point is that
K(T) and V(T) are strictly periodic functions of T . In the

next section we shall estimate the maximum fluctuation in

K(T).

6. BEHAVIOR UNDER RESONANCE CONDITIONS
Exact resonance occurs when the particle traverses
a single period of the sinusoidal field in one c¢yclotron

period. This exact resonance is nearly fulfilled when
kv/mwo = 1. (6.1)

If we substitute condition (6.1) into Eq. (2.7) and

neglect the first order term we find that

2 2

k K/mwo = (k h/mmo) - (1/2). (6.2)
Equations (4.5), (4.6), (6.1), and (6.2) allow us to find
a value of the constant C which corresponds to near reson-

ance. The appropriate value of C is found to be

C=d+ 1/2, (6.3)

21



where d = kzh/mmo. With this value of C the quartic in

Eq. (5.3) becomes

st + (4 - 83)87 + (6 - 24d + 24a%)5° (6.4)
+ (4 - 244 + 484% - 3287 - 16€°)s

+1-8d + 24d° - 328° + 16a%.
The roots of this quartic are approximately as follows .
Sy, = (24 - 1) & 2(2d - NY/41/2 | o6, (6.5)

(24 - 1) + i2(2a -1)Y4e1/2 4 o). (6.6)

Since two roots are complex it follows that the trajectory
corresponding to condition (6.3) lies in the synchronous

region. Now, by definition,
d = kzh/hmo = k2H/mw§ ) (6.7)
where H is the energy. Thus

24 - 1 = (2K°/mof) [H - (mw§/2k2)] (6.8)

(2k2/ﬁm§) [(myf /2) + (pi /2n) - (mm§/2k2) + 0(€§]>
° 0

where v is the initial transverse velocity and P, is the
o o)

22



initial longitudinal momentum. According to Eq. (6.1)
pZo = mwo/k + 0(g). (6.9)
Upon substituting Eq. (6.9) into Eq. (6.8) we find that

24 - 1 = ¥°%° /ul + O(e). (6.10)
o

We now define the relative fluctuation AK in K as

follows:;

AK = 2(ax = Fnin) _ 2(5; - Sp) (6.11)

(Kpax + Kpin) (81 + Sp)
Upon making use of equations (6.5), (6.10), and (6.11) we
find that

AK = 40y, fo )22 4 o). (6.12)

If we denote the initial value of K by Ko’ then v, and

©

K, are related by the expression
me /2 = Ko+ 0(€) (6.13)
‘Lo = 00 . ®

It follows that

kv /wo 1/2 + 0(€) (6.14)

)

k(ZKO/mwo)

R, + O(¢),

23



where R is 2 T times the ratio of the initial cyclotron
radius to the wavelength of the disturbance. Upon substi-

tuting Eq. (6.14) into Eq. (6.12) we find that
Mx = 487212 4 oge). (6.15)

Thus the relative fluctuation in XK under resonance condi-
tions depends not only on € but also on the ratio of the
cyclotron radius to the wavelength of the periodic disturb-
ance. This: dependence of the relative change in X upon Ro
is not surprising. An increase of the wavelength of the
disturbance requires a corresponding increase in the longi-
tudinal particle velocity in order to achieve resonance.
Associated with the increase in the longitudinal velocity
is a decrease in the transverse velocity and hence a decrease
in absolute value of K. This decrease in absolute value
contributes to the increase in the relative change.

The ideas developed above are best illustrated through
an example. We first observe from Eq. (6.15) that relative

fluctuations of order unity will occur when
R, ~ (16¢)Y/3, (6.16)

Now consider the trajectories plotted in Figure 1. These
trajectories correspond to a 50 Mev proton moving in a
disturbance whose wavelength is 108 cm (1000 km) and to

a field strength ratio € = .0l. It follows from Eq. (6.16)

that, for € = .01, relative fluctuations of order unity

24



will occur when
R, = (.16)Y3 = 543 (6.17)

lies in the resonance region. However, it is clear from
Figure 1. that R, = .54% lies well outside the resonance
region. Thus K(T) for a 50 Mev proton moving in a periodie
disturbance whose wavelength is 1000km undergoes only
relatively small fluctuations.

Let us now increase the wavelength of the disturb-
ance 1o 1.5x108 em (1500 km) and hold the other parameters
fixed. The trajectories in the a-b plane for this situation
are plotted in Figure 2. Inspection of Figure 2. reveals
that R, = .543 lies in the resonance region. Thus, as is
evident from Figure 2., K(T) for a 50 Mev proton moving in
a periodic disturbance whose wavelength is 1500 km can
undergo relative fluctuations of order unity. Here we
have graphic evidence of the influence of Ro on the
relative fluctuation of K(T). We shall conclude this
section with a few remarks relating our results to previ-
ougly published work.

The average orbital magnetic moment w(T) is related

to K(T) by the equation
w(T) = eK(T) /mc. (6.18)

Therefore, what has been said above about K(T) also holds

25
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Figure 2. Trajectories of a 50 Mev proton in the a-b plane.

-1

k = 4.191:10'8 cm T, 0y = 370 rad/sec, € = .01,
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for #(T). This means that w(T) is a periodic function of T .
This result was not obtained in either the work of Dragt or
that of Wentzel. Furthermore,the relative fluctuation in
2(T) (that is the fluctuation measured with respect to the
mean value of 1) depends upon the ratio of the eyclotron
radius to the wavelength of the periodic disturbance. This
fact was not appreciated by Dragt or Wentzel. For example,
8

concludes that, when w_ = 370rad/sec and € € .01,

Dragt o

the orbital magnetic moment of a 160 Mev proton will be
significantly effected by a disturbance having a wavelength
of 1000 km. However, we have shown in Figure 1. that, under
the sgme conditions, the magnetic moment of a 50 Mev proton
is only slightly effected by a 1000 km wave. The resonant
cyclotron radius of a 160 Mev proton is greater than that
of a 50 NMev proton. It follows, therefore, from Eq. (6.15)
fhat the effect of a 1000 km wave on a 160 Mev proton

will be smaller than its effect on a 50 Mev proton. Thus we
are forced to conclude that a 1000 km wave will not appreci-
ably effect the orbital magnetic moment of a 160 Mev proton.
under the conditions stated above.

It is apparent from the above discussion that the
interaction between a charged particle and a weak, spatially
periodic magnetic field is considerably different from that.
envisioned by Dragt and Wentzel. This means that their
explanations of the origin of the distribution of protons
in the inner Van Allen belt can not be considered satis-

factory. It does not mean that their work is without merit.
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The work of Dragt is especially noteworthy since he makes
substantial progress in accounting for the proton distri-
bution in the inner Van Allen belt via heuristic arguments.
What is evident from all of this is that the origin of the
distribution of protons in the inner Van Allen belt must

be carefully re-examined in view of the true nature of the
interaction between the protons and spatially periodic
magnetic fields. Until this is done the origin of the
proton distribution in the inner Van Allen belt must remain

an open question.

To CONCLUSION

We have shown that the perturbation theory presented
in I yields a complete first order solution for the motion
of a charged particle in a constant magnetic field on which
is superimposed a weak, spatially periodic magnetic field.
The significant result from a physical viewpoint is the
periodic behavior of the secular motion. It is hoped that
we have succeeded in showing that this periodic behavior of
the secular motion gives rise to serious objections to
previous work concerning the stability of protons in the

inner Van Allen belt.
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