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Abstract. We introduce a notion of ‘cover of level n’ for a topological space, or more
generally any Grothendieck site, with the key property that simplicial homotopy classes
computed along the filtered diagram of n-covers biject with global homotopy classes when
the target is an n-type. When the target is an Eilenberg–MacLane sheaf, this specializes
to computing derived functor cohomology, up to degree n, via simplicial homotopy clas-
ses taken along n-covers. Our approach is purely simplicial and combinatorial.
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1. Introduction

The well-known theory of Čech cohomology with coefficients in a (pre)
sheaf has been extended by Grothendieck and his collaborators from topo-
logical spaces to arbitrary Grothendieck topologies. Čech cohomology of
sites is isomorphic to their derived functor cohomology, in general, only in
dimensions 0 and 1. Verdier has introduced a variant of the notion of cover
in such a way that the cohomology groups computed along his ‘hypercov-
ers’ are isomorphic to derived functor cohomology in all dimensions, for
arbitrary sites. The starting point for this research was the following naı̈ve
but (perhaps) irresistible question: Is there a notion of ‘cover of level n’
with respect to which Čech covers have level 1, and get the cohomology
right up to dimension 1, while Verdier covers have level ∞, and get the
cohomology right in all dimensions?

The answer is (as the author discovered after most of this research was
completed) that while the term, ‘truncated hypercovering of level n’, does
make an appearance in [2], p. 96 (see also Verdier’s Appendice to SGA4,
fascicule 1, exposé 5 for the original description) its properties seem to be
mostly unexplored. But there are good reasons for such an exploration.
One is liberating n-covers from the formalism of sites (which makes them
look much less similar to plain simplicial sets than they really are) and the
other is to embed them in a theory of Postnikov sections, which makes the
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formalism applicable to coefficients more general than Eilenberg–MacLane
spaces (i.e. abelian ones).

Recall that the data for an open cover of a topological space can be
assembled into a simplicial sheaf with distinguished properties, and hyper-
covers are simplicial sheaves by definition. The notion of n-cover is cast in
a simplicial language, and is defined intrinsically in terms of the topos, i.e.
the category of sheaves on the site. We also introduce a notion of Čech
n-cover that is specific to a site; these are genuine combinatorial objects,
standing in the same relation to n-covers as topological open covers do to
the simplicial sheaf they give rise to.

One of the several equivalent definitions of abelian sheaf cohomology is

Hn(E,A)=ho
E�op (1, ˜K(A,n))

Here E=Sh(C, J ) is the category of set-valued sheaves on a site, A an abe-
lian sheaf, ho

E�op stands for the category of simplicial objects in E with the
local weak equivalences (formally) inverted, 1 is the terminal object of E�op

and ˜K(A,n) is a simplicial Eilenberg–MacLane sheaf corresponding to A

in degree n. Level n Čech cohomology will be defined as a filtered colimit
of simplicial homotopy classes whose source is an n-cover; from the view-
point of simplicial homotopy theory, the target could be an arbitrary sim-
plicial sheaf (so perhaps ‘level n Čech homotopy’ would be a better name)
and the main result becomes the following

THEOREM. Write [covn
E] for the category with objects the n-covers of E and

morphisms simplicial homotopy classes of maps. [covn
E] is a cofiltered cate-

gory possessing cofinal small subcategories. Let X be a simplicial object in
E. Writing [−,X] for the contravariant ‘simplicial homotopy classes’ functor
E�op→Set , one has a natural map (of sets)

colim
[covn

E]
[−,X]→ho

E�op (1,X)

which is a bijection if X is an exact n-type.

There is an analogous statement for Čech n-covers. An exact n-type is,
in turn, a particularly good simplicial model for a (local, in the case of
sheaves) weak homotopy type with vanishing local homotopy groups above
dimension n. For example, of all simplicial sets of the weak homotopy type
of an Eilenberg–MacLane space K(G,1), the nerve of G is also exact. Any
homotopical n-type, taken in the ordinary sense, possesses models that are
exact n-types. The concept, which is due to Duskin, will be discussed in
detail.

As a corollary of the main theorem, the Čech cohomology groups of
level n “get cohomology correctly” (i.e. are isomorphic to derived functor
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cohomology) in dimensions 0 through n. Setting n= 1 and X =K(G,1)

(here G being a sheaf of groups), one recovers Grothendieck’s theorem on
(not necessarily abelian) H 1 and its computability by ‘level 1’, that is ordi-
nary Čech cohomology. The preservation of algebraic structure on homot-
opy classes—for example, in case X is a group or abelian group object up
to homotopy—follows by naturality.

The 0, 1 and 2-covers can be economically reindexed as groupoids
with extra structure, and it might be thought that n-covers, as defined
here, could shed light on the elusive notion of ‘n-groupoids’ or ‘weak
n-categories’. That is not so, one can see, already for n= 2. The reason is
that n-covers are defined via horn- and simplex-filling conditions, i.e. purely
existential conditions, while for groupoids and similar algebraic structures
one expects operations and identities— such as functional or functorial
choices of fillers.

The reader who is impatient (or turned away by the prevalence of the
term ‘topos’) but wishes to get a feel for the subject is encouraged to look
at Theorem 3.15 and Proposition 3.16—showing how cleanly one can ‘chop
off’ Verdier covers, and the main property of Verdier covers, at a finite
stage; or at the discussion on the last few pages, where we give an example
of a sheaf cohomology class that is not supported on any Čech cocycle (in
the classical sense) but can be represented by a higher Čech cocycle (in the
sense of this paper).

The proof of the main theorem is quite straightforward; it employs no
additive tools such as chain complexes or spectral sequences, but proceeds
purely by local manipulations on simplicial objects, mainly with Postnikov
sections. One reason for the length of this paper is the number of ‘service
paragraphs’ it contains, somewhat independent but (it is hoped) enjoyable
illustrations of the various notions used. Though the intrinsic level of gen-
erality of our results is that of simplicial sheaves on any Grothendieck site,
essentially all proofs can be phrased in direct combinatorial terms involv-
ing plain simplicial sets. The very first such ‘service paragraph’, entitled For
logical reasons, explains just how this is possible; it is a depository of some
sheaf-theoretic technologies that were only perfected after the publishing of
SGA4. These tricks, constantly used by a handful of ‘experts’, make proofs
both more streamlined and more general, often eliminating assumptions of
‘enough points’ on sites.

1.1. NOTATIONAL AND TERMINOLOGICAL CONVENTIONS

A topos is a category abstractly equivalent to the category of Set-valued
sheaves on some Grothendieck site. To minimize set-theoretical issues, we
assume that our toposes can always be written as the category of sheaves
on a small site. Under this assumption, a topos will possess a proper class
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of objects and small hom-sets in the usual sense, and there won’t be a need
to adjoin extra set-theoretical universes.

As general background on sites, toposes and geometric morphisms, we
recommend the first three chapters of MacLane–Moerdijk [16].

Write ho
E�op for E�op

[W−1], the category of simplicial sheaves with the
class of local weak equivalences inverted. This is a locally small category
(i.e. between any two objects there is a hom-set rather than proper class
of morphisms); this can proved on purely set-theoretic grounds, or follows
from W being part of a Quillen model category structure on E�op

. We will
not use any model-theoretic arguments, though.

The symbol 1 will always stand for a terminal object, in the category
that’s clear from the context.

2. For Logical Reasons

Let us illustrate the point with an example that is needed in this paper.

PROPOSITION 2.1. Let

X
f

��

q

��

Y

p

��

A
g

�� B

be a pullback diagram in SSet , with p a Kan fibration. Assume g is an
n-equivalence, that is, it induces isomorphisms on πi for 0 � i � n, and
in addition it induces an epi on πn+1 (for all basepoints). Then f is an
n-equivalence.

PROPOSITION 2.2. Let E be a topos and

X
f

��

q

��

Y

p

��

A
g

�� B

a pullback diagram in E�op
, with p a local Kan fibration. Assume g is a local

n-equivalence, that is, it induces isomorphisms on the sheaves πi for 0� i �n,
and in addition it induces an epi on πn+1 (for all local basepoints). Then f

is a local n-equivalence.

