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A~tract. Given an associative ring A, let asr(A) denote the absolute stable range of A, as defined in [5]. 
We prove that asr(A) ~< 1 + Kdim A if A is a right Noetherian ring, and that asr(A) ~< 1 + cl-Kdim A if 
A is an afline PI algebra. Combined with results from [5], this provides a cancellation theorem ('Witt 
cancellation') for quadratic spaces defined over such a ring A. 

Key words. Absolute stable rank, Witt cancellation, quadratic spaces, Noetherian rings, aflhae H rings. 

O. Introduction 

Let A be an associative ring (with identity) and let J /A  denote  the set o f  maximal  
right ideals o f  A. Given  a right ideal I o f  A, write 

J(I) = n {M ~ ,.1[ a : I ~ M}. 

In  this nota t ion,  we set A = J(A);  thus the Jacobson  radical  o f  A is denoted by 

J(0) .  I f  I = J(I), then I is called a Jacobson right ideal. The paper  [5] considers the 
not ion o f  the absolute stable rank of A, which is wri t ten asr(A) and  defined as follows: 

asr(A) ~< n if, given any a0 . . . .  , a ,  ~ A, then there exist to, �9 �9 �9 t ,_  1 e A 

such that  J(~o a iA)= J("~o 1 (ai + a, ti)A). 

One o f  the ma in  aims o f  [5] is to obta in  bounds  for  asr(A) for  var ious  classes of  
noncommuta t i ve  rings A; in part icular ,  they show that: (i) asr(A) ~< 1 + d whenever  
A is a module  finite a lgebra  over  a commuta t ive  Noe ther ian  ring R with 
d im(maxspec  R) = d, and (ii) asr(A) = 1 if A is a semi-local ring (see [5], Theorems  
3.1 and 2.4], respectively). The  a im o f  this note  is to show tha t  the techniques o f  [8] 

can be easily modif ied to give a simpler p r o o f  of  these results. Indeed,  our  p r o o f  also 
works  for  any  f ight  Noe ther ian  ring, and for  any  affine PI  ring (a  ring is called affine 
if it is finitely generated as an algebra over  some central  subfield and  is PI  if  it satisfies 
a po lynomia l  identity). 

T H E O R E M  A. (i) I f  A is a right Noetherian ring, then asr(A) ~< 1 + Kdim(A/J(O)). 
(ii) Let A be a PI ring, and assume either that A is finitely generated as an algebra 
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over some central, Noetherian subring, or that A is a finitely generated module over 
some central, J-Noetherian subring. Then asr(A) ~< I + dim(maxspec A). 

Here Kdim stands for Krull dimension in the sense of Rentschler and Gabriel [6], 
while dim(maxspec A) is defined as in the commutative case: dim(maxspec A) is the 
maximum integer n for which there exists a chain of Jacobson, prime ideals 
P0 c P~ c .  �9 �9 c Pn in A. We prove both parts of Theorem A simultaneously by 
working with a more general class of rings (which we call strongly right 
J-Noetherian rings) and a dimension (which we call Kmax) that is bounded above 
by Kdim A, respectively, by dim(maxspec A), in the two cases mentioned in 
Theorem A. The definitions of these terms and the elementary results concerned 
with them are given in Section 1, while the following generalisation of Theorem A 
is proved in Section 2: 

THEOREM B. I f  A is a strongly right J-Noetherian ring, then asr(A)~< 
1 + Kmax A. 

We should emphasise, however, that if the reader is satisfied with Theorem A(i), 
then the results of Section 1 are unnecessary. Indeed, if every occurrence of 'Kmax' 
in the proof of Theorem B is replaced by 'Kdim', then one obtains a valid proof for 
Theorem A(i). 

Finally, the motivation for considering absolute stable rank is that it provides a 
version of Witt cancellation for quadratic spaces defined over A. Here the notion of 
a quadratic space is the very general one of Bak given in [ 1, p. 255] and rediscovered 
by Magurn, Van der Kallen, and Vaserstein in [5, w Since it is rather involved, we 
refer the reader to [1] or [5] for its definition. However, the reader should note that 
this definition does include all of the quadratic spaces of, for example, Bak [ 1], Bass 
[2] and Wall [11]. The Witt index, ind(q) of a quadratic space (V, q) is the largest 
integer r such that (V, q) contains an isomorphic copy of the hyperbolic space 
H(A(*~). The details of this (and other undefined terms) can be found in [5, ~6,7]. 
Combining Theorem B with [5, Theorem 8.1 and Corollary 8.3] immediately gives: 

COROLLARY 1. Let A be a strongly right J-Noetherian ring (thus, for example, A 
could be a right Noetherian ring or an affine PI  ring). Let (V, q) be a quadratic space 
defined over A and assume that ind(q) t> Kmax A + 3. Then the orthogonal group O(q) 
acts transitively on the set o f  all q-unimodular vectors v ~ V with a given length [vlq. 

