
K-Theory 10: 197-??, 1996. 197 
(~) 1996 Kluwer Academic Publishers. Printed in the Netherlands. 

The K0nneth Formula in Periodic Cyclic 
Homology 

IOANNIS EMMANOUIL 
Department of Mathematics, The University of Michigan, Ann Arbor, M1 48109-1003, U.S.A. 

(Received: June 1994) 

Abstract. In this paper, we introduce a Z-graded variant of the periodic cyclic homology of associative 
algebras which generalizes the infinitesimal cohomology of affine algebras in characteristic 0 and 
show that it satisfies the K0nneth formula (i.e. it commutes with the formation of tensor products). 
We also show that the Kllnneth formula in periodic cyclic homology holds only under the presence 
of certain finiteness conditions. 
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Introduction 

In his investigations of index theory, Connes faced the problem of calculating 
geometric invariants lying in the K-theory of certain noncommutative C*-algebras. 
In [2], he defined the cyclic cohomology groups HC* (A) of an associative algebra 
A over the complex numbers, together with a pairing between the K-theory K.  (A) 
of A and HC* (A). He showed that if X is a compact manifold, the cyclic homology 
of the locally convex algebra A = C~ of smooth functions on X is a certain 
direct sum of de Rham cohomology groups of X. Moreover, in this case, the 
pairing with K-theory recovers the classical Chern character homomorphism of 
the manifold. Hence, cyclic homology appears as a noncommutative analogue of 
the de Rham cohomology of a space. 

The definition of cyclic homology was extended by Loday and Quillen to 
algebras over an arbitrary ground ring in [12]. In that paper, the cyclic homology 
of the algebra of regular functions on a smooth affine variety in characteristic 0 is 
computed, proving the algebraic version of the above result of Connes. 

Connes has also defined the periodic cyclic (co-)homology of an algebra, a 2- 
periodic version of cyclic (co-)homology which is obtained by inverting a certain 
endomorphism S of the latter. Periodic cyclic homology has a great geometric 
significance; it is the homotopy invariant part of cyclic homology. According to 
a theorem due to Feigin and Tsygan (cf. [5]), the periodic cyclic homology of 
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the algebra of regular functions on an affine algebraic variety X over a field k of 
characteristic 0 is isomorphic, as a Z/2Z-graded vector space, to the infinitesimal 
cohomology of X over Spec k, which was defined by Grothendieck in [7] as an 
analogue of de Rham cohomology for singular varieties, viewed with the even-odd 
grading. 

A disadvantage of periodic cyclic homology compared to infinitesimal coho- 
mology is the fact that the former is Z/2Z-graded, while the latter is Z-graded. It is 
therefore natural to look for variants of periodic cyclic homology which are intrin- 
sically Z-graded. The periodic cyclic homology HP(A) of an algebra A comes 
equipped with a certain decreasing filtration induced by the maps to cyclic homo- 
logy. The graded object 7-/(A) associated with this filtration (the formal definition 
is given in Section 3) inherits the homotopy invariance properties of periodic cyclic 
homology and coincides, when A is an affine algebra in characteristic 0, with the 
infinitesimal cohomology of Spec A. In this paper, we study the behavior of the 
functor ~ with respect to tensor products. 

For two algebras A, A' there are certain obstructions in showing that the cyclic 
homology HC(A | A') is isomorphic to the tensor product HC(A) | HC(A'). In 
order to show that the canonical map (product) 

O : HP(A) | HP(A' )~HP(A | A') 

is an isomorphism of Z/2Z-graded vector spaces, one hopes that these obstructions 
are unstable and vanish after inverting the endomorphism S. 

To state our main result, we consider the inverse limit li_m HC(A)[-2m] of 
r r t  

the system (HC(A)[-2m],  S),~ and its filtration .7 "A induced by the canoni- 
cal maps to cyclic homology and similarly for the algebras A I and A | A'. 
Then, li_mHC(A)[-2m], li_mHC(A')[-2m] and l imnC(A | A')[-2m] are com- 

~7~ m m 

plete and Hausdorff with respect to the induced linear topologies. We show 
that lira HC(A | A ' ) [ -2m] can be identified with the completed tensor prod- 

uct li _mnC(A)[-2m] @ li _mHC(A')[-2m] in such a way that the filtration .T A| 
m m 

corresponds to the completed tensor product filtration .T A ~ .T "A'. Hence, passing 
to the associated graded objects, we obtain an isomorphism 

7-/(A | A') ~ 7-/(A) | 7~(A') 

of Z-graded vector spaces. 
In order to lift the above isomorphism to periodic cyclic homology, certain 

finiteness conditions have to be imposed. In fact, generalizing a result of Kassel 
[10], we show that the following two conditions are equivalent for an algebra A. 

(i) The map 19 is an isomorphism of Z/2Z-graded vector spaces for any 
algebra A ~. 

(ii) The inverse system (HC(A)[-2m], S)m satisfies the Mittag-Leffler condi- 
tion and the periodic cyclic homology HP(A) is finite dimensional. 
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The class of algebras A which satisfy these conditions contains all affine algebras 
in characteristic 0 and is closed under tensor products. 