Proof of 2.1. Consider the geometric realization functor with values in
the category of compactly generated Hausdorff spaces, and apply it to
the above diagram. It preserves finite limits by a result of Gabriel and
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Zisman [10], and takes Kan fibrations to Serre fibrations by a result of
Quillen [18]. In the topological world, the claim follows from the five lem-
mas applied to the homomorphism induced between the homotopy long
exact sequences of p and q; and that implies the conclusion for the sim-
plicial (or ‘combinatorial’) homotopy groups too.

Proposition 2.2 is a formal consequence of Proposition 2.1. There are
three strategies for seeing that:

(1) Both the hypotheses and the desired conclusion of Proposition 2.1
can be phrased purely in the language of sets, membership, ordered
tuples and projections, and unions and intersections (allowing count-
able unions as well), in the syntax known as geometric logic; see the
textbook of Moerdijk and MacLane [16]. There is an interpretation of
the language of sets in any topos (akin to the formalism of ‘virtual ele-
ments’ and ‘diagram chases via virtual elements’ in arbitrary abelian
categories, cf. [15]). This interpretation, at the same time, defines pre-
cisely the meaning of local and ensures—thanks to a theorem of Joyal,
Deligne and others, and one of Makkai and Reyes, respectively—that
theorems whose hypotheses and conclusions can be phrased in finitary
resp. countable geometric logic, stay valid in an arbitrary topos.

(2) Both the hypotheses and the conclusion of Proposition 2.2 can be for-
mulated in the language of diagrams, finite limits and countable colim-
its. For example, to say that Y

p−→B is a local Kan fibration in E�op

means that the canonical maps Yn � �k
n(Y )×�k

n(B) Bn from the object
of n-simplices of Y to the matching object of (n, k)-horns in Y above
n-simplices of B, are epimorphisms. To say that a map in E�op

A
g−→B

induces an epi on πn for all local basepoints means that the corner map
in the diagram

πn(A)
πn(g)

����������������

�� ���
��

��
��

��

��
��

��
��

��
��

��
��

�

• ��

��

πn(B)

��

A0
g0

�� B0

is an epimorphism. Here A0, B0 are the degree 0 parts of the simpli-
cial objects A, B (“all the local basepoints”); πn(A), πn(B) are the bun-
dle of homotopy groups above them (i.e. group objects in E/A0, E/B0),
and • stands for a pullback. πn(A) is, in turn, a certain subquotient of
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the degree n part of Ex∞(A), which is a countable colimit of Exk(A),
each of which, and the connecting maps as well, arises as collections
of matching tuples and projection maps. . .

The data thus packaged—a set of diagrams, together with require-
ments that given subdiagrams be limits resp. colimits—go by the name
of sketch; see [1] or [4] for a full and careful definition. Propositions 2.1
and 2.2 are identical in this form; they both state that if certain subdi-
agrams of a given sketch are assumed to be limits resp. colimits, then
certain other(s) will be limits (colimits) too. The fundamental theorem
of sketches states that if a theorem sketchable via finite limits and finite
colimits holds in the category Set , then it will hold in any topos; and
same holds if the sketch contains countable colimits, but the total car-
dinality of all diagrams used is countable. (In simplicial homotopy the-
ory, one often needs this second version because of Ex∞.)

(3) Any Grothendieck topos E has a Boolean cover, that is to say, a com-

plete Boolean algebra � and a surjective geometric morphism Sh(�) f−→
E. f ∗ preserves and reflects statements that can be formalized in geo-
metric logic. Sh(�) provides a Boolean-valued model for the axioms of
Zermelo–Fraenkel set theory (including the axiom of choice). Hence if
a theorem of geometric logic is provable in ZFC, it holds in the inter-
nal logic of every Grothendieck topos.

2.1. TERMINOLOGY

The phrase ‘for logical reasons’, when used in a proof, signifies that one
can appeal to any one of the strategies (1), (2) or (3) to verify a claim in
Set , in order to conclude its validity in every topos.

3. n-Covers

3.1. RECOLLECTIONS ON THE COSKELETON FUNCTOR

Let �[0, n] denote the full subcategory of � (which is the category of finite
ordinals and monotone maps) with objects 0, 1, . . . , n. The truncation
functor SSet = Set�op trn−→ Set�[0,n]op

has a right adjoint (a Kan extension)
which we will denote by coskn. (Note that the literature often uses coskn

or Coskn to denote what would be the composite coskn ◦ trn in this paper.)

PROPOSITION 3.1. For X∈ SSet , the following are equivalent:

(1) X is isomorphic to an object in the image of coskn.
(2) The canonical morphism X→ coskn ◦ trn(X) is an isomorphism.



HIGHER ČECH THEORY 299

(3) Write ∂�k(X) for the set of (k + 1)-tuples of (k − 1)-simplices of X

that are compatible so as to form the boundary of a standard k-simplex.
The canonical map Xk

bk−→∂�k(X) (whose coordinates are the boundary
mappings) is a bijection for all k >n.

(4) The canonical map Xk → hom(trn(�k), trn(X)) is a bijection for all
k >n. (This map sends a k-simplex of X, thought of as a simplicial map
�k→X, to its n-truncation.)

(5) For any k >n and any diagram in the shape of the solid arrows

∂�k
��

��

��

X

�k

��

precisely one lift exists that makes it commutative. (Here ∂�k stands for
the k−1-skeleton, that is “boundary”, of the standard k-simplex �k.)

If X satisfies (any, hence all) these conditions, it is said to be n-coskeletal.
The first two versions of this definition can be repeated verbatim for

simplicial objects in any category with finite limits (in particular, a topos);
and also the third, if one uses iterated pullbacks to assemble the ‘bound-
ary object’ ∂�k(X). From (1) to (3) remain equivalent, and will serve as
the definition of coskeletal objects in general. Case (4) is probably the
most easily visualizable description of the coskeleton functor for simplicial
sets, and property (5) is included for completeness and comparison; cf. the
notion of exact fibration below.

3.2. SIMPLICIAL TORSORS

Given X∈E�op
, a simplicial torsor over X (in the broadest sense) is a map

T→X such that T→1 is a weak equivalence—i.e. T has locally the weak
homotopy type of a ‘point’, the terminal object of E�op

. Defining a map of
torsors to be a simplicial map over X, they form a full subcategory ST(X)

of the overcategory E�op
/X. Write π0C for the class of connected compo-

nents of a category C.

THEOREM 3.2. There is a natural map π0ST(X)→ho
E�op (1,X) which is a

bijection if X is locally Kan.

This is a close variant on work of Brown [5] and Jardine [14]. See [3]
for a proof.

In the 1970s, Duskin defined a certain class of simplicial objects X for
which, as it turns out, a much smaller collection of simplicial torsors T
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suffices to calculate homotopy classes. When one thinks of these torsors as
lying over the terminal object instead, they amount to the notion of cover
that is the subject matter of this article.

Recall that a map X
f−→Y of simplicial sets is a Kan fibration, or satis-

fies Kan’s lifting condition in dimension k if in every commutative square
of the form

�i
k

��

��

��

X

f

��

�k
��

��

Y

(3.1)

a lift, as indicated by the dotted arrow, exists. (�i
k is the simplicial set

obtained by omitting the non-degenerate simplex of dimension k and the
face opposite the vertex i, 0� i �k, from �k.) The following definition and
proposition are due to Duskin [7].

DEFINITION 3.3. A simplicial map X
f−→Y satisfies the exact Kan con-

dition in dimension k if in any commutative diagram of the type (3.1), pre-
cisely one dotted lift exists. X ∈SSet is an exact n-type if X→ 1 is a Kan
fibration which is exact in dimension k for all k >n.

Another way to phrase the condition of X being an exact n-type is: the
canonical map Xk→�i

k(X) from the object of k-simplices to the object of
(k, i)-horns is epi for k �n and an isomorphism for k >n. For logical rea-
sons, this formulation is valid in any topos. (In other words, for a topos E,
X∈E�op

is an exact n-type if X→1 is a local Kan fibration which is exact
above dimension n; the notion of ‘exact’ has a unique meaning, no local
and global versions.)

PROPOSITION 3.4. Let E be a topos, T ∈E�op
.

