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1. INTRODUCTION 

By unification, we understand a family of algorithms employed by compu- 
tational versions of certain grammar formalisms to combine information 
in feature structures. The use of these formalisms has become widespread, 
and several extensions to the basic notion of feature structure have been 
proposed. Although algorithms for unification of these extended feature 
structures have been written, they are complicated, and a precise model 
of feature structures is desirable to give an adequate specification of what 
the algorithms do. We have developed a model in which descriptions of 
feature structures can be regarded as logical formulas, and interpreted by 
sets of directed graphs which satisfy them. We identify a feature structure 
with such a directed graph, but our mathematical work is facilitated by 
considering the graphs to be transition graphs for a special type of deter- 
ministic finite automaton. 

This semantics for feature structures extends the ideas of Pereira and 
Shieber [11], by providing a way to model feature values which are speci- 
fied by disjunctions and non-local path values embedded within disjunc- 
tions. Our interpretation differs from that of Pereira and Shieber by using 
a logical model in place of a denotational semantics. The model yields a 
calculus of equivalences between formulas, which can be used to simplify 
them. A similar use of logic to describe feature structures was first pro- 
posed in Generalized Phrase Structure Grammar  (GPSG)[3],  in order to 
describe feature co-occurrence restrictions. Our formulation, which was 
developed independently, is for the purpose of understanding the proper- 
ties of unification. Recently Gazdar et al. [2] have extended their logic in 
order to give uniform descriptions of linguistic categories. The two logics 
have much in common when presented formally, and it should be possible 
to combine them in a uniform way. This, however, will be left for future 
work. 

Unification is attractive, because of its generality, but it can be compu- 
tationally inefficient. Kay's treatment [10] of unification in Functional Un- 
ification Grammar is a representative example. He analyzes descriptions 
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containing disjunctions by expanding them to a kind of disjunctive normal 
form, a process which introduces an exponential explosion in both space 
and time. Our model allows a careful examination of the computational 
complexity of unification. What we show is that the generalized notion of 
unification can be phrased as the problem of telling whether or not one 
of our formulas is satisfiable. We show that the satisfiability problem for 
formulas with disjunctive values is NP-complete. This problem is essen- 
tially the one which must be solved for each parse, so one needs to solve 
it as efficiently as possible. It is not surprising that Kay's algorithm is 
exponential, because many people believe that NP-complete problems 
cannot be solved in polynomial time in the worst case. However,  NP- 
complete problems can often be solved efficiently on the average, and we 
describe how disjunctive values can be specified in a way in which expan- 
sion to disjunctive normal form may be delayed. Although this expansion 
may.be desirable to interpret final results, a full expansion is not needed 
during unification, resulting in a substantial improvement in computational 
efficiency. In fact, Kasper's thesis contains an algorithm which, in many 
cases arising in practice, solves the consistency problem in cubic time [8]. 
Thus the formalism shows how to solve a seemingly impossibly complex 
problem in a reasonably efficient manner. 

It is worth emphasizing that we might not have discovered any of these 
algorithms or equivalences without giving a precise formal definition both 
to feature structures and to their descriptions. We hope that the calculus 
we have developed will continue to be useful. In a sense, the calculus is 
a kind of Boolean algebra, not about Boolean-valued functions and switch- 
ing circuits, but about finite partial functions over a finite set of atomic 
values. The intent of the calculus is still the same, however: to allow 
flexibility in the design and specification of algorithms dealing with feature 
structures, while at the same time ensuring that these algorithms are 
correctly specified. 

The paper is organzied into four parts. In Section 2 we discuss the use 
of feature structures in various linguistic and computational theories. We 
show how our formalization using automata is like the formalism in 
GPSG [3]. We also explain the distinction between the feature structures 
themselves and descriptions of feature structures. In FUG,  for example, 
we view feature matrices containing disjunctive values not as feature struc- 
tures, but as assertions about such structures. It is this distinction which 
allows us to make sense of disjunctive values in general. Section 3 contains 
the logical formalism itself, and a presentation of the equivalences satisfied 
by our logical formulas. In Section 4 we show how our formalism solves 
the problem of non-local values, one of the thorny computational issues 
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in FUG. Finally, Section 5 contains some of the mathematical properties 
of our system. In particular, we show that the laws of Section 3 are 
complete: any true equivalence of our logic can be provided using just 
these laws. (Thus we have another analogy with Boolean algebra.) 

2 .  B A C K G R O U N D :  U N I F I C A T I O N  I N  G R A M M A R  

Several different approaches to natural language grammar have developed 
the notion of feature structures to describe linguistic objects. These 
approaches include linguistic theories, such as Generalized Phrase Struc- 
ture Grammar (GPSG) [3], Lexical Functional Grammar (LFG) [5], and 
Systemic Grammar [4]. They also include grammar formalisms which have 
been developed as computational tools, such as Functional Unification 
Grammar (FUG) [9], and PATR-II [13]. In these computational formal- 
isms, unification is the primary operation for matching and combining 
feature structures. 

Feature structures are called by several different names, including 
f-structures in LFG, and functional descriptions in FUG. Although they 
differ in details, each approach uses structures containing sets of attributes. 
Each attribute is composed of a label/value pair. A value may be an 
atomic symbol, but it may also be a nested feature structure. 

The intuitive interpretation of feature structures may be clear to linguists 
who use them, even in the absence of a precise definition. Often, a precise 
definition of a useful notation becomes possible only after it has been 
applied to the description of a variety of phenomena. Then, greater pre- 
cision may become necessary for clarification when the notation is used 
by many different investigators. Our model has been developed in the 
context of providing a precise interpretation for the feature structures 
which are used in FUG and PATR-II. Some elements of this logical 
interpretation have been partially described in Kay's work [10]. We extend 
this work to give a complete algebraic account of the logical properties of 
feature structures, which can be used explicitly for computational manipu- 
lation and mathematical analysis. 