The contents of this work are as follows. In Section 1, we fix the notations we 
shall use about supercomplexes and their tensor products. In Section 2, we list 
certain properties of cotensor products of inverse systems of vector spaces that 
will be used in the subsequent sections in the special case of the inverse systems 
associated with the cyclic homology of algebras. In Section 3, we first define the 
graded functor 7-/and record some basic properties of it. We then review the relation 
between cyclic homology and tensor products and prove the Ktinneth formula for 
7-[. Finally, in Section 4, we examine the necessary and sufficient conditions that 
have to be satisfied for | to be an isomorphism and show that the corresponding 
class of algebras is closed under tensor products. 

NOTATIONS AND TERMINOLOGY 

In this paper, we work over a fixed field k. Unless otherwise specified, all vector 
spaces, algebras and tensor products will be over k and all inverse systems ,V will 
be indexed by N and consist of (k-)vector spaces. If (C, 0) is a chain complex 
and m E Z we denote by (C[m], 0[ra]) the chain complex which is given by 
(C[m]),~ -- C~-m and (0[m])~ = (-1)"~0n_m. The same notation will be used 
to denote an inverse system or a graded vector space with degrees shifted by m. 
The image of an integer n in Z / 2 Z  (i.e. the parity of n) will be denoted by [n]. 
Finally, by a decreasing filtration f -- ( F ~ ) ~  of a vector space F we understand 
a sequence of subspaces F _~ F0 _3 FI _3 F2 _~ .- �9 ; if n < 0 we set F~ -- F. 

1. Supercomplexes 

A supercomplex is a Z/2Z-graded vector space X = X0 | XI endowed with 
linear maps 00 :X0~X1 and OI:XI~Xo such that 0001 = 0 and 0100 = 0. Its 
homology is the Z/2Z-graded vector space H(X) given by 

Ho(X) = ker00/im01 and HI(X) = ker01/im00. 

EXAMPLES 1.1. (i) If (X, 0) is a chain complex the product complex I-In x [ -  2m] 
can be viewed as a supercomplex consisting of I-In X2,~ and l-Ira X2,~+l in degrees 
0 and 1, respectively. If (X, 0) is endowed with a chain map S: X ~ X [ 2 ] ,  the 
inverse limit li_mX[- 2m] of the system ( X [ -  2m], S)m is also a supercomplex; it 

m 

is the kernel of the endomorphism 1 - S of l--Ira X[ -2 ra ] .  
(ii) If (C, b, B) is a mixed complex (cf. [1, 10]) the inverse limit li_mB(C)[-Zm] 

r r~  

of the system (/3(C)[-2ra],  S)m is the supercomplex (I-Ira C[-2ra] ,  b + B). 
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Let X = X0 | Xl and Y = Yo | Y1 be Z/2Z-graded vector spaces. We shall 
denote by X Q Y the Z/2Z-graded vector space which is given by 

and 

(x  + r)o = (Xo | Yo) �9 (xl | 

( S  ~ Y)I : (Xo | II1) @ (Xl | Y0)- (1) 

More generally, if _x  _ is a bifunctor of vector spaces, we shall denote by _ >< _ its 
extension to the Z/2Z-graded case which is defined by formally replacing ' |  by 
' •  in (1). 

If (X,  8 if,  0 X) and (Y, Off, 0~) are supercomplexes, the Z/2Z-graded vector 

space X (~ Y itself becomes a supercomplex if we define ox| and 0ff| by 

: c O f f | 1 7 4  and = 8 f f | 1 7 4  

Remarks 1.2. (i) A short exact sequence O~X'--+X~X"~O of supercom- 
plexes induces a cyclic exact sequence 

Mo(X') .  o(X) 

1 
H l ( X  ,I) . H I ( X  ) " 

�9 

(ii) If X,  Y are supercomplexes, there is an identification of Z/2Z-graded vector 
spaces H(X Q Y) = H(X) ~ H(Y). This can be proved along the lines of the 
proof of the usual KUnneth formula for the tensor product of two chain complexes, 
as given, for example, in [8]. 

2. Cotensor Products of Inverse Systems 

Let R" = (Xm)m and ,V' X '  = ( m)m be two inverse systems whose structural mor- 
phisms are denoted by S and S'. We extend the grading of X and ,V' by 0 in negative 
degrees and consider the inverse system ,V| = I-Imp>0 (R'[m] @ X ' )  consisting 
of (X | X ' )  n = I~)p+q=n Xp @ X~ in degree n with structural morphisms given by 
S @ 1. We also consider the morphism S @ 1 - 1 @ S': ,V @ R" ~ (R' @ R") [ 1]; its ker- 
nel (resp. cokemel) is the cotensor (resp. cotor) product X D X '  = ((Xt3X')m)m 
(resp. Cotor(,V, ,V')[1] = (Cotor(X, X')m-1)m) of , t '  and ,V'. We note that ,V and 
,V' play a symmetric role in ,VoX' and Cotor(X, X'). 
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! 
LEMMA 2.1. I f  X = (Xm)m, X '  = (Xm)~  are two inverse systems, then 

