
R O B E R T T. K A S P E R A N D W I L L I A M C. R O U N D S

T I l E L O G I C O F U N I F I C A T I O N IN G R A M M A R 1

1. INTRODUCTION

By unification, we understand a family of algorithms employed by compu-
tational versions of certain grammar formalisms to combine information
in feature structures. The use of these formalisms has become widespread,
and several extensions to the basic notion of feature structure have been
proposed. Although algorithms for unification of these extended feature
structures have been written, they are complicated, and a precise model
of feature structures is desirable to give an adequate specification of what
the algorithms do. We have developed a model in which descriptions of
feature structures can be regarded as logical formulas, and interpreted by
sets of directed graphs which satisfy them. We identify a feature structure
with such a directed graph, but our mathematical work is facilitated by
considering the graphs to be transition graphs for a special type of deter-
ministic finite automaton.

This semantics for feature structures extends the ideas of Pereira and
Shieber [11], by providing a way to model feature values which are speci-
fied by disjunctions and non-local path values embedded within disjunc-
tions. Our interpretation differs from that of Pereira and Shieber by using
a logical model in place of a denotational semantics. The model yields a
calculus of equivalences between formulas, which can be used to simplify
them. A similar use of logic to describe feature structures was first pro-
posed in Generalized Phrase Structure Grammar (GPSG)[3], in order to
describe feature co-occurrence restrictions. Our formulation, which was
developed independently, is for the purpose of understanding the proper-
ties of unification. Recently Gazdar et al. [2] have extended their logic in
order to give uniform descriptions of linguistic categories. The two logics
have much in common when presented formally, and it should be possible
to combine them in a uniform way. This, however, will be left for future
work.

Unification is attractive, because of its generality, but it can be compu-
tationally inefficient. Kay's treatment [10] of unification in Functional Un-
ification Grammar is a representative example. He analyzes descriptions

This work represents rexision and extension of research reported in [12] and [7].

Littgltis6c.s atul Ptli/~)l~Ol~/t }' 13: 35-58, t990.
© 19911 Khtwer .4cadet*zic Publisher~. Printed it~ the NetherIandx.

36 R O B E R T T . K A S P E R A N D W I L L I A M C . R O U N D S

containing disjunctions by expanding them to a kind of disjunctive normal
form, a process which introduces an exponential explosion in both space
and time. Our model allows a careful examination of the computational
complexity of unification. What we show is that the generalized notion of
unification can be phrased as the problem of telling whether or not one
of our formulas is satisfiable. We show that the satisfiability problem for
formulas with disjunctive values is NP-complete. This problem is essen-
tially the one which must be solved for each parse, so one needs to solve
it as efficiently as possible. It is not surprising that Kay's algorithm is
exponential, because many people believe that NP-complete problems
cannot be solved in polynomial time in the worst case. However, NP-
complete problems can often be solved efficiently on the average, and we
describe how disjunctive values can be specified in a way in which expan-
sion to disjunctive normal form may be delayed. Although this expansion
may.be desirable to interpret final results, a full expansion is not needed
during unification, resulting in a substantial improvement in computational
efficiency. In fact, Kasper's thesis contains an algorithm which, in many
cases arising in practice, solves the consistency problem in cubic time [8].
Thus the formalism shows how to solve a seemingly impossibly complex
problem in a reasonably efficient manner.

It is worth emphasizing that we might not have discovered any of these
algorithms or equivalences without giving a precise formal definition both
to feature structures and to their descriptions. We hope that the calculus
we have developed will continue to be useful. In a sense, the calculus is
a kind of Boolean algebra, not about Boolean-valued functions and switch-
ing circuits, but about finite partial functions over a finite set of atomic
values. The intent of the calculus is still the same, however: to allow
flexibility in the design and specification of algorithms dealing with feature
structures, while at the same time ensuring that these algorithms are
correctly specified.

The paper is organzied into four parts. In Section 2 we discuss the use
of feature structures in various linguistic and computational theories. We
show how our formalization using automata is like the formalism in
GPSG [3]. We also explain the distinction between the feature structures
themselves and descriptions of feature structures. In FUG, for example,
we view feature matrices containing disjunctive values not as feature struc-
tures, but as assertions about such structures. It is this distinction which
allows us to make sense of disjunctive values in general. Section 3 contains
the logical formalism itself, and a presentation of the equivalences satisfied
by our logical formulas. In Section 4 we show how our formalism solves
the problem of non-local values, one of the thorny computational issues

T H E L O G I C O F U N I F I C A T I O N I N G R A M M A R 37

in FUG. Finally, Section 5 contains some of the mathematical properties
of our system. In particular, we show that the laws of Section 3 are
complete: any true equivalence of our logic can be provided using just
these laws. (Thus we have another analogy with Boolean algebra.)

2 . B A C K G R O U N D : U N I F I C A T I O N I N G R A M M A R

Several different approaches to natural language grammar have developed
the notion of feature structures to describe linguistic objects. These
approaches include linguistic theories, such as Generalized Phrase Struc-
ture Grammar (GPSG) [3], Lexical Functional Grammar (LFG) [5], and
Systemic Grammar [4]. They also include grammar formalisms which have
been developed as computational tools, such as Functional Unification
Grammar (FUG) [9], and PATR-II [13]. In these computational formal-
isms, unification is the primary operation for matching and combining
feature structures.

Feature structures are called by several different names, including
f-structures in LFG, and functional descriptions in FUG. Although they
differ in details, each approach uses structures containing sets of attributes.
Each attribute is composed of a label/value pair. A value may be an
atomic symbol, but it may also be a nested feature structure.

The intuitive interpretation of feature structures may be clear to linguists
who use them, even in the absence of a precise definition. Often, a precise
definition of a useful notation becomes possible only after it has been
applied to the description of a variety of phenomena. Then, greater pre-
cision may become necessary for clarification when the notation is used
by many different investigators. Our model has been developed in the
context of providing a precise interpretation for the feature structures
which are used in FUG and PATR-II. Some elements of this logical
interpretation have been partially described in Kay's work [10]. We extend
this work to give a complete algebraic account of the logical properties of
feature structures, which can be used explicitly for computational manipu-
lation and mathematical analysis.