COROLLARY 2 (Witt Cancellation). Let A be as in Corollary 1. Suppose that 
(V, q), (V', q') and (V", q') are quadratic spaces defined over A such that 
ind(q) I> Kmax A + 2, that V" is a finitely generated, projective right A-module and 
that q" is nonsingular. Then any isomorphism 

(V, q) _1_ (V", q ' )  ~- (V', q') _k (V", q") 

forces (V, q) ~- (V', q'). 

NOTATION. Throughout this note ~ and c will stand for strict inclusions. 
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1. J-Noetherian Rings and the Dimension Kmax  

The aim of this section is to give the definitions and basic properties of strongly 
J-Noetherian rings and Kmax. Fix a ring .4, let ~ denote the set of Jacobson right 
ideals of A, and partially order L,f by inclusion. Then Kmax A is defined to be the 
deviation of ~ ,  as described, for example, in [4, w p. 174] or [6]. In other 
words, let I1 ~- I2 be Jacobson right ideals of A. Then Kmax I1/12 = - 1 if 11 = 12. 
Inductively, Kmax I~/I2 = u for some ordinal u >/0 if Kmax I1/I2 4: u but, for every 
infinite descending chain of Jacobson right ideals, /1 = K1 ~-K2 ~ - " "  ~-/2, one 
has Kmax(Ki/Ki+ 1)< u for all but finitely many i. Finally, write Kmax A = 
Kmax A/J(O) (if it exists). By analogy with the commutative case, the ring A is 
called right J-Noetherian if A has ACC (that is, the ascending chain condition) on 
Jacobson right ideals. Then [4, Proposition 6.1.8, p. 175] ensures that Kmax A is 
defined for any right J-Noetherian ring A (although it can easily be an infinite 
ordinal). Finally, a ring A is called strongly right J-Noetherian if it is a right 
J-Noetberian ring such that A / P  is a right Goldie ring for every Jacobson, prime 
ideal P of A. (One may clearly make analogous definitions for modules, but we 
have no need of that generality.) 

While Kmax is defined in terms of Jacobson right ideals, it is frequently useful to 
extend the definition to arbitrary right ideals of A. Thus, if 11 ~-/2 are right ideals 
of .4, write Kmax(Ii/12) = Kmax(J(I1)/J(I2)). Moreover, Ix/I2 is called a-critical if 
Kmax(I1/I2) = u and, given any right ideal K with I1 ~ K ~ Ix c~ J(I2), then 

(a) Kmax(K/I2) --u but (b) Kmax(Ii /K) < u. 

Finally, I1/12 is called critical if it is u-critical for some ordinal u. The elementary 
properties of Kmax are similar to those of Kdim, as described for example in [4, 
Chapter 6], and we begin by describing some of these properties. 

LEMMA 1.1. Let L 1 = J(Ll)  ~- L2 be right ideals of  a ring A. I f  P is an ideal of  A 
such that L2P ~_ L1, then J(L2) c~J(L l + P) = Lx. In particular, L EJ(P  ) ~_ L l . 

Proof Let M ~ J [ a  be such that LI ~- M. Then, either L2 ~- M or L 2 + M -- A. In 
the latter case, P = .4P = L2P + MP ~_ L~ + M ~_ M. Thus 

LI ~-- J(L1) = 0 {M ~[A :M-'-L2} c~ A {M ~ dlA :M D_L, + P }  

= J(L2) h i ( L ,  + e);  

as required. 

LEMMA 1.2. Let A be any ring for which KmaxA is defined. Then: 
(i) I f  11 ~- 12 ~ I3 are right ideals of  .4, then 

Kmax(Ii/I3) >>- sup{Kmax(Ii/I2), Krnax( I2 / I3 ) }, 

with equality i f  I2 is an ideal. In particular, equality holds i f  A is commutative. 
(ii) I f  li ~ Iz are right ideals of A with Kmax(I1/I2) =u  >>.0, then there exists a 

right ideal L with I1 ~- L ~ J(I2) c~ I1 such that L / I  2 is fl-eritieal for some 0 <<. fl <~ u. 
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(iii) I f  L is in (ii), then K/I2 is fl-critical whenever K is a right ideal such that 
L ~ K ~ ,/(/2) ( '• / l  �9 

Proof. (i) We may assume that Ii, Iz and 13 are Jacobson right ideals of A. 
Certainly any chain of Jacobson right ideals between I~ and I2 (or between 12 and 
13) can be extended to a chain between/1 and 13. This clearly implies the stated 
inequality (see [4, Proposition 6.1.17, p. 179]). 