(i) The inverse system Cotor(X, X') is essentially zero. 
(ii) There is a 6-term exact sequence 

0--+~I+~_ m(xEjxt)--+ E l jm(X @ Xtra) 1-St" H lj.._m(X @ X t )  ---+ 
m>~o m>~O 

~lj__m'(XDX')--+ H li~_m~( X @ X ~ )  , - s ,  l ~  li~_ml( X | X~)--+O. (2) 
m>~0 m~>0 

Proof (i) We show that the map Cotor(X, X')~+M--+Cotor(X, X')m is zero 
t C t if M > ra. Indeed, let zp E Xp and zq Xq with p + q = m + M. Then, 

c, t M  t and zp | 3 zq are equivalent modulo the image of the e l e m e n t s  smxp @ Xq 
S @ 1 - 1 | S ~. In fact, they represent 0 C Cotor(X, X~),~, since we have p < M 

tM _.t t or q < M and, hence, sMzp  E X p - m  = 0 or S zq E Xq_ M = O. 
(ii) Let y be the image of S | 1 - 1 | S "  X @ X'--+ (X �9 X') [1]. Then, (i) 

implies that lim i 3; -~ lim i (X �9 X 0, i = 0, 1. Therefore, (2) is induced by the 

short exact sequence of inverse systems O---+XDX~---+X �9 X~--+Y--+O. [] 

Remark 2.2. One can interpret the 6-term exact sequence (2) as the degeneracy 
of a certain spectral sequence of the composite functor. 

Let us recall that an inverse system X = (X,0m is said to satisfy the Mittag- 
Leffler condition if for all n the decreasing filtration of Xn by the images of X,~, 
ra/> n, is eventually constant. 

PROPOSITION 2.3. Let X (Xm)m and X '  = ( ,~)~ be two inverse systems 
satisfying the Mittag-Leffler condition. Then the same is true for their cotensor 
product X [] X ~. 

Proof Consider the inverse system (X[]X')  | E = X[] (X' @ E), where E is 
an arbitrary vector space. Since X satisfies the Mittag-Leffler condition, the same 
is true for the system X | X ~  | E for all m. Hence, (2) shows that there is an 
exact sequence 

1--i (x o x "  G E) " 1-[ o x"  E) 
m>>.O m>~O 

o 

Since A "t satisfies the Mittag-Leffler condition, one can show that the same is true 
for the system (li__m (X | X'~ | E))m. Therefore, the map 1 - S' in the exact 

sequence above is surjective and, hence, li_ml(X[]X ' | E)  = 0. The result follows 

using [4, Corollary 6]. [] 
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Remark 2.4. If k is any ring and X (resp. X ~) an inverse system of right (resp. 
left) k-modules, one can define as above the inverse systems of Abelian groups 
X @ X ~, X D X  ~ and Cotor(X, X') and prove Lemma 2.1. The result of Proposition 
2.3 generalizes as well, provided that we require at least one of the systems X, X ~ 
to consist of flat modules. Indeed, if X = ( X m ) m  satisfies the Mittag-Leffler 
condition and Xm is flat for all m the functor lira (X @ _) of left k-modules is 

exact and, hence, the above proof is still valid, if we choose E to be a free Abelian 
group of infinite rank. 

If X = ( X m ) m  is an inverse system and n E N we shall denote by r the 
canonical map li____m X---,Xn. One can verify that im a x| = im cr x @ E for any 

vector space E. 
If X = (Xm)r,,  X ~ = (X~)m are two inverse systems, we shall consider the 

map 

. | (xDx' )  

which, when followed by the composition 

cT~oX t 
�9 ! n 1, (XDX ) . (XnX')  (X | X'), Xp | X'q, 

X I coincides with cr f | ~rq for all p, q, n with p + q = n. 

PROPOSITION 2.5. I f  X ( X m ) m ,  X I X I = = ( m)ra are two inverse systems, 
then 

(i) 7 -x ' x '  is injective. 
(ii) ker ^x ,x '  x '  f i n  = ~,p+q=n-1 ker erp x | ker trq , where vn^X'X' = anXD X' rX,X' .  

(iii) im ^X,X' "~ _XDX' ~ n  ~ 1111 0 7 / '  �9 

(iv) "c x ' x '  induees an isomorphism 

ker r176  ~r xD x '  - x , x ' . .  _x ,x '  n - -  1 l n ~ '  Ker Qn- 1 /Ker ~n 

--~ ~ )  (ker ~rpx_l/ker ~rpx)| crqx'l/ker crf ').  
p + q = n  

Proo f  (i) Using the notations of [4] and the exact sequence (2), r x , x '  is the 
composition 

U 
r~ m 

= lira (XDX'). 
+__._ 

Therefore, the injectivity of T x,x' follows from [4, Remark I (i)]. 