2.1. Disjunction and Non-Local Values 

Karttunen [6] has shown that disjunction and negation are desirable exten- 
sions to PATR-II which are motivated by a wide range of linguistic phen- 
omena. He discusses specifying attributes by disjunctive values, as shown 
in Figure 1. A value disjunction specifies alternative values of a single 
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die = 

case:{nom acc} 

agreement: 
gender: fern ] 
number: sing J 
[number: pI] 

Fig. 1. A feature matrix containing value disjunction. 

attribute. These alternative values may be either atomic or complex. Thus 
in Figure 1, which describes lexical properties of the German article 'die', 
we learn that the word has an agreement feature of possibly two different 
kinds: either feminine singular, or plural. Disjunction of a more general 
kind is an essential element of FUG.  General disjunction is used to specify 
alternative groups of multiple attributes, as shown in Figure 2. 

Karttunen describes a method by which the basic unification procedure 
can be extended to handle disjunctive values, and explains some of the 
complications that result from introducing value disjunction. When two 
values, A and B, are to be unified or combined, and A is a disjunction, 
we cannot actually unify B with both alternatives of A, because one of the 
alternatives may become incompatible with B through later unifications in 
the course of parsing. Instead we need to remember  a constraint that at 
least one of the alternatives of A must remain compatible with B. 

An additional complication arises when one of the alternatives of a 

c a t  = s 
subj = [case = nominative] 

t voice = active] 
actor = {subj) ] 

[ voice = passive 
] goal--- (subj) 

! [cat:pp 
]adjunct = ]prep = by 
[ [obj = (actor) = [case = objective] 

[ mood = declarative] 1 
[ mood interrogative] 

Fig. 2. Disjunctive specification containing non-local values, using the notation of FUG. 
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disjunction contains a value which is specified by a non-local path, a 
situation which occurs frequently in Functional Unification Grammar.  
Consider Figure 2. 

From this description, we learn the following information. In a sentence, 
the subject has nominative case. Additionally, the voice aspect of the 
sentence can be active or passive, and the mood can be declarative or 
interrogative. If the voice is active, then the actor is identified with the 
subject. If the voice is passive, however, then the goal is identified with 
the subject, and is therefore the constituent with nominative case. Also, 
in the passive voice, the actor o f  the whole sentence is the object of the 
preposition 'by' in the adjunct prepositional phrase, and must have objec- 
tive case. The non-local values are enclosed in angle brackets. Each such 
value is an attribute of the entire sentence, even though that value may 
be found at an inner level of the description. Consider now the value, say 
v, of the object of the adjunct phrase. The (nonlocal) value of the actor 
attribute of the whole sentence must be unified, or made equal to, the 
value v. During the parsing of a sentence, this unification with a non-local 
value can be performed only when the alternative which contains it (i.e., 
the passive alternative) is the only alternative remaining in the disjunction. 
Otherwise, the case = objective attribute might be added to the value of 
(actor) prematurely, when the active alternative is the one to be used. 
This would require the subject to have both nominative and objective 
case, which would be incorrect. Thus, the constraints on alternatives of a 
disjunction must also apply to any non-local values contained within those 
alternatives. These complications, and the resulting proliferation of con- 
straints, tend to lead to mistakes in the programming of these systems, 
and this fact provides a practical motivation for the logical treatment given 
in this paper. We suggest a solution to the problem of representing non- 
local path values in Section 4. 

2.2. What  is a Feature Structure? 

As Pereira and Shieber [11] have pointed out, a grammatical formalism 
can be regarded in a way similar to other representation languages. Often 
it is desirable to use a representation language which is distinct from the 
objects it represents. Thus, it can be useful to make a distinction between 
the domain of feature structures and the domain of their descriptions. As 
we shall see, this distinction allows a variety of notational devices to be 
used in descriptions, and interpreted in a consistent way with a uniform 
kind of structure. 

The PATR-II  system uses directed acyclic graphs (dags) as an under- 
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lying representation for feature structures. In order to build complex 
feature structures, two primitive domains are required: 

1. Atoms (A) 
2. Labels (L) 

The elements of both domains are symbols, usually denoted by character 
strings. Attribute labels (e.g., 'case') are used to mark edges in a dag, 
and atoms (e.g., 'gen') are used as primitive values at vertices which have 
no outgoing edges. 

These dag structures are graphical representations of the notion of 
categories found in GPSG. Thus in [3, Chapter 2], and in [2], we find 
categories described as finite partial functions. The set of attribute labels 
becomes the set of feature names; and feature values may either be atomic 
(i.e., in the set A) or may themselves be categories. To quote from [3, 
page 24]: 

• . .  Ignoring feature specifications that include categories as values for the moment, suppose 
we assume two finite, nonempty sets: F, the set of features, and V, the set of feature-values. 
Then a syntactic category is a_partial function from F into V. We say 'partial' because we 
often want to allow the possibilitity that a category C is undefined for some particular feature 

fEE. 

It is clear how to think of a dag as a finite partial function of this kind. 
At  the top level, think of the dag as the set {(fl, vl) . . . . .  (fn, vn)}, where 
the J) are the arc labels emanating from the root node, and the vi are the 
subdags at the end of these arcs. What is not so clear, however, is how 
to represent the fact that two arcs in a dag can come together at the same 
node. This property of dags is useful in the unification-based theories, and 
our logic has a type of formula which says that explicitly named paths 
may coincide. Ait-Kaci [1] treats exactly this problem, showing how to 
impose an equivalence relation (the coreference relation) on a finite partial 
function description so that paths may be regarded as identical. The 
notation gets complicated, however, and we prefer the representation 
which follows. 