Assume, now, that Iz is an ideal. (In this case J(Iz) is also an ideal and so we may 
again assume that each/j  is Jacobson.) Let K1 and K2 be Jacobson tight ideals of 
A with I3 c_ K2 = K1 ~ I1 and suppose that K1 n/2 = Kz c~ I2. Then K~ 12 - K~ c~ 
I2~_K2 and so, by Lemma 1.1, K2=KlnJ (K2+I2 ) .  Therefore, Kl ~:J(K2+I2) and 
so, certainly, J(K2 + Iz) ~ J(K1 + 12). It now follows easily, as in the proof of [4, 
Lemma 6.2.4, p. 180], that Kmax(Ii/13) = sup{Kmax(I~/Iz), Kmax(Iz/I3)}. 

(ii) This is very similar to the proof of [4, Lemma 6.2.10, p. 182]. First, pick a 
right ideal Kl such that I1-~ K1 ~ J(I2)c~I~ and with Kmax(K1/I2) = p as small as 
possible. Then certainly /~ = Kmax(K'/I2) whenever K1 ~- K' = J(I2) n I  1. Thus, if 
KI/Iz is not fl-critical, then there exists K~ ~ Kz =d(I2)c~I~ such that Kmax(Kl/ 
K2) =/~. Now repeat the above argument, but with Kz replaced by K2. In this way 
either one finds some L = K, _ KI such that L/I2 is fl-critical, or one obtains an 
infinite descending chain K1 ~ K2 = " "  ~ J(I2) C~Kl such that Kmax(Ki/K~+ l) =/~ 
for each i. This second possibility contradicts the fact that Kmax(Kl/I2)=fl;  as 
required. 

(iii) Let L ~_ K ~_ K" ~ J(I2) c~I x = J(I2) n L .  By part (a) of the definition of 
criticality and the fact that L/I2 is /~-critical, certainly Kmax(K' / I2 )=8 = 
Kmax(K/I2). Next, by part (b) of the definition of criticality and part (i) of this 
lemma, Kmax(K/K') </~; as required. 

The main reason for introducing strongly J-Noetherian rings and Kmax is to 
allow us to prove the main theorem simultaneously for Noetherian rings and affine 
PI tings. The next two propositions show that strongly J-Noetherian rings do 
provide the appropriate class in which to do this. 

LEMMA 1.3. Let A be a ring with ACC on dacobson ideals. I f  J(O) = O, then A has 
only -finitely many minimal prime ideals. 

Proof. If A is not prime, then there exist nonzero ideals B~ and B2 with Bl B2 = 0. 
By Lemma 1.1, J(B~)J(Bz)= 0 and so any minimal prime ideal of A is minimal 
over either J(BI) or J(B2). Now apply the obvious J-Noetherian induction. 

LEMMA 1.4. Let F be a finitely generated right module over a semiprime Goldie, PI  
ring B. Then: 

(a) Let L1 c L2 be submodules of  F sueh that L1 is essential in 1,2. Then there exists 
a central, regular element e ~ B such that (Lz)e ~- L1. 

(b) Assume, now, that F =  B and that L 1 = J ( L I ) -  171 CZ~ V 2 ~ L 2 ,  for some 
Jaeobson right ideals V1 and V2. Set K=J(cB) .  Then V1 ~ - V 2 n K  and 
J(V~ + K) # J(V2 + K). In particular, Kmax(L2 + K/L~ + K) >~ Krnax Lz/L 1 (pro- 
vided that the right hand side exists). 
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Proof. (a) Pick a submodule N of F such that N c ~ L 2 = 0  but N + L 2  (and, 
hence, N + L~) is essential in F. By [7. Theorem 1.7.34, p. 58], B has a semisimple 
Artinian quotient ring Q, obtained by inverting the central, regular elements of  B. 
Thus F |  Q = (L~ + N) | Q. Moreover, i f F  = Z~ f,.B for some f j e  F, then there 
exists a central, regular element c e B such that f jc  e L~ + N for each j. Thus 
(L2 + N)c ~ Fc ~ L1 + N and, hence, L2c ~ L2c~(L1 + N) = L~; as required. 