(3) 
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(ii) Since Q x,x '  followed by the composition (XoX')~ ~-+ (X | X')n--+Xp | 
X' x @ crq for all p, q with p + q = n, we have X~ is the map ~rp 

ker Q~,x' = N k e r ( a f  @ a f ' )  
p+q=n  

x @ limX' + limA/@ kererf ' )  N (ker crp ~ +--- 
p+q=n 

ker c~f @ ker %x', 
p + q = n - 1  

where the last equality follows from the next lemma. 

LEMMA 2.6. Let F, F' be vector spaces endowed with decreasing filtrations 
= (F,~)m and ~'  = (F')m, respectively. Then, 

N (F. oF'+r|  X 
p+q--mn p + q = n -  1 

[] 

(iii) An element of lim (X~X')  is a double family 

z = c II(x,ex ), 
P,q 

with 

(S @ 1)~p+l,q = ~p,q = (1 | S )~p,q+l 

for all p, q. In particular, 

�9 X |  
{p,q E Im ap N im c~ xp| 

= (im~r x @ x ; ) n ( x ,  | imaf' ) = imcr x @imaq 

Xo X for all p,q. Since r n x'(_-) = (~p,q)p+q=n is determined by ~n,n E imer, @ 
X| im cr "v' we conclude that c~ n x ' (E)  belongs in the image -*" ^x x'  r/, ' I . J l  ~ ) n  ' " 

(iv) This is a consequence of (ii) and (iii). [] 

Remarks 2.7�9 (i) If f = (F~)m, ~-' = (F~).~ are decreasing filtrations of 
the vector spaces F and F' ,  respectively, the tensor product filtration f | f '  = 
( (F  | F '  )m )m of F | F '  is defined by (F  | F ')  m = Ep+q=m Fp @ F~. The induced 
linear topology on F | F '  is the tensor product topology of the corresponding linear 
topologies on F and F' ;  let F @ F '  be the completion of F @ F '  with respect to 
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that topology. If the filtrations Y, U~ are Hausdorff, the same is true for Y | 5 rl 
and, hence, the canonical map 

F @ F ' ~ F  @ F '  (4) 

is injective. It need not be an isomorphism even if both F and F I are complete. Let 
5 r @ 5 v' be the filtration of F @ F '  obtained by completing U | H .  Then, passing 
to the associated graded objects, one obtains an isomorphism 

A 

gr:- |  @ F ' )  ~ g r~ |  | F ' )  _~ g r : ( F )  | grY'(F ') (5) 

of graded vector spaces. 
For an inverse system X we consider the decreasing filtration y x  = (ker amX)m 

of lira X. If X ' is another such system assertion (ii) of Proposition 2.5 shows 
that the tensor product filtration 5 c'x @ .T X' of (li,___m :Y) | (li__m,Y') is given up to 

a degree shift by the kernels of the various maps 0 x , x ' .  Using assertion (iii), we 
can identify li___m(XnX') with the completion (li__mX)@(li__mX') in such a way that 

the filtration 5 c x a  x '  corresponds (up to a degree shift) to ) c y ~  box'. Hence, the 
monomorphism r x ' x '  is a special case of (4) and the isomorphism of assertion (iv) 
of Proposition 2.5 a special case of (5). 

(ii) Suppose that r X,x '  is an isomorphism and ker a f '  r 0 for all n. Then, 
the decomposition (3) of r x 'X '  and [4, Proposition 2] show that lira X is finite- 
dimensional. In fact, one can show that r X,x '  is an isomorphism if an§ only if one 
of the following conditions is satisfied: 

(a) l imX is finite-dimensional. 
+ _ - - -  

(a') l)__mX I is finite-dimensional. 
X' x and cr~ are injective for n >> 0. (/3) The canonical maps cr n 

3. The Graded Functor 

Let A be an algebra. The reader can find all the basic definitions and results about 
the cyclic and periodic cyclic homology HC(A) and HP(A) of A in Loday's book 
[ 11 ]. Cyclic homology comes equipped with a certain endomorphism S of degree 
-2 .  The relation between cyclic and periodic cyclic homology can be expressed in 
terms of the inverse system (HC(A)[-2ra] ,  S)m by the short exact sequence 

0-+li _mlHC(A)[ -2 ra -  1]~HP(A)-+Ii_mHC(A)[-2ra]-+O. 
7 ~  m 

Let n C Z, �9 = [n] and consider the map # A .  H P . ( A ) ~ H C n ( A )  defined as the 
composition of the surjection HP. (A)---,li _mHC.+zm (A) followed by the structural 

m 

morphism cr A" limI-IC.+2~ ( a )  ~ H C ~  ( a )  ofthe inverse limit limHC.+2~ (a) .  We 
m m 

consider the decreasing filtration of HP.(A) by its subspaces ke r#  A, [n] = , ,  and 
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note that the induced linear topology is Hausdorff if and only if li_mlHC.+2m+ 1 (A) = 

0. We define m 

?Y~(A) ke r~A_2 /ke r~  A ker a A 2 / k e r  A ~___ z O" n . 