2.1. Disjunction and Non-Local Values

Karttunen [6] has shown that disjunction and negation are desirable exten-
sions to PATR-II which are motivated by a wide range of linguistic phen-
omena. He discusses specifying attributes by disjunctive values, as shown
in Figure 1. A value disjunction specifies alternative values of a single

38 ROBERT T. KASPER AND WILLIAM C. ROUNDS

die =

case:{nom acc}

agreement:
gender: fern]
number: sing J
[number: pI]

Fig. 1. A feature matrix containing value disjunction.

attribute. These alternative values may be either atomic or complex. Thus
in Figure 1, which describes lexical properties of the German article 'die',
we learn that the word has an agreement feature of possibly two different
kinds: either feminine singular, or plural. Disjunction of a more general
kind is an essential element of FUG. General disjunction is used to specify
alternative groups of multiple attributes, as shown in Figure 2.

Karttunen describes a method by which the basic unification procedure
can be extended to handle disjunctive values, and explains some of the
complications that result from introducing value disjunction. When two
values, A and B, are to be unified or combined, and A is a disjunction,
we cannot actually unify B with both alternatives of A, because one of the
alternatives may become incompatible with B through later unifications in
the course of parsing. Instead we need to remember a constraint that at
least one of the alternatives of A must remain compatible with B.

An additional complication arises when one of the alternatives of a

c a t = s
subj = [case = nominative]

t voice = active]
actor = {subj)]

[voice = passive
] goal--- (subj)

! [cat:pp
]adjunct =]prep = by
[[obj = (actor) = [case = objective]

[mood = declarative] 1
[mood interrogative]

Fig. 2. Disjunctive specification containing non-local values, using the notation of FUG.

T H E L O G I C O F U N I F I C A T I O N I N G R A M M A R 39

disjunction contains a value which is specified by a non-local path, a
situation which occurs frequently in Functional Unification Grammar.
Consider Figure 2.

From this description, we learn the following information. In a sentence,
the subject has nominative case. Additionally, the voice aspect of the
sentence can be active or passive, and the mood can be declarative or
interrogative. If the voice is active, then the actor is identified with the
subject. If the voice is passive, however, then the goal is identified with
the subject, and is therefore the constituent with nominative case. Also,
in the passive voice, the actor o f the whole sentence is the object of the
preposition 'by' in the adjunct prepositional phrase, and must have objec-
tive case. The non-local values are enclosed in angle brackets. Each such
value is an attribute of the entire sentence, even though that value may
be found at an inner level of the description. Consider now the value, say
v, of the object of the adjunct phrase. The (nonlocal) value of the actor
attribute of the whole sentence must be unified, or made equal to, the
value v. During the parsing of a sentence, this unification with a non-local
value can be performed only when the alternative which contains it (i.e.,
the passive alternative) is the only alternative remaining in the disjunction.
Otherwise, the case = objective attribute might be added to the value of
(actor) prematurely, when the active alternative is the one to be used.
This would require the subject to have both nominative and objective
case, which would be incorrect. Thus, the constraints on alternatives of a
disjunction must also apply to any non-local values contained within those
alternatives. These complications, and the resulting proliferation of con-
straints, tend to lead to mistakes in the programming of these systems,
and this fact provides a practical motivation for the logical treatment given
in this paper. We suggest a solution to the problem of representing non-
local path values in Section 4.

2.2. What is a Feature Structure?

As Pereira and Shieber [11] have pointed out, a grammatical formalism
can be regarded in a way similar to other representation languages. Often
it is desirable to use a representation language which is distinct from the
objects it represents. Thus, it can be useful to make a distinction between
the domain of feature structures and the domain of their descriptions. As
we shall see, this distinction allows a variety of notational devices to be
used in descriptions, and interpreted in a consistent way with a uniform
kind of structure.

The PATR-II system uses directed acyclic graphs (dags) as an under-

40 R O B E R T T. K A S P E R AND W I L L I A M C. R O U N D S

lying representation for feature structures. In order to build complex
feature structures, two primitive domains are required:

1. Atoms (A)
2. Labels (L)

The elements of both domains are symbols, usually denoted by character
strings. Attribute labels (e.g., 'case') are used to mark edges in a dag,
and atoms (e.g., 'gen') are used as primitive values at vertices which have
no outgoing edges.

These dag structures are graphical representations of the notion of
categories found in GPSG. Thus in [3, Chapter 2], and in [2], we find
categories described as finite partial functions. The set of attribute labels
becomes the set of feature names; and feature values may either be atomic
(i.e., in the set A) or may themselves be categories. To quote from [3,
page 24]:

• . . Ignoring feature specifications that include categories as values for the moment, suppose
we assume two finite, nonempty sets: F, the set of features, and V, the set of feature-values.
Then a syntactic category is a_partial function from F into V. We say 'partial' because we
often want to allow the possibilitity that a category C is undefined for some particular feature

fEE.

It is clear how to think of a dag as a finite partial function of this kind.
At the top level, think of the dag as the set {(fl, vl) (fn, vn)}, where
the J) are the arc labels emanating from the root node, and the vi are the
subdags at the end of these arcs. What is not so clear, however, is how
to represent the fact that two arcs in a dag can come together at the same
node. This property of dags is useful in the unification-based theories, and
our logic has a type of formula which says that explicitly named paths
may coincide. Ait-Kaci [1] treats exactly this problem, showing how to
impose an equivalence relation (the coreference relation) on a finite partial
function description so that paths may be regarded as identical. The
notation gets complicated, however, and we prefer the representation
which follows.