(i) If T satisfies the exact Kan condition above dimension n, then T must
be n+1-coskeletal.

(ii) If T is n-coskeletal, then it satisfies the exact Kan condition above
dimension n+1.

(iii) If T is locally Kan and n-coskeletal, then it has vanishing local homot-
opy groups in dimension n and above.

(iv) An exact n-type has vanishing local homotopy groups above
dimension n.

Proof. For logical reasons, it suffices to prove these for E=Set .
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(i) Suppose one has n + 3 matching n + 1-simplices that together can
be assembled into an n+ 2-boundary in T , i.e. a map ∂�n+2

b−→ T .
Omitting (say) the 0th of these simplices, one obtains a horn �0

n+2 ↪→
∂�n+2→ T . By assumption, this horn has a filler �n+2

f−→ T . Con-

sider the two n+1-simplices: d0�n+2 ↪→�n+2
f−→T (the 0th face of f )

and the 0th simplex in the matching set ∂�n+2
b−→ T . They have the

same boundary; since T satisfies the exact Kan condition above dimen-
sion n, they must coincide. So f is a filler for b. Again by exactness
in dimension n+2, this filler must be unique.

(ii) By adjunction, coskn(X) satisfies the exact Kan condition with respect
to �k

m � �m iff X satisfies the unique lifting condition with respect
to trn(�

k
m � �m). That will certainly happen for m > n + 1, for

trn(�
k
m ��m) is an isomorphism then. (Note that �k

m leaves out cells
of dimension m−1 and higher from �m.)

(iii) A 0-coskeletal simplicial set is just the nerve of a groupoid that is
equivalent (as a category) to the terminal category; so it is automat-
ically Kan, and (if non-empty) simplicially contractible.
If n> 0, choose any 0-simplex x ∈ T0 and any k-simplex y ∈ Tk, k � n,
all of whose faces are (the degeneracies of) x. This y, together with
k+ 1 copies of the (unique) k-dimensional degeneracy of x, make up
a compatible boundary of a k+1-simplex. Since T is n-coskeletal, this
boundary has a filler. Thence y is null-homotopic modulo its bound-
ary. Since T was assumed to be Kan, this means its homotopy groups
are trivial in dimension k, any k �n.

(iv) By definition, an exact n-type is a Kan complex; now use (i) and (iii).

3.3. ASIDES ON EXACT n-TYPES

The following observation of Duskin [7] must have been motivational in his
definition of ‘exact’: let n∈N and A be an abelian group (just a group if
n=1, or a set if n=0). Then K(A,n), the standard simplicial model of an
Eilenberg–MacLane space, is an exact n-type.

By the standard model we mean the constant simplicial set A if n=0, the
nerve of A if n=1, and the de-normalization of the appropriate chain com-
plex concentrated in degree n if n>1. Recall that this K(A,n) is n-reduced,
i.e. has a singleton in dimensions below n, A itself in dimension n, suitable
tuples of elements of A in dimension n+1, and is coskeletal above that.

Duskin [7] actually introduced the term n-hypergroupoid for what is
called exact n-type here, while Glenn [11] uses ‘n-hypergroupoid’ to mean
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any simplicial set satisfying the exact Kan condition above dimension
n (not requiring it to be a Kan complex in all dimensions). I confess
to replacing ‘n-hypergroupoid’ by ‘exact n-type’ (prompted by, of course,
Duskin’s definition of ‘exact Kan fibration’, Definition 3.3) so as to empha-
size its homotopical meaning (valid for all n) and de-emphasize its link to
groupoids (known to be valid for small n). In this context, one should also
observe that the exact Kan condition above dimension n places no restric-
tion on the homotopy type of X in the absence of the Kan condition in
lower dimensions. For example, the nerve of any small category is 2-coskel-
etal, hence satisfies the exact Kan filling condition in dimensions greater
than 3. Nonetheless, any homotopy type can be realized as the nerve of
a small category. By way of contrast, if the nerve of a category is a Kan
complex (which means, therefore, extra conditions only in dimensions 1–3),
then that category is a groupoid, and its nerve has the homotopy type of
a disjoint union of Eilenberg–MacLane spaces.

• The converse to Proposition 3.4(iv) holds as well, i.e. every (topologi-
cal) n-type has simplicial models that are exact n-types. In fact, we will
see in Proposition 3.5 that there is a model for the Postnikov section
functor that takes values in exact n-types.
• Duskin [8] describes a fascinating example of a non-abelian exact

3-type, the Azumaya complex AZ(R) of a commutative ring R. AZ(R)

has a unique vertex ∗; its edges are Azumaya R-algebras, its 2-simplices
certain invertible bimodules and its 3-simplices, isomorphisms between
those. πi(AZ(R),∗) is isomorphic to the Brauer group of R (defined as
equivalence classes of Azumaya algebras), the Picard group of R, and
R×, respectively, for i=1,2,3.
One surmises that more constructions of this type exist in the domains
of deformation theory, formal group laws or bordism—though as n

increases, it requires more and more ingenuity to make ‘deformation
data of the nth order’ fit the geometry of n-simplices.
• Note that an exact n-type is also an exact m-type for any m > n. An

exact n-type is a minimal simplicial set (in the sense of Kan) in dimen-
sions k � n, meaning that two k-simplices that are homotopic modulo
their boundaries must be equal, but this need not hold in dimensions
below n. Consequently, exact n-types are not necessarily economical
models of topological n-types; as we will see, there are infinitely many
exact n-type models of the point(!), and they can be quite complicated.

3.4. DUSKIN–POSTNIKOV SECTIONS

Duskin has also defined a particularly good model for Postnikov sections.
His results appear in [11]; we only summarize the facts needed later.
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PROPOSITION 3.5. For each n∈N, there exists a functor Pn from the full
subcategory of simplicial sets whose objects are Kan complexes to its full sub-
category with objects the exact n-types, as well as a natural transformation
pn from the identity to Pn with the following properties:

• Pn preserves Kan fibrations,
• pn induces isomorphisms on πi for i �n,
• Pn and pn are definable in terms of finite limits and countable colimits.

We can now state our main definition and its most important property.

DEFINITION 3.6. An n-cover of a topos E is an exact n-type T ∈ E�op

such that T→1 is a local weak equivalence.

PROPOSITION 3.7. Let E be a topos and X ∈E�op
an exact n-type. Write

covn
E(X) for the full subcategory of ST(X) with objects T → X such that

T is an n-cover of E. Then there is a canonical bijection π0 covn
E(X)→

ho
E�op (1,X).

Proof. The bijection is π0 covn
E(X)→π0ST(X)→ ho

E�op (1,X), where the
first map is induced by covn

E(X) ↪→ ST(X) and the second map is that of
Theorem 3.2. So it suffices to prove the first one to be a bijection.

Now quite generally, if one has two categories C, D and functors
C F−→D, C G←−D such that every object c of C is connected to GF(c) via a
zig-zag of arrows in C, and every object d of D is connected to FG(d) via
a zig-zag of arrows in D (these zig-zags are not required to be functorial,
or even be of some fixed shape) then π0F and π0G are inverse bijections
between π0C and π0D. It follows that if F is onto on hom-sets (for exam-
ple, it is the inclusion of a full subcategory) and for any d in D there exists
a map d→FG(d), then F and G induce bijections on connected compo-
nents. Apply this to the full inclusion covn

E(X)
F−→ST(X), G being defined

by the diagram

T ��

f

��
��

��
��

��
��

��
��

��
��

� T̃

		�
��

��
��

�

f̃




��

��
��

��
��

��
��

�

�������������������

G(T ) ��

��

PnT̃

Pnf̃

��

X �� PnX

Starting with a torsor T
f−→X, factor it (functorially) as a weak equiv-

alence T → T̃ followed by a local fibration T̃
f̃−→ X. Apply Pn to f̃ ,
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T̃→PnT̃ and X→ PnX coming from the natural transformation pn of
Proposition 3.5, and let G(T ) be the indicated pullback, the (natural) map
T→G(T )=FG(T ) (over X) being the above composite.