In particular, 7 ~ ( A )  = 0 if n < 0. We note that there is an identification 

"Hn(A) 

___ im(HP.(A)  ~r I-IC~(A)) n ker(HC,~(A) s HC~_2(A)) 

= i m ( l j ~ H C , + 2 , ~ ( A ) ~ A  H C n ( A ) ) N  ker(HC~(A) s HC,~_2(A)). 

Remarks 3.1. (i) The graded functor 7-/ = (~,~ 7-{~ has the following proper- 
ties: 

Base change. There is an identification 7-[(A K) = 7-I(A) | K for any field 
extension K/k,  where we denote by A K the/(-algebra A | K. This follows since 
�9 ~ a | 1 6 3  im a A | K. lm ~'n = 

Homotopy invariance. If char k = 0 and A = A0 | A1 | A2 | - "  is a graded 
algebra, the inclusion A0 ~+ A induces an isomorphism 7-/(A0) _~ 7-/(A). This is a 
consequence of the corresponding property of li _mHC[-2m], which is itself proved 

r n  

using Goodwillie's theorem on the action of derivations in cyclic homology (cf. 
[6]), applied to the special case of the Euler field acting on A (cf. [13, Proposition 
2.41). 

Affine algebras. If char k -- 0 and A is a commutative algebra of finite type, there 
is a canonical isomorphism of graded vector spaces 7~(A) _~ Hinf(Spec A), where 
Hinf(Spec A) is the infinitesimal cohomology of Spec A over Speck introduced by 
Grothendieck in [7]. This is a consequence of the computation of HP(A), which is 
due to Feigin and Tsygan (cf. [5]), combined with a result of Deligne, Bloom and 
Herrera, which establishes the embedding of the infinitesimal cohomology into the 
de Rham (K~ihler) cohomology over k -- C (cf. [3]). 

(ii) If the inverse system (HC(A)[ -2m] ,  S),~ satisfies the Mittag-Leffler con- 
dition, the graded vector space 7-[(A) = G~  7~,~ (A) is isomorphic to the limit term 
E~(A)  = (~,~ E~(A)  of the spectral sequence associated with Connes' exact 
couple of A (cf. [3]). 

We now examine the behavior of ~ with respect to tensor products. Let A, A t 
be two algebras�9 We shall first review the relation between the cyclic homology 
groups of A, A t and that of A | At; for more details, the reader is referred to 
[1], [9], [10] and [11]. Let 13(C(A)), 13(C(A')) and 13(C(A) | C(A')) be the 
chain complexes associated with the mixed complexes (C(A),  b, B), (C(A'), b, B) 
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and (C(A) | C(A'),b,B), respectively. Here, (C(A),b) and (C(At),b) are the 
normalized Hochschild complexes of A and A/, while B is Connes' operator. Then, 
13(C(A)) = k[u] | C(A) as graded vector spaces, where the polynomial algebra 
k[u] is graded with deg u = 2, and similarly for 13(C(A')) and B(C(A) | C(A')). 
We also consider the degree - 2  endomorphisms S of these complexes which are 
induced by the endomorphism S of k[u] given by S(u n) = u n-1 (resp. 0) if n > 0 
(resp. n = 0). 

There is a short exact sequence of complexes 

O-~B(C(A) | -C(A')) zx B(-C(A)) | B(-C(At)) 

S@l-l| , (B(C(A)) @ B(C(A')))[2] -+ 0, (6) 

where A is defined by 

u) 
a+t3=t 

_ _  m 

for all t C N, ~ 6 C(A) and ~' C C(AI). This is a short exact sequence of 
inverse systems of complexes if we endow 13(C(A)) | 13(C(A')) with the degree 
- 2  endomorphism S | 1. There is a functorial quasi-isomorphism 13(C(A) | 
C(AO)~I3(C(A | At)) which commutes with S and, hence, the long exact 
sequence associated with (6) takes the form 

�9 -. -+(HC(A)| HC(A'))n+I S|174 (HC(A) @ HC(A'))n-1 

~ H C ~ ( A |  A') A 

(HC(A) | HC(A'))n S@l-l@S (HC(A) @ HC(A'))n_2~"" ". 

If we denote by (HC(A)DHC(A'))n (resp. Cotor(HC(A), HC (A'))n-2)the kernel 
(resp. cokernel) of the map 

(HC(A)| HC(At))n s |174 (HC(A)@ HC(AI)),~_2, 

then there is a short exact sequence 

0 ~ Cotor(HC(A),HC(A'))[1] 

HC(A | At) t ,  HC(A)DHC(A')-+0. (7) 

This is an exact sequence of inverse systems, where the structural morphisms 
of the terms involving the cotor and cotensor products are induced by S | 1 (or, 
equivalently, by 1 | S). 
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We note that li_m/3(C(A))[-2ra] = (1--Ira C ( A ) [ - 2 m ] ,  b+B)(Example 1.1(ii)) 
rr~ 

and similarly for C(A ' )  and C(A)  | C(A') .  We shall consider the morphism of 
supercomplexes 

-+li _mB(C(A) | C ( A ' ) ) [ - 2 m ]  (8) 
r n  

whose restriction 0 ~176 to chains supported in (even)| degrees maps ((m)m | 
( ( ' ) , ~  onto (~ i+ j=m ~i | ~ )~  for any (~m)~ E 1-I~ C2m(a)  and ( ~ ) m  E 
YIm --Czm(At) ( a n d  similarly for the restrictions O ~ 0 l~ and 011). 