A dag may also be regarded as a transition graph for a partially specified 
deterministic finite automaton (DFA).  This automaton recognizes strings 
of labels, and has final states which are atoms, as well as final states which 
encode no information. An automaton is formally described by a tuple 

J =  (Q, L, 6, qo, F) 

where Q is the set of states of the automaton, L is the set of labels above, 
6 is a partial function from Q x L to Q, and where certain elements of F 
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may be atoms from the set A. We require that s~ be connected, acyclic, 
and have no transitions from any final states. 

In this representation, the nodes of a dag are the states of the automa- 
ton. The interpretation of the ~ function is as follows. Let  l E L. Then l 
denotes a feature and if the root node of the dag is a state q0, then the 
state 6(qo, l) is the root node of the subdag at the end of the/-arc.  In fact 
we can refer to this subdag by the name 3(qo, 1), so that the value of the 
feature l can be given by this very expression. Additionally, if x is a string 
of feature labels, then the state 6(qo, x) is identified with the subdag 
obtained by following the path x in the obvious way. 

DFAs have several desirable properties as a domain for feature struc- 

the value of any defined path can be denoted by a state ot the 
automaton; 
finding the value of a path is interpreted by running the automa- 
ton on the path string; 
the automaton captures the crucial properties of shared struc- 
ture; 
(a) two paths which are unified have the same state as a value, 
(b) unification is equivalent to a state-merge operation; 

(4) the techniques of automata theory become available for use 
with feature structures. 

A consequence of item 3 above is that the distinction between type identity 
and token identity, mentioned in [14] is clearly revealed by an automaton; 
two objects are necessarily the same token, if and only if they are repre- 
sented by the same state. 

One construct of automata theory, the Nerode relation, is useful to 
describe equivalent paths. If s~ is an automaton, we let P ( ~ )  be the set 
of all paths of s/, namely the set {x G L* : 6(qo, x) is defined}. The Nerode 
relation N(~ )  is the equivalence relation defined on paths of P ( ~ )  by 
letting 

xN(M) y ~ 6(qo, x) = 6(qo, y). 

This completes our discussion of feature structures. Our logic will de- 
scribe such structures. We should re-emphasize that the structures them- 
selves are wholly functional. Disjunctive values are not allowed in the 
structures; disjunction enters into the description of the structures. Taking 
this point of view has allowed us to give a consistent formalization of the 
kind of disjunction implicit in FUG,  but it is probably not the only way 
to formalize disjunctive values. Our initial attempts to formalize 'nondeter- 

tures :  

(1) 

(2) 

(3) 
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NIL 
TOP 
a where aEA 

~(Pl) . . . . .  (Pn)~ where each p i l L *  
l:  q5 where IEL and ~bEFDL 
0A4~ 
0vO 

Fig. 3. The domain, FDL, of logical formulas. 

ministic' feature structures were unsuccessful, however, and for this reason 
we have adopted the present approach. 

3. D O M A I N  OF D E S C R I P T I O N S :  L O G I C A L  F O R M U L A S  

We now define the domain FDL (Feature Description Logic) of logical 
formulas which describe feature structures. Figure 3 defines the syntax of 
well formed formulas. In the following sections symbols from the Greek 
alphabet are used to stand for arbitrary formulas in FDL. The formulas 
NIL and TOP are intended to convey 'no information' and 'inconsistent 
information' respectively. Thus, NIL describes a unification variable; any 
structure will satisfy it, and the minimal such structure is a degenerate 
automaton with just one state which has no atomic value. Similarly, TOP 
corresponds to unification failure, in that no structure will satisfy it. A 
formula l : ~b would indicate that a structure has attribute l, the value of 
which is a structure satisfying the condition ~b. 

Conjunction and disjunction will have their ordinary logical meaing as 
operators in formulas. An interesting result is that conjunction can be 
used to describe unification. Unifying two structures requires finding a 
structure which has all features of both structures; the conjunction of 
two formulas describes the structures which satisfy all conditions of both 
formulas. Also, a difference between feature structures and their descrip- 
tions should be noted. In a feature structure it is required that a particular 
attribute have a unique value, while in descriptions it is possible to specify, 
using conjunction, several values for the same attribute, as in the formula 

subj : (person: 3)/x subj : (number : sing). 

A feature structure satisfying such a description will contain a unique 
value for the attribute, which can be found by unifying all of the values 
that are specified in the description. We will illustrate these points in a 
later section. 
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Formulas may also contain sets of paths, denoting equivalence classes. 
Each element of the set represents an existing path starting from the initial 
state of an automaton, and all paths in the set are required to have a 
common endpoint. If E = ~(x), (y)~, we can think of E as the equation 
(x) = (y). This is the notation of PATR-II  for pairs of equivalent paths. In 
subsequent sections we use E (sometimes with subscripts) to stand for a 
set of paths that belong to the same equivalence class. Also, for brevity 
we will sometimes omit the angle brackets around path strings. 

3.1. Interpretation of Formulas 

We can now state inductively the exact conditions under which an automa- 
ton a¢ satisfies a formula: 

(1) J > NIL always; 
(2) ~q/~ TOP never; 
(3) sg ~ a ~=~ s¢ is the one-state automaton a with no transitions; 

(4) M P E @ E is a subset of an equivalence class of N(s~); 
(5) sg~l : q5(=) s//l is defined 

and sd/l ~ (o; 
(6) ~ v  0¢=~ s ~  ch or ~ 0; 
(7) ,S~ ~ A 0 @ J ~  4~and ~ 0. 

where ~/l is defined by a subgraph of the automaton J with start state 
6(qo, l); that is, if ~ =  (Q, L,  6, q0, F),  then ~/l = (Q', L, 6, 6(qo, l), F'), 
where Q' and F' are formed from Q and F by removing any states which 
are unreachable from 6(qo, l). 