A dag may also be regarded as a transition graph for a partially specified
deterministic finite automaton (DFA). This automaton recognizes strings
of labels, and has final states which are atoms, as well as final states which
encode no information. An automaton is formally described by a tuple

J = (Q, L, 6, qo, F)

where Q is the set of states of the automaton, L is the set of labels above,
6 is a partial function from Q x L to Q, and where certain elements of F

T H E L O G I C O F U N I F I C A T I O N I N G R A M M A R 4 1

may be atoms from the set A. We require that s~ be connected, acyclic,
and have no transitions from any final states.

In this representation, the nodes of a dag are the states of the automa-
ton. The interpretation of the ~ function is as follows. Let l E L. Then l
denotes a feature and if the root node of the dag is a state q0, then the
state 6(qo, l) is the root node of the subdag at the end of the/-arc. In fact
we can refer to this subdag by the name 3(qo, 1), so that the value of the
feature l can be given by this very expression. Additionally, if x is a string
of feature labels, then the state 6(qo, x) is identified with the subdag
obtained by following the path x in the obvious way.

DFAs have several desirable properties as a domain for feature struc-

the value of any defined path can be denoted by a state ot the
automaton;
finding the value of a path is interpreted by running the automa-
ton on the path string;
the automaton captures the crucial properties of shared struc-
ture;
(a) two paths which are unified have the same state as a value,
(b) unification is equivalent to a state-merge operation;

(4) the techniques of automata theory become available for use
with feature structures.

A consequence of item 3 above is that the distinction between type identity
and token identity, mentioned in [14] is clearly revealed by an automaton;
two objects are necessarily the same token, if and only if they are repre-
sented by the same state.

One construct of automata theory, the Nerode relation, is useful to
describe equivalent paths. If s~ is an automaton, we let P (~) be the set
of all paths of s/, namely the set {x G L* : 6(qo, x) is defined}. The Nerode
relation N(~) is the equivalence relation defined on paths of P (~) by
letting

xN(M) y ~ 6(qo, x) = 6(qo, y).

This completes our discussion of feature structures. Our logic will de-
scribe such structures. We should re-emphasize that the structures them-
selves are wholly functional. Disjunctive values are not allowed in the
structures; disjunction enters into the description of the structures. Taking
this point of view has allowed us to give a consistent formalization of the
kind of disjunction implicit in FUG, but it is probably not the only way
to formalize disjunctive values. Our initial attempts to formalize 'nondeter-

tures :

(1)

(2)

(3)

42 R O B E R T T. K A S P E R AND W I L L I A M C. R O U N D S

NIL
TOP
a where aEA

~(Pl) (Pn)~ where each p i l L *
l: q5 where IEL and ~bEFDL
0A4~
0vO

Fig. 3. The domain, FDL, of logical formulas.

ministic' feature structures were unsuccessful, however, and for this reason
we have adopted the present approach.

3. D O M A I N OF D E S C R I P T I O N S : L O G I C A L F O R M U L A S

We now define the domain FDL (Feature Description Logic) of logical
formulas which describe feature structures. Figure 3 defines the syntax of
well formed formulas. In the following sections symbols from the Greek
alphabet are used to stand for arbitrary formulas in FDL. The formulas
NIL and TOP are intended to convey 'no information' and 'inconsistent
information' respectively. Thus, NIL describes a unification variable; any
structure will satisfy it, and the minimal such structure is a degenerate
automaton with just one state which has no atomic value. Similarly, TOP
corresponds to unification failure, in that no structure will satisfy it. A
formula l : ~b would indicate that a structure has attribute l, the value of
which is a structure satisfying the condition ~b.

Conjunction and disjunction will have their ordinary logical meaing as
operators in formulas. An interesting result is that conjunction can be
used to describe unification. Unifying two structures requires finding a
structure which has all features of both structures; the conjunction of
two formulas describes the structures which satisfy all conditions of both
formulas. Also, a difference between feature structures and their descrip-
tions should be noted. In a feature structure it is required that a particular
attribute have a unique value, while in descriptions it is possible to specify,
using conjunction, several values for the same attribute, as in the formula

subj : (person: 3)/x subj : (number : sing).

A feature structure satisfying such a description will contain a unique
value for the attribute, which can be found by unifying all of the values
that are specified in the description. We will illustrate these points in a
later section.

T H E L O G I C O F U N I F I C A T I O N I N G R A M M A R 43

Formulas may also contain sets of paths, denoting equivalence classes.
Each element of the set represents an existing path starting from the initial
state of an automaton, and all paths in the set are required to have a
common endpoint. If E = ~(x), (y)~, we can think of E as the equation
(x) = (y). This is the notation of PATR-II for pairs of equivalent paths. In
subsequent sections we use E (sometimes with subscripts) to stand for a
set of paths that belong to the same equivalence class. Also, for brevity
we will sometimes omit the angle brackets around path strings.

3.1. Interpretation of Formulas

We can now state inductively the exact conditions under which an automa-
ton a¢ satisfies a formula:

(1) J > NIL always;
(2) ~q/~ TOP never;
(3) sg ~ a ~=~ s¢ is the one-state automaton a with no transitions;

(4) M P E @ E is a subset of an equivalence class of N(s~);
(5) sg~l : q5(=) s//l is defined

and sd/l ~ (o;
(6) ~ v 0¢=~ s ~ ch or ~ 0;
(7) ,S~ ~ A 0 @ J ~ 4~and ~ 0.

where ~/l is defined by a subgraph of the automaton J with start state
6(qo, l); that is, if ~ = (Q, L, 6, q0, F), then ~/l = (Q', L, 6, 6(qo, l), F'),
where Q' and F' are formed from Q and F by removing any states which
are unreachable from 6(qo, l).