First, Pnf̃ is a local fibration, and so is its pullback G(T )→X; since
X is locally Kan, so is G(T ). Second, G(T ), being a pullback of three
objects each of which satisfies the exact Kan condition above dimension n,
itself satisfies it; so it is an exact n-type, and has vanishing local homot-
opy groups above n. Finally, PnT̃ , being a Postnikov section of an object
that is weakly equivalent to 1, is itself weakly equivalent to 1. G(T )→PnT̃

is an n-equivalence by virtue of Proposition 2.2; so G(T ) has trivial local
homotopy groups up to dimension n too. Therefore G(T )→X belongs to
covn

E(X), and we have a functor and natural transformation as required.

3.5. SCHOLIUM

There are several functorial models of the Postnikov n-section of a Kan
complex X, the simplest being, no doubt, coskn+1 ◦ trn+1(X). Some version
of the main theorem would work with each; the difference is that they
would not specialize to the classical theory of Čech covers. See Remark 4.7
for an elaboration of this point. As regards Duskin’s Pn, though all we
need is contained in Propostion 3.5, it may be worthwhile to compare
the details of his construction with the much better known model due to
Moore (see e.g. [13], Section VI.3).

The Moore–Postnikov n-section P M
n (X) is the image of the canonical

map X→ coskn ◦ trn(X). This is the same as saying that P M
n (X) is a quo-

tient complex of X, where two k-simplices x, y ∈Xk are identified if they
have identical boundaries up to dimension n, i.e. identical n-truncations.

For the Duskin–Postnikov n-section Pn(X), consider the truncation
trn(X) first. Introduce a relation ∼n on its n-simplices by defining two to
be equivalent if they are simplicially homotopic in X modulo their bound-
aries. (This is an equivalence relation by virtue of the assumption that X is
a Kan complex.) Since the face maps from Xn factor through this equiva-
lence, there results a well-defined truncated simplicial object trn(X)/∼n. (It
is not being claimed that X/∼n would be a well-defined simplicial object!)
There is a canonical map X

p−→ coskn(trn(X)/∼n), adjoint to the quotient
map trn(X)→ trn(X)/∼n. Define Pn(X) to be the image of p.

P0(X) is the disjoint union of π0(X) many copies of the (simplicial)
point, the terminal object of SSet . P M

0 (X) is the disjoint union of π0(X)

many simplicially contractible sets; these are of the form cosk0(X0,i), where
X0,i is the vertex set of the ith connected component of X.

P1(X) is the nerve of π1(X), the Poincaré groupoid of X (one object
for each 0-simplex and one edge for each homotopy class of 1-simplices).
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P M
1 (X) keeps all the 0-simplices and all the 1-simplices of X. It is not the

nerve of any category (though it is simplicially homotopy equivalent to
Nπ1(X), of course).

In short, Pn(X) is a ‘slimmer’ and geometrically perhaps more natu-
ral Postnikov section, even though the extra reduction only involves the
n-simplices. It also has the beautiful property (which we did not use) that
it is idempotent (as opposed to just homotopy idempotent) on locally Kan
objects in E�op

. Note finally that P M(X) and P(X) need not have the
intended homotopy type, and certainly need not be (local) Kan complexes,
unless X is a (local) Kan complex.

3.6. FINITARY DESCRIPTION OF EXACT N -TYPES AND n-COVERS

The notions of exact fibration, exact n-type and n-cover are preserved by
inverse image parts of topos morphisms, in particular, by stalk functors. In
the case of toposes with enough points, these notions are also reflected by
stalk functors (for the usual logical reasons), e.g. T ∈E�op

will be an n-cover
iff all stalks of T are n-covers in SSet .

Definition 3.6, after a little unwrapping, turns out to describe structures
well known in low dimensions. We will decode these first.

3.7. 0-COVERS

An exact 0-type in SSet is a simplicial set that is constant, i.e. all of whose
structure maps are the identity. A topos E has (up to isomorphism) a sin-
gle 0-cover, the constant simplicial object on the terminal object of E. cov0

E

is equivalent to the trivial (unique object, only the identity morphism) cat-
egory.

3.8. 1-COVERS

An exact 1-type T ∈SSet turns out to be precisely the same as the nerve
of a groupoid—see [7]. The graph underlying this groupoid is just the
1-truncation T1 ⇒T0 of T . Such a simplicial set T has the homotopy type
of a point iff the corresponding groupoid has one component and trivial
vertex groups, which happens iff T is 0-coskeletal and non-empty. Corre-
spondingly, a 1-cover of a topos E is a 0-coskeletal simplicial object X⇐
X2 � X3 · · · such that X→ 1 is an epimorphism. A simplicial morphism
between 0-coskeletal objects is necessarily induced from an ordinary map
at level 0; we thus have an adjoint equivalence

cov1
E

cosk0

�
tr0
{X∈E |X �1}
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between 1-covers of E and the full subcategory of E of objects with global
support, that is, ones that map to the terminal object via an epimorphism.

3.9. 2-COVERS

The reader sceptical of the intricacies of ‘higher dimensional diagram
chases’ is invited to work out a finitary algebraic description of exact
2-types. Duskin’s [9] solution is what he calls a bigroupoid, which is a bicat-
egory in which all 1-arrows are equivalences and all 2-arrows are isomor-
phisms. A bicategory itself (not needed in this paper) is a higher categorical
structure made up of objects, 1-arrows and 2-arrows, such that the com-
position of 1-arrows is not associative; its failure to be associative is mea-
sured by a (functorially assigned) 2-isomorphism, which in turn is subject
to a coherence condition; this coherence condition can be visualized as a
4-simplex, or alternatively as a MacLane–Stasheff pentagon. Identities are
likewise relaxed. Duskin assigns a simplicial set, a ‘nerve’, to any bicatego-
ry—this being a rather more involved affair than the nerves of strict higher
categories—and proves that the nerve is an exact 2-type iff it arises from a
bigroupoid.

What of 2-covers, that is, exact 2-types weakly equivalent to a point? It
follows from general principles—see Proposition 3.10—that a 2-cover, as a
simplicial object, must be 1-coskeletal. Let us take E= Set , and think of
the truncation of a simplicial set to levels 0 and 1 as a graph T1

s

⇒
t

T0;

‘graph’ will mean ‘directed graph equipped with unit arrows at each vertex’
throughout, but we will omit notation for units for the sake of legibility.

Since π0 of the 1-coskeleton of this graph must be trivial, T0 must be
non-empty and the graph must be connected. The Kan fibrancy condition
on its 1-coskeleton implies that our graph satisfies the right lifting condi-
tion (or ‘injectivity condition’), in the category of graphs, with respect to
the following three inclusions, which should be thought of as the edge trun-
cations of the three Kan horn conditions in dimension 2

•

��
��

��
��

�

•

��������� •
� � ��

•

��
��

��
��
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•

���������
�� • (3.2)
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�� • (3.3)
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•
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�

• �� •
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•
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��

�

•

���������
�� • (3.4)

But given that the graph is connected, these imply that for every pair u, v

of vertices, there is some edge starting at u and ending at v. Conversely,
this latter condition implies that cosk1(T1

s

⇒
t

T0) satisfies the Kan condition

in dimension 2 (as well as, tautologically, in dimension 1); from being 1-co-
skeletal, it satisfies the Kan condition exactly above dimension 2; it is con-
nected, and its πn vanishes for n�1, by virtue of being Kan and 1-coskel-
etal. To conclude, a 2-cover in SSet is the same data as a graph T1

s

⇒
t

T0

such that T0, the set of vertices, is non-empty, and T1
s×t� T0×T0 is surjective.

The 2-cover associated to this data is just the 1-coskeleton of the truncated
simplicial object T1

s

⇒
t

T0.

For logical reasons, one actually has

COROLLARY 3.8. There is an adjoint equivalence

cov2
E

cosk1

�
tr1
{diagrams T1

s

⇒
t

T0 in E such that (0) and (1)}

between 2-covers of E and the full subcategory of graph objects in E satisfy-
ing

(0) T0 �1 is an epimorphism,
(1) T1

s×t� T0×T0 is an epimorphism.

This is also a special case of Proposition 3.11.