Any formula can be regarded as a specification for the set of automata 
which satisfy it. In the case of conjunctive formulas (containing no occur- 
rences of disjunction) the set of automata satisfying the formula has a 
unique minimal element,  with respect to subsumption. For disjunctive 
formulas there may be several minimal elements, but always a finite 
number. 2 

3.2. A Calculus of Equivalences for Formulas 

It is possible to write many formulas which have an identical interpre- 
tation. For example, the two formulas given in the equation below are 

2 This fact, and the formal definition of the subsumption order, will be discussed in 
Section 5. 
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satisfied by the same set of automata. 

case : (gen v acc v dat)/x case : acc = case : acc 

In this simple example it is clear that the right side of the formula is 
equivalent to the left side, and that it is simpler. In more complex examples 
it is not always obvious when two formulas are equivalent, i.e., when they 
have the same set of satisfying structures. 

In this section we will show how general observations about operations 
on feature structures can be stated formally as laws of logical equivalence 
for formulas. 

Conjunction models unification. Unifying two structures requires finding 
a structure which has all features of both structures; the conjunction of 
two formulas describes the structures which satisfy all conditions of both 
formulas. 

Since unifying two incompatible structures results in a failure, it should 
be the case that conjoining two descriptions of incompatible values yields 
an unsatisfiable formula. Thus, the following equivalences should hold: 

a / x b = T O P ,  Va, b ~ A w h e r e a 4 b  

a A I : 05 = TOP. 

Since a feature structure must have a unique value for any attribute, 
it should also be the case that conjoining two descriptions containing 
specifications of the same attribute should require the values specified for 
that attribute to be conjoined, as stated in: 

l :  05/xl: 0 = l :  (05A0). 

We return to the distinction between structures and their descriptions 
noted in the previous section: a feature structure is required to have a 
unique value for each attribute, while in descriptions it is possible to 
specify, using conjunction, several values for the same attribute, as in the 
formula 

subj : (person : 3)/~ subj : (number : sing) 
A subj : (gender : neut). 

A feature structure satisfying this description contains just one value for 
the subj attribute, which can be found by unifying all of the values that 
are specified for it in the description. The minimal satisfying feature 
structure is shown in Figure 4. 

Disjunctive values can be converted to general disjunctions. In F U G  
disjunctions are often used to denote alternative portions to be included 
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3 

subJ  

que value for subj 

nder 

sing neut 

Fig. 4. Feature structures have unique values for their attributes. 

in a functional description containing many attributes. It is also possible 
to specify the value of a particular attribute as a disjunction. If that value 
contains non-local dependencies, then it may be desirable to factor the 
label of that attribute into the disjuncts, when comparing the disjuncts 
with other descriptions. A description of the attribute l containing a dis- 
junctive value is equivalent to a disjunction where the label l is prefixed 
to each disjunct of the value describing the attribute. Stated formally, we 
have the following law of equivalence: 

I :  6 v l :  O=l: (4, v 4'). 

Distributive laws hold for conjunction and disjunction. If conjunction 
were regarded operationally as unification, then it would not be superfici- 
ally obvious that the distributive laws of ordinary propositional logic hold 
for the formulas of FDL. Yet they are clearly true in the model defined 
here. These laws are crucial for simplifying formulas containing disjunc- 
tion: 

( ~ v  4') A x =  (~/ ,  x) v (~Ax)  

(4) A q~) v x = ( 4 )  v x)  A ( ~ v  x).  

The equations stated above can be regarded as laws of equivalence with 
respect to the interpretation of formulas given earlier. Once these laws 
are established, then they can be used as a basis for simplifying formulas, 
by converting them to a form which represents the same facts more 
efficiently. Several other laws can be added to form a complete calculus 
of equivalences. A complete set of equivalences for formulas of FDL is 
shown in Figure 5. 

The propositional laws (1-19) are clearly true in the intended interpre- 
tation. Some explanation of the laws for path equivalence classes, how- 



46 R O B E R T  T .  K A S P E R  A N D  W I L L I A M  C.  R O U N D S  

Failure: 
l : T O P  

Conjunction (unification): 
49 A T O P  = 
49 A N I L  = 

a A b  = 

a A l : 4 9  = 

l : 4 9 A l :  O = 
Disjunction: 

49 v NIL  = 
49 v T O P  = 

l :  49v l :  q* = 
Commutative: 

49A0 = 
49v0 = 

Associative: 
(49 A 49) A x = 

(49v @ v x  = 
Idempotent: 

49A49 = 

49v49 = 

Distributive: 
(49v 0) Ax  
(49A ~0) v x  

Absorption: 
(49A ~0) v 49 
(49v 0) A 49 

Path Equivalence: 
E I A E 2  
Ei  A E2 

E A X : C  

E 

l : E  

E 

= TOP (i) 

T O P  (2) 
49 (3) 
TOP,  Va, b E A and a # b (4) 
T O P  (5) 

l:  (49 A 0) (6) 

NIL (7) 
49 (8) 
l: (49 v 0) (9) 

*A 49 (io) 

O v  49 (Ii) 

49 A (0 A x) (12) 
49 v (4~ v x )  (13) 

49 (14) 
49 (15) 

= ( 4 9 A x )  v ( e A X )  
= ( 4  v x )  ^ ( , / ' v  x )  