We denote by a • the structural morphisms of the inverse limit 

Ii_m(HC( A )DHC( X )  )[- Zm]. 
r r t  

LEMMA 3.2. If A, A t are two algebras, then 

(i) A induces an isomorphism 

IX _mHC(A | a ' ) [ -Zra ]  ~_ li__m(HC(A)[]HC(A'))[-2ra]. 

(ii) There is a canonical monomorphism 

--+ li _m(HC( A )[3HC( A') )[-2m], 
r n  

such that the composition A -  17- is induced by | 

Proof (i) Since the inverse system (Cotor(HC(A), HC(A' ) ) [ -  2ra]) m is essen- 
tially zero (Lemma 2.1(i)), the result follows from the short exact sequence (7). 

[] 
(ii) Let us define r such that a n v, followed by the composition 

(HC(A)OHC(A'))n  r (HC(A) | HC(A'))  HCp(A) | HCq(A'), 
A I is the map a A | Crq for all p, q, n with p + q = n. Then, Proposition 2.5(i) shows 

that ~- is injective. The last claim of assertion (ii) follows since given any (for 
example) even chains (~,~),~ E 1-Ira C2m(A), ( ( ' )m  C 1-I,~ C2m(A') and any 
n E N, the element 

i+j+t=n 
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m 

of (B(C(A) | C(A')))2n maps under A onto the element 

i + j = n  

i+j+a+t3=n 

of (B(C(A)) | 13(C(At)))2n . [] 

THEOREM 3.3. For any two algebras A, A', the comultiplication A induces an 
isomorphism 7-[( A | a') ~_ 7-[( A ) | 7-[( A') of graded vector spaces. 

Proof. Given n 6 N, we let �9 = [n] and consider the following diagram 

limHC.+2m(A | A') ~ Ii_m(HC(A)NHC(A')).+2m 
r n  r n  

HC (A | A') . (HC(A)eHC(A'))  

(9) 

where the top arrow is the isomorphism of Lemma 3.2(i). We also consider Pn = 
[] a n 7-, where 7- is the monomorphism of Lemma 3.2(ii), and the graded vector spaces 

[] HD = @n H ~  and H e = G n  H~ which are defined by H ~  = kera~_2/kera,~ 
and H~ = ker Pn-2 /ker  Pn. We shall prove that 

(i) ker Qn = ~p+q=~-2 ker a A | ker a A', 
( i i )  7- induces an identification H e = H [] , 

o and (iii) 7-(kerQn) C A ( k e r a  A| C_ ke ra  n 
(iv) A : 7-/(A | A ' ) ~ H  ~ is injective. 

Suppose that these assertions are proved. Then, we conclude the proof of the 
theorem as follows. Assertions (i) and (ii) imply that 

A ~ A' = H~n = 0 (kercrA-2/keraA)| -2/keraq ) 
p+q=n 

= @ 7~p(A) | 7-[q(A') 
p+q=n 

(7-[(A) | 

It follows from (ii) and (iii) that A: 7-[(A | A')--+H [] admits a right inverse, 
namely the map A-17-: He~7-[(A | A'). Hence, (iv) implies that A: 7-/(A | 
A')~11 [] is an isomorphism. 
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Proof of assertion (i). Suppose that n -- 21 is even and consider the restriction 
0 ~176 of 0~ on 

Then, 

kero~ ~  ~ ker o'~p | ker o'2Aq ' 
p + q = l - I  

as shown in Proposition 2.5(ii). Similarly, 

A t 
ker01~ ! ~ kero'~p+l | 

p+q=l -1  

w h e r e  0~ 1 is the restriction of 0n on 

The result follows since ker Qn = ker Q~ | ker 011. The case of an odd n is 
similar. 

Proof of assertion (ii). It suffices to show that the inclusion im 0~ C_ im 0-~ is 
an equality. This follows as above, using Proposition 2.5(iii). 

Proof of assertion (iii). The inclusion A(ker 0.~ | C ker 0-~ follows from 
the commutativity of (9). In view of assertion (i), in order to show that r (ker  0n) C 
A(ker O-A| w e  have to show that 7_(ker o.v A | ker o. A') C_ A(ker O "A| ) fo r  all 
p,q withp + q = n - 2. 