Remark 3.9. If one prefers the bigroupoid formalism, then one can
think of the injectivity condition with respect to (3.2) as expressing the pos-
sibility of composing graph edges, and (3.3) and (3.4) resp. as permitting
‘left’ and ‘right’ division, without assuming that such operations have been
chosen, or indeed, that they can be chosen with any kind of consistency.
The bigroupoid associated to the data T1 ⇒T0 in Set has T0 as objects, T1

as 1-arrows, and exactly one 2-arrow from any 1-arrow to any other with
the same source and target. This also fixes the composition of 2-arrows. To
define composition of 1-arrows, choose, completely arbitrarily, a composite
for each composable pair, respecting source and target—this is made pos-
sible by (3.2). The association isomorphism, being a 2-arrow between the
1-arrows (ab)c and a(bc), is uniquely defined. The coherence condition on
the next level, which requires that the two possible re-association sequences
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from (((ab)c)d to a(b(cd))), when expressed as 2-arrows, coincide, is satis-
fied tautologously. In this bicategory, obviously every 1-arrow is an equiv-
alence and every 2-arrow an isomorphism; so it is a bigroupoid.

The correspondence between bigroupoids and exact 2-types breaks down
when one passes to sheaves of them, since the requisite choices can be
made locally at best. A bigroupoid does carry more information than an
exact 2-type; for example, functional choices of fillers for certain horns.
Equivalently, the category of bigroupoids (as a many-sorted universal alge-
bra) will not be naturally equivalent to the category of exact 2-types (as
full subcategory of SSet). In this paper, we will employ direct simplicial
descriptions throughout.

3.10. n-COVERS

These turn out to be, quite simply, truncated simplicial objects with simplex
filling conditions up to the top dimension.

PROPOSITION 3.10. If T is an n-cover, then it is (n−1)-coskeletal.

Proof. For logical reasons, it is enough to prove this for simplicial sets.
By Proposition 3.1, what we have to prove is that the canonical maps
Tk

bk−→ ∂�k(T ) are bijections for k >n−1.
Recall that in SSet , a Kan complex T that has the weak homotopy

type of the point will satisfy the right lifting condition with respect to the
boundary inclusions, meaning the bk will be surjective for all k. (For logical
reasons, this second, ‘local’ version remains valid in any topos.) By virtue
of T being exact Kan above dimension n, bk will be injective for k >n (if
any k-horn has precisely one filler, then certainly any k-boundary can have
at most one filler). Thence bk is bijective for k >n.

So we are left to prove that bn is injective. It is easiest to argue topolog-
ically. Let �n

s−→ T , �n
t−→ T be two n-simplices of T whose boundaries

coincide. Since T was assumed to have the weak homotopy type of a point,
the geometric realizations of s and t are homotopic modulo the boundary.
Since T was assumed to be a Kan complex, s and t are simplicially homo-
topic modulo the boundary. But two n-simplices of an exact n-type that are
simplicially homotopic modulo the boundary, must coincide.

PROPOSITION 3.11. Write �[0, n− 1] for the full subcategory of � (i.e.
the category of finite ordinals and monotone maps) whose objects are 0, 1,
. . . , n−1. There is an adjoint equivalence

covn
E

coskn−1

�
trn−1
{T ∈E�[0,n−1]op | (�) holds for k=0,1,2, . . . , n−1}
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between n-covers of E and the full subcategory of n− 1-truncated simplicial
objects in E satisfying

(�) Tk

bk� ∂�k(T ) is an epimorphism

where ∂�k(T ) and bk are defined as in Proposition 3.1(3).

Proof. Use, again, that a simplicial object T in a topos has the weak
homotopy type of the point and is locally Kan at the same time if and
only if the maps Tk

bk� ∂�k(T ) are epimorphisms for all k. The part of the
claim that trn−1 is a functor between these two categories follows from the
‘only if ’ direction of this. That coskn−1 is a functor with the desired prop-
erties follows from the ‘if ’ direction, together with Proposition 3.4(ii). The
adjoint equivalence follows from Proposition 3.10.

As in any simplicial category with finite limits and colimits, there is a
notion of simplicial homotopy in E�op

: the role of the interval is played by
the constant simplicial sheaf �[1] with its two global sections correspond-
ing to �[0]

i0, i1−→�[1]. Post- and pre-composition of maps respect simpli-
cial homotopies. Write [X,Y ] for the hom-set hom

E�op (X,Y ) modulo the
equivalence relation generated by simplicial homotopy. Let covn

E be the full
subcategory of E�op

whose objects are n-covers, and write [covn
E] for the cat-

egory with the same objects, but morphisms from T1 to T2 being [T1, T2].

PROPOSITION 3.12. [covn
E] is a cofiltered category.

Proof. The product of two n-covers is an n-cover. The possibility of
equalizing (in the simplicial homotopy category) a parallel pair of arrows
between n-covers follows, given Proposition 3.11, from the proof of the
analogous fact for Verdier hypercovers as given by Artin and Mazur [2].

A hypercover of E is, by definition, a full simplicial object T ∈E�op
such

that Tk

bk� ∂�k(T ) is an epimorphism for all k ∈N. Given parallel arrows
T1 ⇒T2 between two hypercovers, Artin and Mazur construct a hypercov-
er T , map T → T1 and simplicial homotopy T ×�[1]→ T2 by induction,
working up degree-by-degree. Their construction remains valid, unchanged,
up to degree n, producing an n-truncated simplicial equalizer of a pair of
arrows between n-truncated simplicial objects that satisfy the boundary-fill-
ing conditions up to degree n.

PROPOSITION 3.13. [covn
E] possesses (non-canonical) small cofinal subcat-

egories.
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Proof. covn
E is an accessible category in the sense of Makkai and

Paré [17], either directly from its definition in geometric logic or because,
by virtue of Proposition 3.11, it is the category of models of a sketch
(see Section 2 for details of this notion). It follows that it has a small
dense subcategory G ↪→ covn

E; meaning that every n-cover is a filtered co-
limit of a diagram from G, a fortiori every n-cover permits at least one
map from a member of G. The image of G in [covn

E] is a full cofinal small
subcategory.

PROPOSITION 3.14. Write hom(−,X) resp. [−,X] for the contravariant
hom- resp. hom- modulo simplicial homotopy functors E�op→Set . Each of

colim
covn

E

hom(−,X),

colim
covn

E

[−,X],

colim
[covn

E]
[−,X],

bijects canonically with π0 covn
E(X).

Proof. This follows from elementary manipulations on representatives of
these colimits.

Recall from Proposition 3.7 that covn
E(X) stands for the category whose

objects are T →X, T some n-cover of E, and whose morphisms are com-
mutative triangles. Write C1(X) for the category whose objects are simpli-
cial homotopy classes of maps T →X, T some n-cover, a morphism from
T1→X to T2→X being an actual map T1→ T2 that makes the resulting
triangle commute up to simplicial homotopy; and write C2(X) for the cat-
egory whose objects are simplicial homotopy classes of maps T →X, T

some n-cover, and where a morphism from T1→X to T2→X is a simplicial
homotopy class of maps T1→T2 that makes the resulting triangle commute
up to simplicial homotopy. Then

π0 covn
E(X)= colim

covn
E

hom(−,X),

π0C1(X)= colim
covn

E

[−,X],

π0C2(X)= colim
[covn

E]
[−,X].

The ‘take its simplicial homotopy class’ functors covn
E(X)→C1(X)→C2(X)

induce surjections π0 covn
E(X)�π0C1(X)�π0C2(X). To prove π0 covn

E(X)�
π0C1(X) injective, it suffices to show that if two maps T

f

⇒
g

X are simpli-

cially homotopic, then T
f−→X and T

g−→X are connected by a zig-zag
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of morphisms in covn
E(X). Let T ×�[1]

h−→X be the homotopy. Note that
T ×�[1] is a simplicial object over X that is weakly equivalent to 1. As in
the proof of Proposition 3.7, h can be factored T ×�[1]

h1−→G(T )
h2−→X,

where G(T ) is an n-cover. The requisite zig-zag is the composite T
i0−→

T ×�[1]
h1−→G(T ) together with T

i1−→T ×�[1]
h1−→G(T ). Two applications

of this argument show that π0C1(X)�π0C2(X) is injective.