= 6 
= 49 

(16) 
(17) 

(18) 
(19) 

= Ea whenever  E1 C E 2  (20) 
= E 1 A (E 2 U {zy]z ~ El}) (21) 

for any y such that 3 x : x  E Ea and 
xy  ~ E2 

: EA (Ay:c wherex E (22) 
\ y ~ E  / 

= E A {X} if X is a prefix of a string in E (23) 
= {lw[ w E E }  (24) 
: N I L  (25) 
= TOP for any E such that (26) 

there are strings x ,  x y  ~ E and y # e 

Fig. 5. Laws of equivalence for formulas. 

ever, is in order. For example,  law 21 states that the Nerode  equivalence 
relation is a right congruence relation with respect to defined transitions. 
The formulas E1 and E2 state that all path strings in those respective sets 
lead to the same point in the feature structure. If there is a string x in E1 
with an extension xy E E2, then x is congruent to all strings in E~, and so, 
since the Nerode  relation is a right congruence,  xy must be equivalent to 
zy. We have used the E notation for reasons of  mathematical  succinctness; 
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we could have as well introduced simple path equations x = y, which would 
have made for readability, at the cost of making the axioms a bit clumsier. 

Some laws may be regarded as optional depending on the type of 
structures which are being described. For example, the equivalence (26) 
is added to prevent cyclic graphs by making descriptions of cyclic structures 
unsatisfiable. 

We will discuss the meaning of completeness in Section 5. 

4. SOLUTION OF THE NON-LOCAL VALUE PROBLEM 

The logic presented in the previous section contains no direct represent- 
ation for non-local path values of the type described in FUG descriptions. 
Recall that in Functional Unification Grammar a non-local path denotes 
the value found by extracting each of the attributes labeled by the path 
in successively embedded feature structures, beginning with the entire 
structure currently under consideration. In order to give the intended 
interpretation for such values, it is necessary to make reference to the 
global context of the structure in which they occur. 

In this section the logic will be extended to include descriptions contain- 
ing non-local values. It will also be shown that these descriptions can be 
converted into formulas of the simpler logic by using only path equivalence 
classes to represent the non-local dependencies. 

4.1. Extending the Logic 

The syntax for expressing a non-local path value will be a path expression 
enclosed in angle brackets: 

(p} where p E L*. 

This type of formula denotes the value found by traversing the path p in 
a satisfying feature structure. Adding this type of formula to the other 
types previously defined, we have the well-formed formulas of extended 
FDL, as shown in Figure 6. 

The domain of feature structures remains the same as before, but the 
satisfaction relation must be extended with structures which represent the 
global context. This is done by specifying pairs consisting of automata and 
one of their states as structures which satisfy a formula: 

(1) (s~, q) ~ NIL always; 

(2) (s4, q) P TOP never; 

(3) (sg, q) ~ a ¢:~ q is a final state denoted by the atom a with no 
outgoing transitions; 



48 R O B E R T  T .  K A S P E R  A N D  W I L L I A M  C.  R O U N D S  

Fig. 

NIL 
TOP 
a where a ~ A 
I{P~) . . . . .  (p=)~ where each pi ~ L* 
{p} where p E L* 
1 : 05 where l E L and 05 E FDL 

05/,0 
05v0 

6. The domain,  extended FDL,  of logical formulas.  

(4) (J ,  q) ~ E ¢:~ Vp ~ E, 6(q, p) gives the same value; 

(5) ( J ,  q) ~ (p) @ 6~(qo, p) = q; 

(6) (s/, q) ~ l: 05@ 6(q, l) is defined and (s~, 6(q, l)) ~ 05; 

(7) (sO, q) ~ 05 v O@ (~¢, q) ~ 05 or (~/, q) ~ O; 

(8) (~/, q) ~ 05/` 0 @  (~ ,  q) ~ 05 and (s¢, q) ~ 0. 

Given a pair (s¢, q), the subautomaton of a¢ having q as an initial state 
can be regarded as the part of the structure being described by the formula, 
and the automaton s¢ can be regarded as the global context of the entire 
structure. We may recapture the original notion of satisfaction by stipulat- 
ing that .~/~ 05 if and only if (sO, qo) ~ 05 in the new sense. Note that this 
interpretation of formulas differs significantly from the simpler one only 
in two clauses, those pertaining to formulas of the type (p} and the type 
l : 05, above. The clause for (p} is the only one which refers to the global 
context, and the clause for l: 05 is the only one which changes the state 
under consideration. 

It can be shown that the laws of equivalence given in Section 5 still hold 
for the extended logic. This should be obvious for the laws which have 
no mention of labeled formulas, since the satisfiability conditions of other 
types of formulas do not refer to the global context, and are essentially 
identical to the conditions of the simpler logic. For proof of the laws 
involving labeled formulas, consider (6): l : 05/` l : 0 = l : (05/` 0). Given 
(s/, q) ~ l : 05 A l : 0, we can derive the following: 

(s¢, q) ~ l :  05and (sO, q) ~l :  0 

¢=~ 6(q, l) is defined, and (~/, 6(q, l)) ~ 05 and 
(.4, ~(q, l)) ~ 0 
@ 3(q, l) is defined, and (M, 3(q, l)) ~ 05/x O 

@ (s¢, q) ~ l: (05/x #/) (as desired). 
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Law (9) and the path equivalence laws can be derived in an analogous 
manner. 

4.2. Eliminating Non-local Path Expressions 

It is possible to transform a formula containing non-local path expressions 
into a logically equivalent formula containing path equivalence classes, 
but no non-local paths. Then the simpler interpretation of FDL (with no 
global context) may be used to determine the structures which satisfy the 
formula. 