(b) Since V2KG 111, Lemma 1.1 implies that V1 = V2nJ(V1 + K). This certainly 
implies that J(V1 + K ) ~  J (V 2 + K), and the inequality for Kmax then follows 
easily. 

PROPOSITION 1.5. Let A be a PI ring and assume that either: 

(a) A has ACC on Jacobson ideals; or 
(b) A is finitely generated as an algebra over a central, Noetherian subring R; or 

(c) A is finitely generated as a module over a J-Noetherian subring R. 
Then A is strongly (left and right) J-Noetherian. 

Remark. It is easy to construct a PI ring A, finitely generated as an algebra over 
a central, J-Noetherian subring R, such that A is not J-Noetherian. For example, 
take 

R = k[xl, x2 . . . .  ](x,,x2,. ) 

and let A = R[y] be the (commutative) polynomial extension of R. (In order to 
prove this, use the fact that, for any prime factor ring/~ of  R, the Jacobson radical 
o f / i [y]  is equal to zero.) 

Proof. Since A is PI, every prime factor ring of A is Goldie (see [4, Corollary 
13.6.6, p. 465]). Thus it suffices to show that A is right J-Noetherian. 

(a) Assume that A has ACC on Jacobson ideals. Then we may assume that 
J(0) = 0 and, by induction, that A / I  is J-Noetherian for every non-zero Jacobson 
ideal L By Lemma 1.3, A has finitely many minimal prime ideals and hence, by [7, 
Theorem 1.7.34, p. 58], it is Goldie. Now let I1 c / 2  c - . -  be an infinite, strictly 
ascending chain of  Jacobson right ideals of A and set I = U / J .  Since A is right 
Goldie, it has finite uniform dimension. Thus, there exists an integer k such tha t / j  
is an essential submodule o f / j+  1 for a l l j  ~> k. In particular, Ik is essential in L Now 
apply Lemma 1.4(b), with L 1 = Ik c L2 = L Thus there exists a nonzero, Jacobson 
ideal K such that 

J(I~ + K ) / K  = J(I~ +, + K ) / K  = . . .  

is a strictly ascending chain of  Jacobson right ideals of  A/K.  This contradicts the 
inductive hypothesis. 

(b) By [7, Theorem 4.5.7, p. 220], A has ACC on semiprime ideals and, hence, 
has ACC on Jacobson ideals. Now apply part (a). 

(c) We may assume that the Jacobson radical, Ya(0) of A is zero. Thus, by [4, 
Corollary 10.2.10, p. 350], JR(0) = 0. Moreover, by J-Noetherian induction, we may 



126 J.T. STAFFORD 

assume that A / P  is J-Noetherian whenever P is a Jacobson ideal of  A for which 
Pc3R ~O. 

Suppose that there exists an infinite, strictly ascending chain of  Jacobson right 
ideals I1 c I2 c �9 �9 �9 of  A and set I = U/J"  In this case, it is not immediately clear 
why A should have finite uniform dimension. However, A is a homomorphic image 
of  a finitely generated, free tight R-module F and, by Lemma 1.3, F R does have 
finite uniform dimension. Thus let I~ c I~ ~ .  �9 �9 c I '  = U I~ be the inverse image, in 
F, of  the chain Ii ~ / 2  c " ' .  Then, for some k, I~ is essential in F. Therefore 
Lemma 1.4(a), with R = B, implies that there exists a central, regular element c ~ R 
such that Fc ~_ I'k. Thus Ic ~_ Ik. As in the proof  of  part (a), this provides an 
infinite, strictly ascending chain of  Jacobson right ideals of  A/J(AcA); contradicting 
the inductive hypothesis. 

PROPOSITION 1.6. (a) I f  A is a right Noetherian ring, then K m a x A  ~< 
Kdim A/J(O). 

(b) I f  A is a strongly right J-Noetherian, PI  ring, then K m ax A  < 
dim(maxspec A). 