Propositions 3.7, 3.12, 3.13 and 3.14 together yield our main result.
Recall that an n-cover of the Grothendieck topos E is a simplicial object
U ∈ E�op

that has the weak homotopy type of 1, is locally Kan in all
degrees and satisfies the unique Kan extension condition above degree n,
and we write [−,−] for simplicial homotopy classes and ho

E�op (−,−) for
global homotopy classes.

THEOREM 3.15. For any X∈E�op
, there is a natural map

colim
[covn

E]
[−,X]→ho

E�op (1,X),

where [covn
E] is the filtered, essentially small diagram of simplicial homotopy

classes of n-covers of E. This map is bijective when X is a locally Kan object
that satisfies the unique Kan extension condition above degree n.

For the sake of completeness, let us include the classical case of ‘n=∞’
here:

PROPOSITION 3.16. A Verdier cover or hypercover of a topos E is a sim-
plicial object U ∈ E�op

that has the weak homotopy type of 1 and is locally
Kan in all degrees. For any X∈E�op

, there is a natural map

colim
[covE]

[−,X]→ho
E�op (1,X),

where [covE] is the filtered, essentially small diagram of simplicial homotopy
classes of hypercovers of E. This map is bijective when X is locally Kan.

4. Čech n-Covers

This section describes how Theorem 3.15 specializes, for n= 1, to the tra-
ditional formalism of ‘open covers and refinements’ and outlines the anal-
ogous version for n>1.

EXAMPLE 4.1. Let X be a topological space. For convenience, we make
no notational distinction between spaces étale over X and the sheaves on
X they represent, and we talk of ‘n-covers of Sh(X)’ as ‘n-covers of X’.
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(1) Let {Ui | i ∈ I } be an open cover of X in the usual sense. Each Ui rep-
resents, as an étale space over X, a subobject of the terminal object 1
of Sh(X). Set U to be the coproduct of the Ui considered as objects of
Sh(X) (equivalently, take their disjoint union as spaces over X). U�1
then, so cosk0(U) is a 1-cover of X.

(2) Let C
p−→X be a covering space of X in the usual sense. Then p is

certainly étale and surjective over X, so cosk0(C) is a 1-cover of X.
(3) One can have a mixture of (1) and (2): a different covering space over

each element of an open cover of X. These (and in fact all 1-covers of
a space) are dominated by trivializations, thus Čech covers as in (1).

Note that there is a proper class of non-isomorphic 1-covers of X, while
there are certainly no more open covers of X than collections of open sub-
sets of X. Nonetheless, open covers are cofinal among 1-covers. This is a
general phenomenon, as we will see.

Let (C, J ) be a site; assume C has a terminal object, which we will
denote by 1 as well.1 Denote by ε the ‘canonical functor’ C y−→Pre(C)

L−→
Sh(C, J ), the Yoneda embedding followed by sheafification. Let {Ui

ui−→
1 | i ∈ I1} be an arbitrary set of arrows in C with common target 1. Set
UI1=

⊔
i∈I1

ε(Ui). For another such collection {Uk

uk−→1 |k∈I2}, a refinement
from the latter to the former is a mapping � : I2→ I1 together with a fac-
torization Uk→U�(k)→1 for each k∈ I2. � then induces a map UI2→UI1 .
Refinements can be composed in the obvious way.

Note that UI =
⊔

i∈I ε(Ui)�1 in E iff the Ui

ui−→1 form a covering fam-
ily; in that case, cosk0(UI ) is a 1-cover of E. (Here and hereafter, we write
covering family to mean a collection of arrows with common codomain gener-
ating a covering sieve for the topology J , to ease somewhat on the multiple
uses of the term ‘cover’.) Let cech1

C,J be the category whose objects are cov-
ering families {Ui

ui−→1 | i∈I } and whose morphisms are refinements. (It is a
small category if (C, J ) is a small site.) In line with the notation of Proposi-
tion 3.12, write [cech1

C,J ] for the category with the same objects as cech1
C,J ,

but morphisms being (the simplicial maps induced by) refinements, modulo
simplicial homotopies.

Recall that a preorder is a reflexive, transitive relation; it can also be
thought of as a category whose every hom-set is either empty or a single-
ton.

PROPOSITION 4.2. [cov1
E] is a preorder.

1For the sake of exposition, this article is concerned only with derived functors of the
global section functor, meaning global homotopy classes with source the terminal object;
that is the reason for limiting the description to Čech covers of 1, though it leads to
tautologous notation occasionally.
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Proof. Quite generally in E�op
, any two maps f, g : X → cosk0(Y )

into a 0-coskeletal object are simplicially homotopic: the homotopy
�[1]×X

h−→ cosk0(Y ) comes via adjunction from its 0-truncation, which is

X0	X0
f0 	g0−−→Y .

LEMMA 4.3. Given {Ui

ui−→ 1 | i ∈ I1}, let {Uk

uk−→ 1 | k ∈ I2} be the sieve it
generates. Then cosk0(UI1) and cosk0(UI2) are simplicially homotopy equiva-
lent.

Proof. By Proposition 4.2, it suffices to exhibit a refinement from I2 to
I1, and one in the other direction. Since each element of I2 must factor
through an element of I1 (by definition), a choice of such for each uk ∈ I2

gives a refinement from I2 to I1. In the other direction one has the inclu-
sion I1⊆ I2.

Let J (1) be the collection of J -sieves covering 1, ordered by inclusion;
it is a cofiltered poset.

PROPOSITION 4.4. J (1) and [cech1
C,J ] are equivalent as categories.

Proof. By Proposition 4.2, [cech1
C,J ] is a preorder. Since each covering

sieve is a covering family, and each inclusion of sieves a refinement, one
has a functor J (1) ↪→ [cech1

C,J ]. It is faithful and full, and surjective on iso-
morphism types of objects by Lemma 4.3.

Since for any object T0 of global support, there exists a covering family
{Ui

ui−→ 1} that allows a map
⊔

ε(Ui)→ T0, and [cov1
E] is a preorder, one

has

COROLLARY 4.5. The (faithful but not necessarily full) functor [cech1
C,J ]→

[cov1
E] induced by sending {Ui

ui−→ 1} to cosk0
(⊔

ε(Ui)
)

is cofinal. For any
X∈E�op

, one has a natural bijection

colim
[cech1

C,J ]
[−,X]→ colim

[cov1
E]

[−,X].

For X=K(A,n), one can define Čech cohomology of the site (C, J ) with
coefficients in A as Ȟ n

C,J (A)= colim
[cech1

C,J ]
[−,K(A,n)]. If iterated products of

the objects Ui that make up Čech covers exist in C, then the objects
of higher-dimensional simplices of the cosk0

(⊔
ε(Ui)

)
are representable,

hence Ȟ n(A) can be computed by the usual recipe, i.e. as a filtered
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colimit of cohomology of chain complexes. The map of Corollary 4.5
followed by colim

[cov1
E]

[−,X]→ ho
E�op (1,X) specializes to the natural transfor-

mation Ȟ n(A)→Hn(A) from Čech to derived functor cohomology, and as
a corollary of the main theorem, it is an isomorphism for n=0,1.

Remark 4.6. Čech covers can only be defined for a site, and are (cova-
riantly) functorial for site morphisms; here a site morphism from (D,K)

to (C, J ) (let us assume these have finite limits) is a functor D F−→ C that
preserves finite limits and takes K-covers to J -covers. It induces a topos
map Sh(C, J )→Sh(D,K). Recall that any category of sheaves can be pre-
sented on a proper class of different sites, and it may happen that Sh(C, J )

and Sh(D,K) are equivalent as categories without there being any site map
between (C, J ) and (D,K). (There will exist a zig-zag of site maps, though.)
At any rate, in the absence of Corollary 4.5 it would be far from obvious
that the abelian group Ȟ n

C,J (A) depends purely on the category of sheaves
Sh(C, J ) and the object A in it.