The first step of the transformation uses the path expansion algorithm 
of Figure 7. This algorithm applies equivalences (6 and 9) of the calculus 
exhaustively to a formula, and all of its subformulas. Therefore, by the 
correctness of the formal equivalences, the result produced by the algor- 
ithm must be equivalent to the original formula. 

The second step of the transformation converts a sequence of labels 
followed by a path into a path equivalence class, using the schema 

(27) ll : . .  • : In : (p) ~ [[(ll • • • In), (p)]. 

Note that path expansion does not require an expansion to full DNF,  
since disjunctions are not multiplied. While the DNF expansion of a 
formula may be exponentially larger than the original, the path expansion 
is at most quadratically larger. 

T H E O R E M  1. Path expansion requires at most O(n 2) space and time. 
Proof. The size of the formula with paths expanded is at most n x p, 

where n is the length of the original formula, and p is the length of the 
longest path. Since p is generally much less than n the size of the path 
expansion is usually not a very large quadratic. 

Function P A T H - E X P A N D  (~b) Returns formula: 
Select form of ~b: 

l : (~O v X) ~ Return l : PATH-EXPAND(~0) v l : PATH-EXPAND(x) ;  

l : (~0/~ X) ~ Return l : PATH-EXPAND(~0)/x 1 : PATH-EXPAND(x) ;  

l : ~0~ Return l : PATH-EXPAND(~0); 

~0/x X ~ Return PATH-EXPAND(~) /x  PATH-EXPAND(x) ;  

~0 v X ~ Return P A T H - E X P A N D ( q  0 v PATH-EXPAND(x) ;  

Atomic (otherwise) ~ Return ~b. 

Fig. 7. An algorithm for path-expansion. 
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T H E O R E M  2. After path expansion all complete strings of labels in a 
formula denote trasitions from a common initial state of an automaton. 

Proof. Observe that after path expansion no subformulas of the form 
/ : ( ~  v X) or of the form /:(~0/x X) remain. Therefore any subformula 
containing labels must be a string of labels followed by an atomic formula. 
Let us generalize the definition of satisfiability for formulas having the 
form l : 05 to those of the form p : 05, where p may be any string of labels: 

(~,  q) ~p : 05#=)6(q,p) is defined and (~ ,  6(q,p)) ~ 4). 

Consider the case where 05 is a non-local path expression denoted by (w}: 

( J ,  6(q,p) ) ~ (w} ¢=~ 6~(qo, w) = 3~(q,p). 

When q = q0, then 6(qo, w) = a(q0, p) and (s~, qo) ~ ~(w), (p}l]. After path 
expansion, the only subformulas which are interpreted with respect to a 
state different from the initial state of the entire formula are those denoted 
by 05 in l : &  Thus, all strings of labels followed by a non-local path 
expression (w} must be interpreted by a pair containing the initial state of 
the automaton. In this case q = qo, and 

(~4, q0) ~ P : (w} ¢=) (M, q0) ~ [[(P}, (w)~. 

This ends the proof. 
Therefore, by Theorem 2, the expressions containing non-local paths 

can be converted to the equivalence class notation, using the schema (27). 
As an example of this transformation, consider the passive voice alterna- 

tive of the description of Figure 2, shown here in Figure 8. This description 
is also represented by the first formula of Figure 9. The following formulas 
in Figure 9 are formed successively by 

(1) applying path expansion, 
(2) converting the attributes containing non-local path values to 

formulas representing equivalence classes of paths. 

By following this procedure, the entire functional description of Figure 2 
can be represented by the logical formula given in Figure 10. 

voice = passive 
goal = (subj) 

[ cat = pp ] 
| prep = by [ 

adjunct = / obj = (actor} ] 

[ = [case = objective] ] 

Fig. 8. Functional description containing non-local values. 
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vo ice  : pa s s ive  

/x goa l  : (subj)  
/x a d j u n c t  : (ca t  : p p  
/x p r e p  : b y  

/x obj  : ( a c t o r )  
/x obj  : case  : o b j e c t i v e )  

path 
expansion 

vo ice  : p a s s i v e  

/x goa l  : (subj)  

/~ a d j unc t  : ca t  : p p  
A a d j u n c t  : p r e p  : b y  

A a d j u n c t :  obj  : ( ac to r )  
A a d j u n c t :  ob j  : case  : o b j e c t i v e  

path 
equivalence 

vo ice  : p a s s i v e  

/x ~(goal),  (subj)~ 

/x a d j u n c t  : ca t  : p p  
A a d j u n c t  : p r e p  : b y  

/x ~(adjunct  obj ) ,  (actor)]} 
/~ a d j u n c t  : obj  : c a s e : o b j e c t i v e  

Fig. 9. Conversion of non-local values to equivalence classes of paths. 

ca t  : s 

A subj  : case  : n o m i n a t i v e  
A 

( ( v o i c e : a c t i v e  

/x ~(actor) ,  (subj)~) 
v 

(vo ice  : p a s s i v e  
/~ ~(goal),  (subj)~ 
/x a d j unc t  : ca t  : p p  

/x a d j unc t  : p r e p  : b y  

A ~(adjunct  obj ) ,  (actor)~ 
/~ a d j u n c t  : obj  : case  : o b j e c t i v e ) )  
A 

( m o o d  : d e c l a r a t i v e  
v 

m o o d  : i n t e r r o g a t i v e )  

Fig. 10. Logical formula representing the description of Figure 2. 
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5 .  M A T H E M A T I C A L  R E S U L T S  

In this section we present some of the mathematical justification for the 
claims made earlier. We begin with the notion of subsumption. 