Any formula can be regarded as a specification for the set of automata
which satisfy it. In the case of conjunctive formulas (containing no occur-
rences of disjunction) the set of automata satisfying the formula has a
unique minimal element, with respect to subsumption. For disjunctive
formulas there may be several minimal elements, but always a finite
number. 2

3.2. A Calculus of Equivalences for Formulas

It is possible to write many formulas which have an identical interpre-
tation. For example, the two formulas given in the equation below are

2 This fact, and the formal definition of the subsumption order, will be discussed in
Section 5.

44 R O B E R T T . K A S P E R A N D W I L L I A M C . R O U N D S

satisfied by the same set of automata.

case : (gen v acc v dat)/x case : acc = case : acc

In this simple example it is clear that the right side of the formula is
equivalent to the left side, and that it is simpler. In more complex examples
it is not always obvious when two formulas are equivalent, i.e., when they
have the same set of satisfying structures.

In this section we will show how general observations about operations
on feature structures can be stated formally as laws of logical equivalence
for formulas.

Conjunction models unification. Unifying two structures requires finding
a structure which has all features of both structures; the conjunction of
two formulas describes the structures which satisfy all conditions of both
formulas.

Since unifying two incompatible structures results in a failure, it should
be the case that conjoining two descriptions of incompatible values yields
an unsatisfiable formula. Thus, the following equivalences should hold:

a / x b = T O P , Va, b ~ A w h e r e a 4 b

a A I : 05 = TOP.

Since a feature structure must have a unique value for any attribute,
it should also be the case that conjoining two descriptions containing
specifications of the same attribute should require the values specified for
that attribute to be conjoined, as stated in:

l : 05/xl: 0 = l : (05A0).

We return to the distinction between structures and their descriptions
noted in the previous section: a feature structure is required to have a
unique value for each attribute, while in descriptions it is possible to
specify, using conjunction, several values for the same attribute, as in the
formula

subj : (person : 3)/~ subj : (number : sing)
A subj : (gender : neut).

A feature structure satisfying this description contains just one value for
the subj attribute, which can be found by unifying all of the values that
are specified for it in the description. The minimal satisfying feature
structure is shown in Figure 4.

Disjunctive values can be converted to general disjunctions. In F U G
disjunctions are often used to denote alternative portions to be included

T H E L O G I C OF U N I F I C A T I O N IN G R A M M A R 45

3

subJ

que value for subj

nder

sing neut

Fig. 4. Feature structures have unique values for their attributes.

in a functional description containing many attributes. It is also possible
to specify the value of a particular attribute as a disjunction. If that value
contains non-local dependencies, then it may be desirable to factor the
label of that attribute into the disjuncts, when comparing the disjuncts
with other descriptions. A description of the attribute l containing a dis-
junctive value is equivalent to a disjunction where the label l is prefixed
to each disjunct of the value describing the attribute. Stated formally, we
have the following law of equivalence:

I : 6 v l : O=l: (4, v 4').

Distributive laws hold for conjunction and disjunction. If conjunction
were regarded operationally as unification, then it would not be superfici-
ally obvious that the distributive laws of ordinary propositional logic hold
for the formulas of FDL. Yet they are clearly true in the model defined
here. These laws are crucial for simplifying formulas containing disjunc-
tion:

(~ v 4') A x = (~/ , x) v (~Ax)

(4) A q~) v x = (4) v x) A (~ v x).

The equations stated above can be regarded as laws of equivalence with
respect to the interpretation of formulas given earlier. Once these laws
are established, then they can be used as a basis for simplifying formulas,
by converting them to a form which represents the same facts more
efficiently. Several other laws can be added to form a complete calculus
of equivalences. A complete set of equivalences for formulas of FDL is
shown in Figure 5.

The propositional laws (1-19) are clearly true in the intended interpre-
tation. Some explanation of the laws for path equivalence classes, how-

46 R O B E R T T . K A S P E R A N D W I L L I A M C. R O U N D S

Failure:
l : T O P

Conjunction (unification):
49 A T O P =
49 A N I L =

a A b =

a A l : 4 9 =

l : 4 9 A l : O =
Disjunction:

49 v NIL =
49 v T O P =

l : 49v l : q* =
Commutative:

49A0 =
49v0 =

Associative:
(49 A 49) A x =

(49v @ v x =
Idempotent:

49A49 =

49v49 =

Distributive:
(49v 0) Ax
(49A ~0) v x

Absorption:
(49A ~0) v 49
(49v 0) A 49

Path Equivalence:
E I A E 2
Ei A E2

E A X : C

E

l : E

E

= TOP (i)

T O P (2)
49 (3)
TOP, Va, b E A and a # b (4)
T O P (5)

l: (49 A 0) (6)

NIL (7)
49 (8)
l: (49 v 0) (9)

*A 49 (io)

O v 49 (Ii)

49 A (0 A x) (12)
49 v (4~ v x) (13)

49 (14)
49 (15)

= (4 9 A x) v (e A X)
= (4 v x) ^ (, / ' v x)

= 6
= 49

(16)
(17)

(18)
(19)

= Ea whenever E1 C E 2 (20)
= E 1 A (E 2 U {zy]z ~ El}) (21)

for any y such that 3 x : x E Ea and
xy ~ E2

: EA (Ay:c wherex E (22)
\ y ~ E /

= E A {X} if X is a prefix of a string in E (23)
= {lw[w E E } (24)
: N I L (25)
= TOP for any E such that (26)

there are strings x , x y ~ E and y # e

Fig. 5. Laws of equivalence for formulas.

ever, is in order. For example, law 21 states that the Nerode equivalence
relation is a right congruence relation with respect to defined transitions.
The formulas E1 and E2 state that all path strings in those respective sets
lead to the same point in the feature structure. If there is a string x in E1
with an extension xy E E2, then x is congruent to all strings in E~, and so,
since the Nerode relation is a right congruence, xy must be equivalent to
zy. We have used the E notation for reasons of mathematical succinctness;

T H E L O G I C O F U N I F I C A T I O N I N G R A M M A R 47

we could have as well introduced simple path equations x = y, which would
have made for readability, at the cost of making the axioms a bit clumsier.

Some laws may be regarded as optional depending on the type of
structures which are being described. For example, the equivalence (26)
is added to prevent cyclic graphs by making descriptions of cyclic structures
unsatisfiable.