Proof Part (a) is trivial. In order to prove part (h), recall that Kmax does exist 
for any J-Noethetian ring. Also, since neither side of  the inequality is affected by 
factoring out J(0), we may suppose that A is semiprime. By J-Noetherian induction, 
we may further assume that KmaxA/I<<,dim(maxspecA/I)  for any nonzero, 
Jacobson ideal I. Now, suppose that dim(maxspec A) = n < Kmax A. Then there 
exists an infinite descending chain of  Jacobson right ideals A ~/1 ~/2 ~"  �9 �9 such 
that Kmax(Ii/Ii+ 1) = n for each i. Since J(0) = 0, [4, Corollary 13.6.9, p. 466] and 
Lemma 1.3 imply that A is Goldie. In particular, An has finite uniform dimension 
and so, for some r >t 1, L+I  is an essential submodule of  L. Now apply Lemma 
1.4(b), with /~+ 1 = L1 ~/~  = L2. This provides a Jacobson ideal K = J(cA) such 
that Kmax A / K  >1 Kmax(L /L  + 1) = n. 

Since J ( 0 ) =  0, it is readily checked that every minimal prime ideal of  A is 
Jacobson. But, by Lemma 1.4, K is contained in no minimal prime ideal of  A. 
Therefore, dim(maxspec(A/K)) < dim(maxspec A) = n. However, by induction and 
the last paragraph, dim(maxspec(A/K)) = Kmax(A/K)  i> n; a contradiction. 

Remarks. (i) Even for commutative tings, one need not have equality in Proposi- 
tion 1.6(ii). The obvious example is given by the ring R = C[x]~x)[y], for which 

Kmax R = 1 < 2 = dim(maxspec R). 

To see this, observe that, while (0), (x) and (x, y) are all Jacobson prime ideals of  
R, one has 0 = ~ {M} for any infinite set of  maximal ideals { M : x  r M}.  This 
example suggests that, in fact, 

Kmax R = inf{n : Y = maxspec R is a disjoint union of  subspaces: 

Y = U1 u .  �9 �9 u Ur with dim Ut < n for each i}. 

Finally, observe that, although R is a domain, the module RR is not critical. 
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(ii) Propositions 1.5 and 1.6 can easily be generalised to work for rings satisfying 
Warfield's condition (*). Thus, assume that A is a ring which has ACC on Jacobson 
ideals, and such that A l P  is a right fully bounded, right Goldie ring for each 
Jacobson, prime ideal P. Then A is strongly right J-Noetherian and 
Kmax A ~< dim(maxspec A). The details are left to the interested reader. 

2. The Main Theorem 

THEOREM 2.1. Let A be a strongly right J-Noetherian ring. Then asr(A)~< 
1 + Kmax A. 

Proof. The proof is similar to that used in [8] to prove that the stable range of 
a right Noetherian ring is bounded above by its Krull dimension. Let n = Kmax A 
and - 1 ~< s ~< n an integer. Given Jacobson right ideals I _ L, consider the follow- 
ing inductive statement: 

�9 (s, L L) Suppose that b0 . . . . .  bs, c �9 L are such that Kmax(cA + I / I)  <<, s 

a n d t h a t L = J ( I + ~ b i A + c A ) ,  o Then there exist elements gi �9 A 

such t h a t L = J  I +  (b~ + cg~)A . 

The statement of the theorem is just the case .(n, J(0), L), where L = J(l~g + 1 ajA) 
and {ao . . . . .  am+ 1} = {bo . . . .  , bn, c}. We will prove .(s, I, L) by a double induc- 
tion: First, given - 1 ~< r < s, assume that *(r, I', L') holds for any Jacobson right 
ideals I" c_ L" (note that, in the case r = - 1, there is nothing to prove). Secondly, 
if I' and L" are Jacobson right ideals such that I c I ' ~ _ L ' ~ _ L ,  then by 
J-Noetherian induction assume that ,(s, I', L') holds (in this case, *(s, L, L) is 
trivially true). 

Thus, assume that bo . . . . .  c are as in .(s, I, L). By Lemma 1.2(ii), we may pick 
A �9 A such that cA r I but cAA + I / I  is r-critical for some r ~< s and the right 
annihilator, P = r-ann(c2A + I /I)  is as large as possible. Note that Lemma 1.2(iii) 
implies that P is a prime ideal. Set I ' =  J(I  + cAA). Since I ' ~  I, the second 
inductive statement provides elements gi �9 A such that ( s  ) 

L = J I" + ~. (b, + cg,)A = J I +  (b, + cg,)A + cAA . 
o 

In other words, replacing bi by b~ + cg~ for each i and c by c2, we may assume that 
cA + I / I  is r-critical, with a prime annihilator, P. 