5.1. Subsumption 

Let ~ and N be two automata. We say JC_ N (~4 subsumes N; N extends 
J )  iff there is a homomorphism from s~ to ~3; that is, a map h : Q~ ~ Qo~ 
such that (for all existing transitions) 

(1) h(6~(q, l)) = 6~(h(q),/);  
(2) h ( c ) = c f o r a l l c ~ A A F ~ ;  
(3) h(qo~) = qo~. 

This definition captures the notion of extension (see [2, page 5]) 
precisely. We intend that ~/C_ g3 if Y3 has more information than sO. This 

may happen in two ways. The automaton N may have more transitions 
than ~ ,  and here is where the different kinds of final state are important: 
Y3 can extend J if N has transitions out of the nonatomic final states of 
~ .  Also, if ~3 identifies two paths which in s~ are distinct, then 93 has 
more information than s4, so ~C_ Y3 in this case too. It is not hard to 
show that if two automata subsume one another, then they are isomorphic, 
so that C_ is a partial order on the isomorphism classes of finite acyclic 
automata. 

Next, we show that if s~ is a finite acyclic automaton, then we may write 
a formula in FDL describing it up to isomorphism. 

DEFINITION.  (Nerode canonical formula of an automaton).  Let d be 
an automaton, and let N(~/) be its Nerode relation. Then we define 

4 ( s ~ ) =  ~q =c  

where c is an atom, and the Ei are the Nerode classes of N(s / ) ,  determined 

by nonatomic states. 

DEFINITION.  We say 4(~)C_ ~b(N) iff for each E occurring in qS(J), 
and also for the sets E¢ consisting of all the strings x such that x : c occurs 
in the formula, there is a corresponding F occurring in &(93) with E C__ F. 
(To say that this inclusion and its reverse holds is to say that the formulas 

are the same.) 

T H E O R E M  3. The following are equivalent: 
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(1) a / r -  33; 

(2) V95(a/~ 95~ 33 V 95); 

(3) 33 ~ 95(a/); 

(4) 95(a/) C_ 95(33). 

Proof. (1) ~ (2). We proceed by induction on the structure of 95. If this 
formula is an atom or NIL, the result is trivial. If 95 is E, then there is a 
state r E Q~ such tha t /~ (qo ,  x) = r for all x E E. Then /~ (q0 ,  h(x)) = h(r), 
proving that 33 ~ E. The proof for the propositional connectives v and 

/x is standard, so consider the case 95 = l : ~. If a /~ l : ~, then a//l is defined 
and satisfies 0. But by (1), a / ~  33. It easily follows that a//l E 33/I, and 
by inductive hypothesis 33/I ~ ~. Thus 33 ~ l : ~. 

(2) ~ (3). Trivial, since a/P 95(a/). 

(3) ~ (4). Let  x : c  be a conjunct in 95(a/). Then 3~(qo, x ) =  c. Since 
33 ~ 95(a/), 33 has an x-path to c, and so x : c is a conjunct in 95(33). In a 
similar way, it follows that each Ei class occurring in 95(a/) is contained 

in a class of 95(33). Thus 95(a/)__ 95(33). 
(4) ~ (1). We must define h :  Q~--+ Q~. Let  r E Q.,~ and choose x such 

that 6~(qo, x) = r. Then x ~ E for some Nerode class E of a/. By (4), this 
class is contained in a Nerode class of 33, represented by some state s of 
33. Let  h(r )=  s. Standard arguments show that h is well-defined and a 
homomorphism. This completes the proof. 

We can now use this result to show semantically that if two automata 
are unifiable (i.e., have an upper bound in the subsumption ordering,) 
then they have a most general unifier (i.e., a least upper bound in the 
ordering.) 

DEFINITION.  The automaton a / ×  33 is the product automaton with 
state set Q~ × Q~, and with transitions defined when both components 
can do so on a particular input. We also need to identify a pair of states 
(c, d), where c and d are distinct atoms, with a nonatomic final state q, 
and to identify (c, q) and (q, d) with q as well. The pair (c, c) is identified 
with c. a / ×  33 can be thought of in linguistic terms as the generalization 
of a / a n d  33. It is in fact the greatest lower bound of a / a n d  33 in the 
subsumption ordering. 

DEFINITION.  A conjunctive formula contains no uses of the v connec- 
tive. 

T H E O R E M  4. Let  95 be a conjunctive formula. If a/~ 95 and 33 ~ 95, so 
does a / ×  33. 
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Proof. Again use induction on qS. The base cases and the inductive step 
for the connective /x are all easy. Consider the case 4~ = l : ~. If s¢ and 

satisfy ~b, we must show that (s~ x N)/l exists and satisfies ~0. But it is 
easy to show that (sd x N)/l is equal to sdll × N/l. The result follows by 
inductive hypothesis. 

T H E O R E M  5 (existence of most general unifier). If q5 is conjunctive and 
satisfiable, then there is a subsumption-minimum automaton ~/such that 

Proof. Use condition (4) in the characterization of subsumption to show 
that subsumption restricted to the set of automata satisfying & is well- 
founded (in fact, that there are only a finite number of automata which 
subsume a given one), and the previous theorem to show that two minimal 
elements are the same. This proves the theorem, and the fact that it also 
shows the existence of a most general unifier can be seen as follows. 
Assume that J and N are two automata which have a common upper 
bound in the subsumption ordering. Then their most general unifier is 
that automaton ~ which is the least one satisfying ~b(sg)/x qS(N). 