We will discuss the meaning of completeness in Section 5.

4. SOLUTION OF THE NON-LOCAL VALUE PROBLEM

The logic presented in the previous section contains no direct represent-
ation for non-local path values of the type described in FUG descriptions.
Recall that in Functional Unification Grammar a non-local path denotes
the value found by extracting each of the attributes labeled by the path
in successively embedded feature structures, beginning with the entire
structure currently under consideration. In order to give the intended
interpretation for such values, it is necessary to make reference to the
global context of the structure in which they occur.

In this section the logic will be extended to include descriptions contain-
ing non-local values. It will also be shown that these descriptions can be
converted into formulas of the simpler logic by using only path equivalence
classes to represent the non-local dependencies.

4.1. Extending the Logic

The syntax for expressing a non-local path value will be a path expression
enclosed in angle brackets:

(p} where p E L*.

This type of formula denotes the value found by traversing the path p in
a satisfying feature structure. Adding this type of formula to the other
types previously defined, we have the well-formed formulas of extended
FDL, as shown in Figure 6.

The domain of feature structures remains the same as before, but the
satisfaction relation must be extended with structures which represent the
global context. This is done by specifying pairs consisting of automata and
one of their states as structures which satisfy a formula:

(1) (s~, q) ~ NIL always;

(2) (s4, q) P TOP never;

(3) (sg, q) ~ a ¢:~ q is a final state denoted by the atom a with no
outgoing transitions;

48 R O B E R T T . K A S P E R A N D W I L L I A M C. R O U N D S

Fig.

NIL
TOP
a where a ~ A
I{P~) (p=)~ where each pi ~ L*
{p} where p E L*
1 : 05 where l E L and 05 E FDL

05/,0
05v0

6. The domain, extended FDL, of logical formulas.

(4) (J , q) ~ E ¢:~ Vp ~ E, 6(q, p) gives the same value;

(5) (J , q) ~ (p) @ 6~(qo, p) = q;

(6) (s/, q) ~ l: 05@ 6(q, l) is defined and (s~, 6(q, l)) ~ 05;

(7) (sO, q) ~ 05 v O@ (~¢, q) ~ 05 or (~/, q) ~ O;

(8) (~/, q) ~ 05/` 0 @ (~ , q) ~ 05 and (s¢, q) ~ 0.

Given a pair (s¢, q), the subautomaton of a¢ having q as an initial state
can be regarded as the part of the structure being described by the formula,
and the automaton s¢ can be regarded as the global context of the entire
structure. We may recapture the original notion of satisfaction by stipulat-
ing that .~/~ 05 if and only if (sO, qo) ~ 05 in the new sense. Note that this
interpretation of formulas differs significantly from the simpler one only
in two clauses, those pertaining to formulas of the type (p} and the type
l : 05, above. The clause for (p} is the only one which refers to the global
context, and the clause for l: 05 is the only one which changes the state
under consideration.

It can be shown that the laws of equivalence given in Section 5 still hold
for the extended logic. This should be obvious for the laws which have
no mention of labeled formulas, since the satisfiability conditions of other
types of formulas do not refer to the global context, and are essentially
identical to the conditions of the simpler logic. For proof of the laws
involving labeled formulas, consider (6): l : 05/` l : 0 = l : (05/` 0). Given
(s/, q) ~ l : 05 A l : 0, we can derive the following:

(s¢, q) ~ l : 05and (sO, q) ~l : 0

¢=~ 6(q, l) is defined, and (~/, 6(q, l)) ~ 05 and
(.4, ~(q, l)) ~ 0
@ 3(q, l) is defined, and (M, 3(q, l)) ~ 05/x O

@ (s¢, q) ~ l: (05/x #/) (as desired).

THE LOGIC OF UNIFICATION IN G RA MMA R 49

Law (9) and the path equivalence laws can be derived in an analogous
manner.

4.2. Eliminating Non-local Path Expressions

It is possible to transform a formula containing non-local path expressions
into a logically equivalent formula containing path equivalence classes,
but no non-local paths. Then the simpler interpretation of FDL (with no
global context) may be used to determine the structures which satisfy the
formula.

The first step of the transformation uses the path expansion algorithm
of Figure 7. This algorithm applies equivalences (6 and 9) of the calculus
exhaustively to a formula, and all of its subformulas. Therefore, by the
correctness of the formal equivalences, the result produced by the algor-
ithm must be equivalent to the original formula.

The second step of the transformation converts a sequence of labels
followed by a path into a path equivalence class, using the schema

(27) ll : . . • : In : (p) ~ [[(ll • • • In), (p)].

Note that path expansion does not require an expansion to full DNF,
since disjunctions are not multiplied. While the DNF expansion of a
formula may be exponentially larger than the original, the path expansion
is at most quadratically larger.

T H E O R E M 1. Path expansion requires at most O(n 2) space and time.
Proof. The size of the formula with paths expanded is at most n x p,

where n is the length of the original formula, and p is the length of the
longest path. Since p is generally much less than n the size of the path
expansion is usually not a very large quadratic.

Function P A T H - E X P A N D (~b) Returns formula:
Select form of ~b:

l : (~O v X) ~ Return l : PATH-EXPAND(~0) v l : PATH-EXPAND(x) ;

l : (~0/~ X) ~ Return l : PATH-EXPAND(~0)/x 1 : PATH-EXPAND(x) ;

l : ~0~ Return l : PATH-EXPAND(~0);

~0/x X ~ Return PATH-EXPAND(~) /x PATH-EXPAND(x) ;

~0 v X ~ Return P A T H - E X P A N D (q 0 v PATH-EXPAND(x) ;

Atomic (otherwise) ~ Return ~b.

Fig. 7. An algorithm for path-expansion.

50 R O B E R T T . K A S P E R A N D W I L L I A M C. R O U N D S

T H E O R E M 2. After path expansion all complete strings of labels in a
formula denote trasitions from a common initial state of an automaton.