For each i, write K; = {f  �9 A : b.,f �9 I}. Suppose, for some i, that P ~ K~. Then 
I" = J(I  + b~P) ~ L Thus, by induction, there exist gj �9 A such that 
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However, since cP ~ I, one has bgP + I = (bi + cgg)P + L Combined with Equation 
(1), this implies that L = J ( l +  ~ (b: + cgj)A); as required. 

Alternatively, suppose that there exists i such that K; ~ P. Then there exists 
k e Ki \ P  and t t e  A such that c~k q~ L But now 

(bg + c~)A + I ~_ (bg + c#)kA + I = cttkA + I ~ L (2) 

Let I' =J(c#kA +I ) .  Since cA + I / I  is r-critical, Equation (2) implies that 
Kmax(cA + I'/I ') < r ~ s. Thus, set 

j # g  

Then, by induction .(s - 1, I ' ,  L')  may be applied to the elements 

{bj :O <<.j <~ s , j  ~ i } u { c }  

to obtain elements fj e A such that L '  = 3(1" + Ej,, i (bj + cfj)A). Thus by Equation 
(2), again, 

L = J ( I  + (bi + c,)A + J~g~-' (b: + cfj)A ); 

as required. 
It remains to consider one final case; when Ki = P for each 0 ~< i ~< s. Set 

N = I +  boA + cA, Then P = r-ann(N/I) and so, by Lemma 1,1, P = J(P). Thus, 
by hypothesis, A / P  is fight Goldie. Applying Lemma 1,1, again, implies that 
I = J(N) n J(P + I), and hence that 

(boa + J(P + I)) /J(P + I) ~- (boa + I ) / I  ~ AI~ = AlP. (3) 

Since A l P  is fight Goldie, this forces J(P + I ) =  P; that is, I~_P.  Moreover, 
Equation (3) now implies that (boa + P)/P is an essential submodule of AlP,  and 
hence of (N + P)/P. Therefore, as N c~ P = L (boA + I ) / I  is an essential submodule 
of  N/I. 

Thus we may choose x ~ (boa + I) n (cA + I) with x r L Now repeat the argu- 
ment given after Equation (2), but applied to the fight ideals I ' =  J(I  + xA) and 
L'  = J(I" + Y:l bgA + cA). Then, as before, 

Kmax(eA + F/I ')  < Kmax(cA + HI)  ~< s. 

Therefore, *(s - 1, I ' ,  L')  may be applied to find elements g , , . . . ,  gs ~ A such that 
L" = J(I" + Z,] (bg + egg)A). This in turn implies that 

L = J(L'  + boA) = J I + boa + Z (bg + cgi)A , 
1 

and therefore completes the proof of the theorem. 
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Theorem B of  the Introduction is just Theorem 2.1. Theorem A is an immediate 
consequence of this, combined with Propositions 1.5 and 1.6. Another special case 
of Theorem 2.1 is the Stable Range Theorem, Recall that the stable range, sr(A), 
of  a ring A is defined by sr(A)~<n if, given any a0 . . . . .  a n e A  such that 
A = Eg ai A,  then A = E g-  1 (ai + an2/)A for some 2i e A. Then an immediate con- 

sequence of  Theorem 2.1 is: 

COROLLARY 2.2. I f  A is a strongly right J-Noetherian ring, then sr(A)~< 
1 + Kmax A. 

For  tight Noetherian tings (with Kmax replaced by Kdim), this corollary is 
contained in [8], while for affine PI rings (with Kmax replaced by dim(maxspec)) 
it is a consequence of [10, Theorem 3.10]. For  the numerous applications of  the 
stable range theorem to K-theory and classical groups defined over tings, the 
reader is referred to [3]. 

COROLLARY 2.3. Let  I be a right ideal o f  a strongly right J-Noetherian ring A,  

and set n = Kmax A. Then, there exist ao . . . .  , an ~ I such that J ( I )  = J(Y-g ajA). 

Proof. This is an easy exercise. (For  the Noetherian tings this result has also 
been stated, but not proved, as [9, Proposition 3.9].) 

Finally, I should remark that I know almost nothing about the properties of 
J-Noethetian tings and Kmax. (As sample questions: Are right J-Noetherian tings 
always strongly tight J-Noethetian? Does equality always hold in Lemma 1.2(i)?) 
However, it is widely recognised that Noetherian tings and affine PI algebras have 
many properties in common, and so it is possible that strongly J-Noetherian tings 
will provide a convenient setting in which to prove results about both of  these 
classes of  rings. 
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