5.2. Disjunctive Normal Form 

A formula is in disjunctive normal form if and only if it has the form 
4~1 v . . .  v ~bn, where each disjunct ~bi is either 

(1) a, where a ~ A ;  

(2) t/t I /x . . . / x  Om, where each conjunct ~0i is either 

(a) ll : . . .  : l~ : a, where a E A, and no path (i.e., sequence of 
labels) occurs more than once; 

(b) ~{p~} . . . . .  {Pk}], where each pi E L*, and each set denotes 
an equivalence class of paths, and all such sets, within a 
disjunct, are disjoint. 

Another  way to express the same idea, and an equivalent definition of 
disjunctive NF, is to use the notion of the canonical formula associated 
with an automaton. It is easy to see that the individual disjuncts in the 
normal form just defined are just the ~b(s~i) defined in the previous section. 
Thus, one way of stating a normal form result is as follows. 

T H E O R E M  6 (Nerode normal form). Let  ~b be satisfiable; then there is 
a finite set of automata s / ~ , . . . ,  sg~, depending only on the logical equival- 
ence class of qS, such that the J i  are subsumption-incomparable, and such 
that 
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v . . .  v 

One way to prove this result is as follows. Given a formula, apply first 
the path expansion laws, and then the distributive laws until the formula 
is in a disjunctive form; that is, a disjunction of conjunctive formulas. 
Then use the results of the previous section to find, for each conjunctive 
formula, the minimal automaton satisfying it. This will be a finite set, and 
it can be shown that this set of automata depends only on the original 
formula. This gives a semantic proof of the NF result, but a more algorith- 
mic approach is preferable for the completeness result. The formal equiv- 
alences given in Figure 5 allows us to transform any satisfiable formula 
into its disjunctive normal form, or to T O P  if it is not satisfiable. Now 
our calculus is seen to be complete, because the logical equivalence of 
any two formulae can be shown just by equationally transforming the two 
formulae into their Nerode Normal Form (NNF), which form is unique 
up to associativity and commutativity. 

T H E O R E M  7. There is an algorithm for computing the NNF of any 
formula within 2 °(n) time; further, this algorithm derives the NNF using 
only the equational laws. 

Proof.  The algorithm is given in Figure 11, and requires exponential 
time, where the exponent depends on the number of disjunctions in the 
formula. The applications of the distributive laws are responsible for the 
exponential running time. This algorithm will not be used in practice, but 
it is given here to illustrate the decidability of equivalence in the calculus. 

We end the section with our NP-completeness result. 

T H E O R E M  8. The satisfiability problem for FDL is NP-complete. 
Proof.  We reduce the classical satisfiability problem to that for our 

formulas. This reduction is not trivial, because our formulas do not have 
negations. However, the reduction is still quite easy, and makes use of 
the fact that paths can have distinct atomic values. We therefore reduce the 
satisfiability of CNF formulas in propositional calculus to the satisfiability 
problem in our logic. Let P be a formula of propositional calculus in CNF. 
For each literal xi in P, create a label li in L. For each literal -nxi, create 
a label l}. (If the set of labels is finite, this will have to be done using 
paths instead of labels.) Let a and b be two distinct atoms. Transform P 
as follows. Replace each xi by l i :a ,  and each ~x i  by l}:a. (Think of 
'a' standing for 'true'.) Now, to the formula just obtained, conjoin the 
following: 

A ((li : a /x l" : b) v (l}: a/x li : b)).  
i 
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Function NNF(05) Returns formula: 
where 05 is a formula. 

1. Apply laws (6) and (9) from right to left, moving all labels to the 
inside. 

2. Apply the distributive law (16) from left to right, until no more appli- 
cations are possible. 

3. Eliminate redundancies and inconsistencies within disjuncts. 

For each disjunct (tp) do: 
Apply (24) to all conjuncts of the form w : E. 
Apply (23) to all conjuncts which are E formulas. 

Using the commutative (10) and associative (12) laws, bring together 
pairs of  conjuncts as necessary for the following steps: 
If some conjunct is an atom, 

Then apply (14) to eliminate redundant conjuncts, 
or apply (4) and (5) to detect inconsistent information. 

Apply (21) to close path equivalence classes under right invariance. 
Apply (20) to make the path equivalence classes disjoint. 
Apply (22) to add all atomic values required by path equivalence. 
Apply (6) for each pair of conjuncts having a common prefix of labels: 

Apply (2-5) and (14) to eliminate redundant 
and inconsistent conjuncts. 

Apply (1) to propagate any failure to the top level of the disjunct. 
If any conjunct is TOP, then use (2) to propagate failure. 
Apply (3) to eliminate any NIL conjuncts. 

Now, 0 must be one of the following types: 
NIL : then Return (NIL), by law (7); 
TOP : then eliminate this disjunct, by law (8); 
otherwise: leave 0 as a disjunct in 05. 

Return the modified value of 05. 

Fig, 11. A l g o r i t h m  to conve r t  a fo rmula  to N e r o d e  N o r m a l  Form.  

This clause forces l/ and l~ to have differing values. It follows that the 
constructed formula is satisfiable iff P is. 

The satisfiability problem is in NP, because given a formula, we can 
guess which disjuncts are to be satisfied, obtaining a conjunctive formula 
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after discarding unwanted disjuncts. The conjunctive formula can be put 
into NF and checked for consistency in polynomial time. This completes 
the proof. 

6. CONCLUSION 

We have seen how the techniques of logic have helped us to understand 
the complicated grammatical notion of unification, especially in situations 
involving functional descriptions which have shared functional values, 
nonlocal values, and disjunction. This approach has helped us to design 
reasonably efficient algorithms dealing with these descriptions, and it is 
mathematically simple. There is much more to the approach than we can 
describe here, but we hope that this article clarifies some of the basic 
issues in the syntactical metatheory of unification grammar. 
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