Proof. Observe that after path expansion no subformulas of the form
/ : (~ v X) or of the form /:(~0/x X) remain. Therefore any subformula
containing labels must be a string of labels followed by an atomic formula.
Let us generalize the definition of satisfiability for formulas having the
form l : 05 to those of the form p : 05, where p may be any string of labels:

(~, q) ~p : 05#=)6(q,p) is defined and (~ , 6(q,p)) ~ 4).

Consider the case where 05 is a non-local path expression denoted by (w}:

(J , 6(q,p)) ~ (w} ¢=~ 6~(qo, w) = 3~(q,p).

When q = q0, then 6(qo, w) = a(q0, p) and (s~, qo) ~ ~(w), (p}l]. After path
expansion, the only subformulas which are interpreted with respect to a
state different from the initial state of the entire formula are those denoted
by 05 in l : & Thus, all strings of labels followed by a non-local path
expression (w} must be interpreted by a pair containing the initial state of
the automaton. In this case q = qo, and

(~4, q0) ~ P : (w} ¢=) (M, q0) ~ [[(P}, (w)~.

This ends the proof.
Therefore, by Theorem 2, the expressions containing non-local paths

can be converted to the equivalence class notation, using the schema (27).
As an example of this transformation, consider the passive voice alterna-

tive of the description of Figure 2, shown here in Figure 8. This description
is also represented by the first formula of Figure 9. The following formulas
in Figure 9 are formed successively by

(1) applying path expansion,
(2) converting the attributes containing non-local path values to

formulas representing equivalence classes of paths.

By following this procedure, the entire functional description of Figure 2
can be represented by the logical formula given in Figure 10.

voice = passive
goal = (subj)

[cat = pp]
| prep = by [

adjunct = / obj = (actor}]

[= [case = objective]]

Fig. 8. Functional description containing non-local values.

THE LOGIC OF U N I F I C A T I O N IN G R A M M A R 51

vo ice : pa s s ive

/x goa l : (subj)
/x a d j u n c t : (ca t : p p
/x p r e p : b y

/x obj : (a c t o r)
/x obj : case : o b j e c t i v e)

path
expansion

vo ice : p a s s i v e

/x goa l : (subj)

/~ a d j unc t : ca t : p p
A a d j u n c t : p r e p : b y

A a d j u n c t : obj : (ac to r)
A a d j u n c t : ob j : case : o b j e c t i v e

path
equivalence

vo ice : p a s s i v e

/x ~(goal), (subj)~

/x a d j u n c t : ca t : p p
A a d j u n c t : p r e p : b y

/x ~(adjunct obj) , (actor)]}
/~ a d j u n c t : obj : c a s e : o b j e c t i v e

Fig. 9. Conversion of non-local values to equivalence classes of paths.

ca t : s

A subj : case : n o m i n a t i v e
A

((v o i c e : a c t i v e

/x ~(actor) , (subj)~)
v

(vo ice : p a s s i v e
/~ ~(goal), (subj)~
/x a d j unc t : ca t : p p

/x a d j unc t : p r e p : b y

A ~(adjunct obj) , (actor)~
/~ a d j u n c t : obj : case : o b j e c t i v e))
A

(m o o d : d e c l a r a t i v e
v

m o o d : i n t e r r o g a t i v e)

Fig. 10. Logical formula representing the description of Figure 2.

52 R O B E R T T . K A S P E R A N D W I L L I A M C . R O U N D S

5 . M A T H E M A T I C A L R E S U L T S

In this section we present some of the mathematical justification for the
claims made earlier. We begin with the notion of subsumption.

5.1. Subsumption

Let ~ and N be two automata. We say JC_ N (~4 subsumes N; N extends
J) iff there is a homomorphism from s~ to ~3; that is, a map h : Q~ ~ Qo~
such that (for all existing transitions)

(1) h(6~(q, l)) = 6~(h(q),/);
(2) h (c) = c f o r a l l c ~ A A F ~ ;
(3) h(qo~) = qo~.

This definition captures the notion of extension (see [2, page 5])
precisely. We intend that ~/C_ g3 if Y3 has more information than sO. This

may happen in two ways. The automaton N may have more transitions
than ~ , and here is where the different kinds of final state are important:
Y3 can extend J if N has transitions out of the nonatomic final states of
~ . Also, if ~3 identifies two paths which in s~ are distinct, then 93 has
more information than s4, so ~C_ Y3 in this case too. It is not hard to
show that if two automata subsume one another, then they are isomorphic,
so that C_ is a partial order on the isomorphism classes of finite acyclic
automata.

Next, we show that if s~ is a finite acyclic automaton, then we may write
a formula in FDL describing it up to isomorphism.

DEFINITION. (Nerode canonical formula of an automaton). Let d be
an automaton, and let N(~/) be its Nerode relation. Then we define

4 (s ~) = ~q =c

where c is an atom, and the Ei are the Nerode classes of N(s /) , determined

by nonatomic states.

DEFINITION. We say 4(~)C_ ~b(N) iff for each E occurring in qS(J),
and also for the sets E¢ consisting of all the strings x such that x : c occurs
in the formula, there is a corresponding F occurring in &(93) with E C__ F.
(To say that this inclusion and its reverse holds is to say that the formulas

are the same.)

T H E O R E M 3. The following are equivalent:

T H E L O G I C O F U N I F I C A T I O N I N G R A M M A R 53

(1) a / r - 33;

(2) V95(a/~ 95~ 33 V 95);

(3) 33 ~ 95(a/);

(4) 95(a/) C_ 95(33).

Proof. (1) ~ (2). We proceed by induction on the structure of 95. If this
formula is an atom or NIL, the result is trivial. If 95 is E, then there is a
state r E Q~ such tha t /~ (qo , x) = r for all x E E. Then /~ (q0 , h(x)) = h(r),
proving that 33 ~ E. The proof for the propositional connectives v and

/x is standard, so consider the case 95 = l : ~. If a /~ l : ~, then a//l is defined
and satisfies 0. But by (1), a / ~ 33. It easily follows that a//l E 33/I, and
by inductive hypothesis 33/I ~ ~. Thus 33 ~ l : ~.