Suppose n = 21, p = 2r and q = 2s are all even. Let E r kero.vA and 

=' E kero- A'. Then, we can choose cycles (~m)m E I-I,~ C2m(A) and (~m)m r 

H,~ C2,,(A')  (for the differential b + B) with (i = 0 for i ~< r and ~} = 0 for 
j ~< s, which represent certain elements of HP0(A) and HP0(A ~) mapping onto -- 
and E t, respectively. Lemma 3.2(ii) implies that the cycle 

i rn rn rn 

represents an element of HPo(C(A) | C(A')) ~_ HPo(A | A') mapping onto 
A-17_(.= | _~/). Since r + s = l - 1, we have ~i | ~ = 0 for i + j ~< I and, hence, 

~i+j=,~ ~i 0 ~ = 0 for ra <~ I. Therefore, A-17_(. -- 0 =') E kero- A| 
The cases where n is even and p, q are both odd or n is odd are analogous to 

the one considered above. 
Proof of assertion (iv). We shall need the following lemma. 
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LEMMA 3.4. Let f: M-+ N be a map of filtered vector spaces. Suppose that 

(i) M is complete and N is Hausdorff with respect to the linear topologies 
induced by the filtrations, 

(ii) f is injective and 
(iii) the associated map gr(f): gr (M)~gr(N)  is surjective. 

Then, gr(f) is injective (and, hence, an isomorphism). [] 

We filter the vector spaces 

li_mHC.+2m(A | A') and lim(HC(A)E3HC(A')).+2m 
m m 

by their subspaces 

kercr A|  and k e r a ~ , [ n ] = , ,  

respectively. As already noted above, assertions (ii) and (iii) imply that the map 
A: 7-[(A | A')--+H ta is surjective; hence, Lemma 3.4 shows that it is injective 
as well. This finishes the proof of assertion (iv) and therefore the proof of the 
theorem. [] 

Remarks 3.5. (i) Let the notations be as in the proof of Theorem 3.3. Then, using 
the isomorphism A: 7Y(A| A ' ) ~ H  D , one can show that A(kera A| = ker a~ 
for all n. 

(ii) One can describe the relation between li_mHC(A)[-2m], li _mHC(A')[-2m] 
m m 

and Ii_mHC(A | A')[-2m] as follows (cf. Remark 2.7(i)). 
m 

Let .T A be the filtration of li__mHC(A)[-2m] given by the kernels of the various 
m 

maps a A and similarly for A' and A | A t. Then, the tensor product filtration 
j:A @ .TA' induces a linear topology on 

and the corresponding completion is identified with 

li_mHC(A | A')[-2m] g li_m(HC(A)rnHC(A'))[-2m]. 
m r n  

Moreover, under this identification, the completion .~-A ~ .~-A' of ~A @ .~A' 
corresponds (up to a shift in degrees) to .)ca| 

4. Tensor Products and Periodic Cyclic Homology 

Let A, A ~ be two algebras. In this section, we will show how one can lift the 
isomorphism of Theorem 3.3 to periodic cyclic homology under the presence 
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of certain finiteness hypotheses. More precisely, we shall be interested in the 
morphism 

| HP(A) @ HP(A')--+HP(A | X )  

of Z/2Z-graded vector spaces which is induced by (8). 
An algebra A will be said to have property (II) if the following conditions are 

satisfied: 

(II 1) the inverse system (HC(A)[-2m],  S)m satisfies the Mittag-Leffler con- 
dition and 

(112) the periodic cyclic homology HP(A) is finite-dimensional. 

In particular, if A has property (II), then HP(A) = li_m HC(A)[-2m].  If A is 
m 

countably generated as an algebra condition (II2) implies condition (II 1 ); this is a 
consequence of Gray's criterion for an inverse system to satisfy the Mittag-Leffler 
condition (cf. [3, Appendix]). 

Remarks 4.1. (i) For algebras with property (II), the inverse system 
(HC[-2m],  S),~ has a particularly simple structure. In fact, one can show that 
the following conditions are equivalent for an algebra A. 

(a) A has property (II). 
(/3) The periodic cyclic homology HP(A) is finite-dimensional and the inverse 

system (HC(A)[-2m], S)m decomposes canonically in sufficiently large degrees 
into the direct sum of the constant system with value HP(A) and a system which 
is essentially zero. 

(7) The inverse sy stem (HC ( A ) [ -  2m], S ) m satisfies the Mittag-Leffler condi- 
tion and the vector space 7-/(A) = | is finite-dimensional. 

(ii) If an algebra has the property (P) introduced by Kassel in [10], then it 
also has property (II). If chark = 0 all commutative algebras of finite type have 
property (IT), while there are such algebras without property (P) (cf. [3]). 

(iii) For algebras with property (II) periodic cyclic homology is compatible with 
extensions of the base field. In fact, one can show that the following conditions are 
equivalent for an algebra A (cf. [4, Remark 8(ii)]). 

(~) The canonical map HP(A) | K-+ HP ( A/~') is an isomorphism for any field 

extension K/k, where we denote by A K the K-algebra A | K. 
(/3) The inverse system (HC(A)[-Zm],  S),~ satisfies the Mittag-Leffler condi- 

tion and cr~( --A = a n ) is injective for n >> 0. 
(/3') The inverse system (HC(A)[-2m],  S),~ satisfies the Mittag-Leffler con- 

dition and 7~n(A) = 0 for n >> 0. 

In particular, if A has property (II), then so does the K-algebra A K = A | K 
for any field extension K/k. 

The next result is a generalization of [10, Theorem 3.10]. 
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THEOREM 4.2. The foUowing two conditions are equivalent for an algebra A. 