Remark 4.7. Note that Proposition 3.7 was a purely formal consequence
of Proposition 3.5; one of the morals of this article is that a choice of
(functorial) Postnikov sections, in any sheafifiable homotopy model cate-
gory, will amount to a theory of truncated hypercovers. The choice of Post-
nikov functor matters, however. Suppose, for example, that in the proof of
Proposition 3.7, one used coskn+1 ◦ trn+1 in place of Duskin’s Pn to truncate
both the hypercover T and the target X. One will then reach the conclu-
sion that global homotopy classes into the n+1-coskeletal object X (which
is therefore an n-type) can be computed along n+1-coskeletal hypercovers.2

This (while certainly correct) is not the most economical statement. Special-
izing to n=1, for example, one thus obtains that derived functor H 1 can be
computed along 2-coskeletal hypercovers, while Grothendieck’s theorem is
that derived functor H 1 can already be computed along Čech covers, which
are 0-coskeletal.

This ‘discrepancy of coskeletal dimension’ is due to the curious interac-
tion of exact n-types with coskeletal objects (see Proposition 3.4 and Prop-
osition 3.10) and is absent in the formulation in terms of exact n-types, as
in Theorem 3.15. This is really the only point where a bit of geometry (the
geometry of simplices) sneaks into a story that is mainly formal homotopy
theory.

Let us move to Čech 2-covers.

2 This is indeed Proposition 8.9 of Dugger–Hollander–Isaksen [6].
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EXAMPLE 4.8. Continuing with the setting of Example 4.1,

(0) set Vij =Ui ∩Uj for each ordered pair i, j , and let V be the coproduct
of the Vij . The inclusions Vij ↪→Ui resp. Vij ↪→Uj together with Ui =
Vii define a sheaf of (directed, unit arrow-equipped) graphs V s

⇒
t

U, the

1-coskeleton of which is a 2-cover of X.
But the graph V s

⇒
t

U is nothing but the 1-truncation of the simpli-

cial object cosk0(U) constructed in Example 4.1(1), and cosk1(V
s

⇒
t

U) is

canonically isomorphic to cosk0(U). All this is just an instance of the
tautology that an n-cover (considered as a simplicial object) is also an
m-cover for any m>n.

(1) Suppose, however, that the family V is only a refinement of the col-
lection {Ui ∩Uj | i, j ∈ I } in the following sense: for each ordered pair
i, j ∈ I one has an index set Kij , and for each k ∈Kij an open subset
Vk of Ui ∩Uj such that

⋃
k∈Kij

Vk=Ui ∩Uj , and each original open Ui

is included in the collection Kii (this is to ensure that the unit condi-
tion can be satisfied). Let V be the coproduct of the Vk, k∈Kij , i, j ∈I .
The inclusions Vk ↪→ Ui ∩ Uj ↪→ Ui (resp. Uj ) give a sheaf of graphs

V s

⇒
t

U such that V �U×U, and this is our first non-trivial example of a

2-cover. In short, in a 2-cover a second refinement occurs on double inter-
sections.

(2) Let C
p−→X be a covering space, with D

d−→C ×X C another cover-
ing. C×X C contains a ‘marked’ copy of C, the diagonal C

�−→C×X C.
Assume d has a section above �, so the unit condition is satisfied. The
composite D

d−→C×X C ⇒C, the double arrows being the projections,
is then a 2-cover of X. (Even if not a covering space, D is certainly
étale and surjective above C, and that is all that matters sheaf-theoret-
ically.)

(3) Analogously to Example 4.1, one can have a mixture of (1) and (2),
i.e. a different 2-tier covering space system above each open, but any
2-cover of a space is dominated by one of type (1).

For the case of any site (C, J ) with products, one has

DEFINITION 4.9. A Čech 2-cover (of the terminal object 1 of C)
is a covering family {Ui

ui−→ 1 | i ∈ I } together with covering families
{Vk

vk−→ Ui × Uj | k ∈ Kij ; i, j ∈ I } such that Kii , for each i ∈ I ,

contains Ui × Ui
id−→ Ui × Ui . The 2-cover associated to this data is
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cosk1(VK

s

⇒
t

UI ), where VK =
⊔

k∈Kij

i,j∈I

Vk and UI =
⊔

i∈I Ui ; s has components

Vk

vk−→Ui ×Uj

pr1−→Ui→UI , with the other projection for t , and a splitting
UI→VK as assumed. A refinement of Čech 2-covers VK2 ⇒UI2 �VK1 ⇒UI1

is given by a function � : I2→ I1 together with factorizations Ui→U�(i)→1
for i ∈ I2, and a family of functions �ij :Kij→K�(i)�(j) together with maps
Vk→V�ij (k) such that

Vk
��

vk

��

V�ij (k)

v�ij (k)

��

Ui×Uj
�� U�(i)×U�(j)

commutes. This will induce a morphism of graphs from VK2

s

⇒
t

UI2 to VK1

s

⇒
t

UI1 ,

hence a simplicial map between their 1-coskeleta.

Remark 4.10. If C does not have products, one can modify the definition
appropriately: instead of asking for a covering family {Vk

vk−→U1×U2 |k∈K},
ask for a set of pairs of maps {Vk

vk,1−→ U1, Vk

vk,2−→ U2 | k ∈ K} such that⊔
k∈K ε(Vk)

ε(vk,1)×ε(vk,2)−−−−−−−→ ε(U1)× ε(U2) is epi in Sh(C, J ), etc.

Write cech2
C,J for the category whose objects are Čech 2-covers, mor-

phisms being refinements, and [cech2
C,J ] for the category with the same

objects, but morphisms the simplicial maps induced by refinement mod-
ulo (the equivalence relation generated by) simplicial homotopy. The cheap
analogue of Proposition 4.2 fails for n-coskeletal objects with n > 0, and
there seems to be no way to construe a canonical poset (or even preorder)
of Čech 2-covers on an arbitrary site. The analogue of Corollary 4.5 does
survive

PROPOSITION 4.11. [cech2
C,J ] is a cofiltered category. The functor

[cech2
C,J ]→ [cov2

E] induced by cosk1 is cofinal.

To prove the first statement, imitate the proof that [cov2
E] is cofiltered

using (as Artin and Mazur [2] in fact do) representable sheaves, products of
objects of the site and refinements along covering families instead of their
intrinsic analogues in the topos E. To prove the second statement, assume
given a 2-cover T1 ⇒T0 of E. Find a covering family {Ui

ui−→1}, i ∈ I , that
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allows a map
⊔

ε(Ui)
u−→T0, and for each pair of indices i, j ∈ I consider

the pullback in E

Vij
��

����

T1

s×t ,
����

ε(Ui×Uj) �� T0×T0

where the bottom horizontal arrow is

ε(Ui×Uj) ↪→
⊔

α,β∈I
ε(Uα×Uβ)={

⊔
α∈I

ε(Uα)}×{
⊔
β∈I

ε(Uβ)} u×u−→T0×T0

and find a covering family {Vk

vk−→Ui×Uj |k∈Kij } that refines Vij , i.e. that
allows a map

⊔
k∈Kij

ε(Vk)→Vij . Since [cech2
C,J ]→ [cov2

E] is not necessarily
full, and [cov2

E] is no longer a preorder, one also needs to verify that given
a 2-cover T1 ⇒T0 and Čech 2-covers {Ui,Vk}, {U ′i , V ′k} that map to it, there
exists some Čech 2-cover {U ′′i , V ′′k } refining both {Ui,Vk} and {U ′i , V ′k} that
renders

V ′′K ⇒U′′I ��

��

VK ⇒UI

��

V ′K ⇒U′I �� T1 ⇒T0

after applying cosk1, commutative in [cov2
E]. But this is easy, and the above

square can in fact be made commutative on the nose: use, first on T0 then
on T1, that the intersection of two covering sieves is a common refinement
of each.