(2) ~ (3). Trivial, since a/P 95(a/).

(3) ~ (4). Let x : c be a conjunct in 95(a/). Then 3~(qo, x) = c. Since
33 ~ 95(a/), 33 has an x-path to c, and so x : c is a conjunct in 95(33). In a
similar way, it follows that each Ei class occurring in 95(a/) is contained

in a class of 95(33). Thus 95(a/)__ 95(33).
(4) ~ (1). We must define h : Q~--+ Q~. Let r E Q.,~ and choose x such

that 6~(qo, x) = r. Then x ~ E for some Nerode class E of a/. By (4), this
class is contained in a Nerode class of 33, represented by some state s of
33. Let h(r)= s. Standard arguments show that h is well-defined and a
homomorphism. This completes the proof.

We can now use this result to show semantically that if two automata
are unifiable (i.e., have an upper bound in the subsumption ordering,)
then they have a most general unifier (i.e., a least upper bound in the
ordering.)

DEFINITION. The automaton a / × 33 is the product automaton with
state set Q~ × Q~, and with transitions defined when both components
can do so on a particular input. We also need to identify a pair of states
(c, d), where c and d are distinct atoms, with a nonatomic final state q,
and to identify (c, q) and (q, d) with q as well. The pair (c, c) is identified
with c. a / × 33 can be thought of in linguistic terms as the generalization
of a / a n d 33. It is in fact the greatest lower bound of a / a n d 33 in the
subsumption ordering.

DEFINITION. A conjunctive formula contains no uses of the v connec-
tive.

T H E O R E M 4. Let 95 be a conjunctive formula. If a/~ 95 and 33 ~ 95, so
does a / × 33.

54 R O B E R T T . K A S P E R A N D W I L L I A M C . R O U N D S

Proof. Again use induction on qS. The base cases and the inductive step
for the connective /x are all easy. Consider the case 4~ = l : ~. If s¢ and

satisfy ~b, we must show that (s~ x N)/l exists and satisfies ~0. But it is
easy to show that (sd x N)/l is equal to sdll × N/l. The result follows by
inductive hypothesis.

T H E O R E M 5 (existence of most general unifier). If q5 is conjunctive and
satisfiable, then there is a subsumption-minimum automaton ~/such that

Proof. Use condition (4) in the characterization of subsumption to show
that subsumption restricted to the set of automata satisfying & is well-
founded (in fact, that there are only a finite number of automata which
subsume a given one), and the previous theorem to show that two minimal
elements are the same. This proves the theorem, and the fact that it also
shows the existence of a most general unifier can be seen as follows.
Assume that J and N are two automata which have a common upper
bound in the subsumption ordering. Then their most general unifier is
that automaton ~ which is the least one satisfying ~b(sg)/x qS(N).

5.2. Disjunctive Normal Form

A formula is in disjunctive normal form if and only if it has the form
4~1 v . . . v ~bn, where each disjunct ~bi is either

(1) a, where a ~ A ;

(2) t/t I /x . . . / x Om, where each conjunct ~0i is either

(a) ll : . . . : l~ : a, where a E A, and no path (i.e., sequence of
labels) occurs more than once;

(b) ~{p~} {Pk}], where each pi E L*, and each set denotes
an equivalence class of paths, and all such sets, within a
disjunct, are disjoint.

Another way to express the same idea, and an equivalent definition of
disjunctive NF, is to use the notion of the canonical formula associated
with an automaton. It is easy to see that the individual disjuncts in the
normal form just defined are just the ~b(s~i) defined in the previous section.
Thus, one way of stating a normal form result is as follows.

T H E O R E M 6 (Nerode normal form). Let ~b be satisfiable; then there is
a finite set of automata s / ~ , . . . , sg~, depending only on the logical equival-
ence class of qS, such that the J i are subsumption-incomparable, and such
that

T H E L O G I C O F U N I F I C A T I O N I N G R A M M A R 5 5

v . . . v

One way to prove this result is as follows. Given a formula, apply first
the path expansion laws, and then the distributive laws until the formula
is in a disjunctive form; that is, a disjunction of conjunctive formulas.
Then use the results of the previous section to find, for each conjunctive
formula, the minimal automaton satisfying it. This will be a finite set, and
it can be shown that this set of automata depends only on the original
formula. This gives a semantic proof of the NF result, but a more algorith-
mic approach is preferable for the completeness result. The formal equiv-
alences given in Figure 5 allows us to transform any satisfiable formula
into its disjunctive normal form, or to T O P if it is not satisfiable. Now
our calculus is seen to be complete, because the logical equivalence of
any two formulae can be shown just by equationally transforming the two
formulae into their Nerode Normal Form (NNF), which form is unique
up to associativity and commutativity.

T H E O R E M 7. There is an algorithm for computing the NNF of any
formula within 2 °(n) time; further, this algorithm derives the NNF using
only the equational laws.

Proof. The algorithm is given in Figure 11, and requires exponential
time, where the exponent depends on the number of disjunctions in the
formula. The applications of the distributive laws are responsible for the
exponential running time. This algorithm will not be used in practice, but
it is given here to illustrate the decidability of equivalence in the calculus.

We end the section with our NP-completeness result.