(i) A has property (H). 
(ii) (9: HP(A) (~ HP(A')--+HP(A | a') is an isomorphism for any algebra A'. 

Proof (i)--+(ii) Let A ! be an algebra. For all m we shall use the following 
notations: 

Xm = 13(C(A))[-2m], X ~  = B(C(A'))[-2m], 

Ym=I3(C(A)@C(A1))[-2m],  Zm=(B(C(A))@B(C(A' ) ) ) [ -2m] .  

We view (Zm)m as a surjective inverse system of complexes with respect to S | 1 
and consider the commutative diagram of supercomplexes with exact rows 

0 , l i m Y ~  , l i m Z m  , l i m Z m  , 0  
m m r ~  

which is defined as follows. The top row is obtained by tensoring with limXm the 
short exact sequence "~ 

O-- , l i_mX~ 1-~ X~ , - s  , 1-I X~--+O, 
m ~7 ,  TrL 

the bottom row is obtained from (6) by passing to inverse limits and i| is the 
restriction of the morphism (]-I.~ Xm) @ (I~m X~)  ~ (1-Ira Zm) which maps 

x !  i (x~).~ | ( m)m onto (~i+j=m xi | Xj)m. 
The homology of Z~ is (HC(A) @ HC(A'))[-2m] and, hence, assumption 

(II 1 ) implies that the inverse system (H. (Zm), S | 1 ) m satisfies the Mittag-Leffler 
condition; it follows that 

We note that 10 induces an isomorphism 

~- 1-I (HP._[q(A) | HCI(A')) 
l 
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~- r I  li_m (HC.-t+2m(A)| HCt(A')) 
l m 

= li_m(HC(A) | HC(A/)).+Zm 

where we have used (112), (HI)  and [4, Proposition 2]. Using the 5-1emma, we 
conclude that | induces an isomorphism in homology as well. 

(ii) --+ (i) In order to show that A satisfies condition (II1), we consider an alge- 
bra A' which is not finite-dimensional as a vector space such that the projection 
(C(A') ,  b)--+A'[0] is a quasi-isomorphism (e.g., A' can be the ind-6tale algebra 
which consists of all eventually constant sequences in k with addition and mul- 
tiplication defined component-wise). Then, there are induced quasi-isomorphisms 
of supercomplexes 

l im/3(C(A ' ) ) [ -2m]  --+ A'[0] 
?Yl 

and 

l im/3(C(A) @ C ( A ' ) ) [ - 2 m ]  -+ l im(B(-C(A))[-2m] | At[0]) 
rrz r r t  

such that | descends to the canonical map 

,~: (I~_ B(-C( A ))[-2ra]) (~ A'[O]--+li__m(B(C(A))[-2ra] @ 

Since ~b is a quasi-isomorphism, one can use the results of [4] and show that 
the inverse system (HC(A)[ -2m] ,  S)m satisfies the Mittag-Leffler condition (cf. 
[4, Remark 8(ii)]). 

In order to show that A satisfies condition (II2), we consider an algebra A ~ such 
that ker er A' ~ 0 for all n. (An example of such an algebra can be obtained as fol- 
lows. We start with a (commutative) smooth k-algebra R with H~R(Spec R) r 0 
and consider for all t E N the inclusions R | = R | | k ~-+ R | | R = R | + l . 
One can show that A' = li_mR | has the required property.) Since the isomorphism 

t 

| descends to A - i t  (Lemma 3.2(ii)), we conlude that r is surjective and, hence, 
an isomorphism. It remains to invoke Remark 2.7(ii). [] 

Remark 4.3. In the proof of the implication (ii) --+ (i) of Theorem 4.2, we have 
exhibited examples of algebras which do not have property (II). In fact, the product 
morphism | is not an isomorphism when A is the algebra of all eventually constant 
sequences in k and A' the direct limit of the tensor powers of a smooth algebra 
whose first de Rham cohomology group is nontrivial. 
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Since commutative algebras of finite type in characteristic 0 have property (II), 
the computation of their periodic cyclic homology by Feigin and Tsygan (cf. [5]) 
yields the following 

COROLLARY 4.4. Suppose that char k = 0 and let A be a commutative algebra 
of finite type. Then, for any algebra A', there is a canonical isomorphism 

HP(A | X )  ~- Hinf(Spec A)(~ HP(A t) 

of Z/2Z-graded vector spaces, where the infinitesimal cohomology Hinf(Spec A) 
ofSpec A over Spec k is viewed with the even-odd grading. [] 

Finally, using Theorem 4.2, we show that the class of algebras having property 
(II) is closed under tensor products. 

PROPOSITION 4.5. Let A, A t be two algebras. 

(i) lf  A and X have property (HI) then so does A | A'. 
(ii) IrA and A' have property (II) then so does A | A'. 

Proof (i) Let us consider the short exact sequence (7). Since the Mittag-Leffler 
condition is stable under extensions of inverse systems (as one can verify by a 
diagram chase), the result follows from Lemma 2.1(i) and Proposition 2.3. 

(ii) This follows from (i) and Theorem 4.2. [] 
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