The pattern is now quite clear. A Čech 3-cover is the data for a
Čech 2-cover V ⇒ U together with a refinement of (i.e. epimorphism
onto) the object of 2-simplices of cosk1(V ⇒ U). In more detail, let U

be given by the covering family {Ui

ui−→ 1 | i ∈ I } and V by the cover-
ing families {Vα

vα−→Ui ×Uj |α ∈Kij ; i, j ∈ I }. 2-simplices of cosk1(V ⇒U)

are triangles in the graph V ⇒ U, i.e. three edges compatible at the
three corners. So consider the set of triples of indices of the form
{〈α,β, γ 〉 |α∈Kij , β ∈Kjk, γ ∈Kik; i, j, k∈ I }. Let Tαβγ be defined as the
subobject of Vα × Vβ × Vγ that is the intersection of three equalizers; the
first of these is the equalizer of Vα×Vβ ×Vγ

pr1−→Vα→Ui ×Uj

pr1−→Ui and
Vα×Vβ ×Vγ

pr3−→Vγ→Ui ×Uk

pr1−→Ui , and similarly for the other two cor-
ners. Now give a covering family {Wλ

wλ−→ Tαβγ |λ ∈ Lαβγ } for each such
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triple 〈α,β, γ 〉. (These data are subject to the degeneracy conditions in
the case of repeated indices.) One associates a 2-truncated simplicial sheaf
to these data, whose 2-coskeleton will be a 3-cover of E. The notion of
refinement of Čech 3-covers and the properties of the category of Čech
3-covers and refinements modulo simplicial homotopy can be formulated as
expected.

The case of a topological space (or more generally localic topos) is quite
visual, since one can restrict attention to subobjects of the terminal object,
which form a poset, hence the equalizer conditions become vacuous: a
Čech 3-cover is an open cover Ui , a refinement {Vα |α∈Kij } of every (non-
empty) double intersection Ui ∩Uj , and a refinement of every (non-empty)
triple intersection Vα∩Vβ ∩Vγ with Vα⊆Ui ∩Uj , Vβ⊆Uj ∩Uk, Vγ ⊆Ui ∩Uk,
some i, j, k;

k

i

γ
��							 α �� j,

β











and so on, indexed by boundaries of the standard n-simplex (‘cocycles’).
‘Abstract’ n-covers, as simplicial objects, are more convenient for most

proofs, while Čech n-covers are better adapted to representing actual data,
as in Section 5—though mathematically, of course, the two formalisms are
interchangeable.

5. Examples and Counterexamples

Let us introduce the notation Ȟ ∗(n) for level n Čech cohomology; that is, by
definition,

Ȟ i
(n)(E;A)= colim

[covn
E]

[−,K(A, i)]

for a topos E (in particular, for sheaves on a topological space). Under this
convention, Ȟ ∗(1) is ordinary Čech cohomology and Ȟ ∗(∞) means (formally)
Verdier cohomology. For any i, there is a direct system

Ȟ i
(1)→ Ȟ i

(2)→ Ȟ i
(3)→·· ·→ Ȟ i

(n)→·· ·
and the main theorem of this paper says that this system stabilizes for
n � i, against Ȟ i

(∞) =Hi . Let us see by an example that this cannot be
improved. To begin with, let us construct a family of topological spaces
whose Čech and derived functor cohomology differ.3

3None of the standard texts on algebraic topology or sheaf theory seem to contain
such examples, no doubt leaving some students wondering whether the energy involved
in proving that they coincide for paracompact Hausdorff spaces is well-spent!
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Start with an arbitrary space X. Let X+ be the topological space whose
underlying set of points is X together with an extra point, to be denoted
‘+’, and whose non-trivial opens are simply the original open sets of X.
X+ is contractible via the homotopy X+× [0,1]

h−→X+ defined as

h(x, t)=
{

x for t <1,

+ for t=1.

If X is compact (as we will assume from now on), then by the proper ho-
motopy invariance of sheaf cohomology, Hi(X+;A)= 0 for i > 0, for all
constant coefficients A.

Let SX be the space whose underlying set of points is X together with
two new points, to be denoted ‘+’ and ‘−’, and whose non-trivial opens
are the following: all the original open sets of X; X+ def= X∪{+}; and X− def=
X∪{−}. From the Mayer–Vietoris sequence of the pair of opens {X+,X−},
one gets

Hi+1(SX;A)=Hi(X;A)

canonically, for all i.
Since the points +, − are contained in unique minimal opens, whose

union is all of SX, there is an initial(!) open cover of SX under refinement,
namely {X+,X−}. The Čech cohomology of SX is therefore isomorphic to
the cohomology of this single cover: two opens with a non-empty intersec-
tion. The nerve of that is a one-simplex and one obtains

Ȟ i
(1)(SX;A)=0

for all i >0. If X has non-vanishing H 1, SX is the required counterexample
with i=2, since H 2

(2)(SX;A)=H 2(SX;A)=H 1(X;A).

Remark. This example is far from ad hoc. Let S be the ‘Sierpiński
space’, the topological space with two points, one of which is open and
the other closed (the closed point acting as basepoint). One has a contin-
uous map [0,1]→S that takes [0,1) to the open point and 1 to the closed
one. It has been pointed out by Joyal and Moerdijk [16] that S plays the
canonical role of ‘interval’ for a homotopy theory of toposes (canonical to
the same extent that ‘natural transformation’ is the canonical notion of ho-
motopy between functors). Many homotopy-theoretic constructions have a
‘toposophic’ analogue with the Sierpiński interval replacing [0,1]; X+ is the
‘Sierpiński cone’ on X, and SX is the ‘Sierpiński suspension’ of X. (In fact,
X+ is ‘Sierpiński contractible’, which implies that it has vanishing sheaf
cohomology with constant coefficients for all, not just compact, X.)
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There is a pretty description of the level 2 cochains representing
H 2(SX;A). One has a map from 1-covers of X to 2-covers of SX: it sends
the open cover V={Vλ} of X to the open cover {X+,X−} of SX, with {Vλ}
as refinement of the intersection X+ ∩X− =X. (Note that 2-covers of this
type are cofinal among all 2-covers of SX.) This map extends to a homo-
morphism

Ȟ 1
(1)(X;A)

ι−→ Ȟ 2
(2)(SX;A).

Indeed, a ‘level 1 Čech 1-cochain’ on X is the same as a map assigning
an element of A to each non-empty double intersection in V . A ‘level 2
Čech 2-cochain’ is the same as the assignment of an element of A to each
2-simplex of some 2-cover cosk1(V ⇒ U). As we saw in Example 4.8(1),
such a 2-simplex consists of three elements U1, U2, U3 of the open cover U

together with elements Vij of the refined cover of Ui ∩Uj (here i, j=1,2,3,
i <j ) such that V12∩V13∩V23 �=∅.

In the case of the Sierpiński suspension SX, U={X+,X−}, and (up to
symmetry, i.e. interchange of + and − and permutation of indices) all non-
degenerate 2-simplices of cosk1(V ⇒U) are of the following type:

U1=X+, U2=X+, U3=X−; V12=X+, V13 is some element of the open
cover V of X, V23 is some element of the open cover V of X; such that
V13∩V23 �=∅

which is the same data as a non-empty double intersection in V . This being
compatible with coboundaries, one can think of the map ι on the cochain
level as simply ‘keeping the decorations on double intersections’. Finally,
one has a commutative diagram

Ȟ 1
(1)(X;A)

��

ι �� Ȟ 2
(2)(SX;A)

��

H 1(X;A) �� H 2(SX;A)

forcing ι to be an isomorphism, since the other maps are. �	
One can concoct a great number of related pathologies for spaces with

non-closed points. Take, for example, a space containing n opens whose
n-fold intersection can be refined as U1 ∪ U2 but U1, U2 cannot them-
selves be written as n-fold intersections of opens (save tautologously, i.e. by
including themselves among the factors): the n− 1-covers of such a space
will not be cofinal among its n-covers. Phenomena of this type must be
taken into account when defining a supple enough pro-homotopy type for
objects X equipped with a Grothendieck topology such that the diago-
nal X

�−→X×X is not closed. In fact, for each n the inverse diagram of
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n-covers gives rise to a pro-homotopy type; for n=1 one obtains the clas-
sical Čech version and for n=∞, the étale homotopy type of Artin and
Mazur.

On the ‘good’ side, for any paracompact Hausdorff space, ordinary
open covers are cofinal among n-covers for each n <∞ (though not for
n=∞); this gives an alternative proof of Grothendieck’s theorem (see [12])
on the isomorphism of ordinary Čech and derived functor cohomology for
such spaces. The argument, being a purely combinatorial one on opens and
refinements, extends to other Grothendieck sites. Details will appear in an
upcoming paper.
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