T H E O R E M 8. The satisfiability problem for FDL is NP-complete.
Proof. We reduce the classical satisfiability problem to that for our

formulas. This reduction is not trivial, because our formulas do not have
negations. However, the reduction is still quite easy, and makes use of
the fact that paths can have distinct atomic values. We therefore reduce the
satisfiability of CNF formulas in propositional calculus to the satisfiability
problem in our logic. Let P be a formula of propositional calculus in CNF.
For each literal xi in P, create a label li in L. For each literal -nxi, create
a label l}. (If the set of labels is finite, this will have to be done using
paths instead of labels.) Let a and b be two distinct atoms. Transform P
as follows. Replace each xi by l i :a , and each ~x i by l}:a. (Think of
'a' standing for 'true'.) Now, to the formula just obtained, conjoin the
following:

A ((li : a /x l" : b) v (l}: a/x li : b)).
i

56 R O B E R T T . K A S P E R A N D W I L L I A M C . R O U N D S

Function NNF(05) Returns formula:
where 05 is a formula.

1. Apply laws (6) and (9) from right to left, moving all labels to the
inside.

2. Apply the distributive law (16) from left to right, until no more appli-
cations are possible.

3. Eliminate redundancies and inconsistencies within disjuncts.

For each disjunct (tp) do:
Apply (24) to all conjuncts of the form w : E.
Apply (23) to all conjuncts which are E formulas.

Using the commutative (10) and associative (12) laws, bring together
pairs of conjuncts as necessary for the following steps:
If some conjunct is an atom,

Then apply (14) to eliminate redundant conjuncts,
or apply (4) and (5) to detect inconsistent information.

Apply (21) to close path equivalence classes under right invariance.
Apply (20) to make the path equivalence classes disjoint.
Apply (22) to add all atomic values required by path equivalence.
Apply (6) for each pair of conjuncts having a common prefix of labels:

Apply (2-5) and (14) to eliminate redundant
and inconsistent conjuncts.

Apply (1) to propagate any failure to the top level of the disjunct.
If any conjunct is TOP, then use (2) to propagate failure.
Apply (3) to eliminate any NIL conjuncts.

Now, 0 must be one of the following types:
NIL : then Return (NIL), by law (7);
TOP : then eliminate this disjunct, by law (8);
otherwise: leave 0 as a disjunct in 05.

Return the modified value of 05.

Fig, 11. A l g o r i t h m to conve r t a fo rmula to N e r o d e N o r m a l Form.

This clause forces l/ and l~ to have differing values. It follows that the
constructed formula is satisfiable iff P is.

The satisfiability problem is in NP, because given a formula, we can
guess which disjuncts are to be satisfied, obtaining a conjunctive formula

THE LOGIC OF U N I F I C A T I O N IN G R A M M A R 57

after discarding unwanted disjuncts. The conjunctive formula can be put
into NF and checked for consistency in polynomial time. This completes
the proof.

6. CONCLUSION

We have seen how the techniques of logic have helped us to understand
the complicated grammatical notion of unification, especially in situations
involving functional descriptions which have shared functional values,
nonlocal values, and disjunction. This approach has helped us to design
reasonably efficient algorithms dealing with these descriptions, and it is
mathematically simple. There is much more to the approach than we can
describe here, but we hope that this article clarifies some of the basic
issues in the syntactical metatheory of unification grammar.

R E F E R E N C E S

[1] Ait-Kaci, H.: 1984, A Lattice-Theoretic Approach to Computation Based on a Calculus
of Partially Ordered Type Structures, PhD thesis, University of Pennsylvania.

[2] Gazdar, G., G. K. Pullum, R. Carpenter, E. Klein, T. Hukari, and R. Levine: 1986,
'Category Structures', Technical Report SRC-86-01(2), Syntax Research Center, Uni-
versity of California, Santa Cruz.

[3] Gazdar, G., E. Klein, G. K. Pullum, and I. A. Sag: 1985, Generalized Phrase Structure
Grammar, Blackwell Publishing, Oxford, England, and Harvard University Press, Cam-
bridge, Massachusetts.

[4] G. R. Kress (ed.): 1976, Halliday: System and Function in Language, Oxford University
Press, London, England.

[5] Kaplan, R. and J. Bresnan: 1983, 'Lexical Functional Grammar: A Formal System
for Grammatical Representation', in J. Bresnan (ed.), The Mental Representation of
Grammatical Relations, MIT Press, Cambridge, Massachusetts.

[6] Karttunen, L.: 1984, 'Features and Values', in Proceedings of the Tenth International
Conference on Computational Linguistics: COLING 84, Stanford University, Stanford,
California.

[7] Kasper, R., and W. Rounds: 1986, 'A Logical Semantics for Feature Structures', in
Proceedings of the 24th Annual Meeting of the ACL, New York, N.Y.

[8] Kasper, R.: 1987, Feature Structures: A Logical Theory with Applications to Natural
Language Analysis, Ph.D. dissertation, University of Michigan.

[9] Kay, M.: 1979, 'Functional Grammar', in Proceedings of the Fifth Annual Meeting of
the Berkeley Linguistics Society, Berkeley Linguistics Society, Berkeley, California.

[10] Kay, M.: 1985, 'Parsing in Functional Unification Grammar', in D. Dowty, L. Kar-
tunnen, and A. Zwicky (eds.), Natural Language Parsing, Cambridge University Press,
Cambridge, England.

[11] Pereira, F. C. N. and S. M. Shieber: 1985, ~The Semantics of Grammar Formalisms
Seen as Computer Languages', in Proceedings of the 23rd Annual Meeting of the ACL,
Chicago, Ill.

[12] Rounds, W. C. and R. Kasper: 1986, 'A Complete Logical Calculus for Record Struc-
tures Representing Linguistic Information', Proc. IEEE Symposium on Logic in Com-
puter Science.

5 8 R O B E R T T . K A S P E R A N D W I L L I A M C . R O U N D S

[13] Shieber, S. M.: 1984, ~The Design of a Computer Language for Linguistic Information',
in Proceedings of the Tenth International Conference on Computational Linguistics:
COLING 84, Stanford University, Stanford, California.

[14] Shieber, S. M.: 1986, An Introduction to Unification-based Approaches to Grammar,
University of Chicago Press, Chicago, CSLI Lecture Notes Series.

Electrical Engineering and Computer Science Department

University o f Michigan
Ann Arbor, Michigan 48109

U.S.A.

