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TOTALLY DISCONNECTED SETS, JORDAN CURVES,
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-Each bounded, closed, totally disconnected set M in the w-plane lies
on some Jordan curve I’ (see R. L. MoorE and J. R. Krive [8]). Let @ denote
the bounded domain determined by I, let D and C denote the unit disk and
the unit circle in the z-plane, and let f be a mapping of DU C onto G U T,
holomorphic in D and continuous and univalent in D | C. Kikuji MATSUMOTO
([2], Theorem 4) showed that if we pinch the domain G in appropriate places,
then the set f~(M) has logarithmic capacity 0. In this note, we prove that
we can not only make the set f7(M) arbitrarily thin, but that we can re-
quire it to lie in any preassigned perfect subset of C.

TuroreEM. Let M be a bounded, closed, totally disconnected set in the w-
plane, and let E be a perfect set on C. Then there exists a function f, holomorphic
in D and continuous and univalent in D U C, such that f~ (M) C K.

Our proof is based on the construction of a certain tree 7' and a certain
Jordan domain G, in the w-plane. The tree lies in ¢/, and the derived set
of its set of vertices is M. A simple analytic process allows us to replace the
tree T' with a subdomain @ of G such that one of the corresponding holo-
morphic and univalent functions f from D U C onto G satisfies the condition
fiEYD M.

The tree. Without loss of generality, we may assume that the set M lies

in the open rectangle ¢ whose vertices are the points w— 4+ V§/2 and w =

= 4+ V§/2 + 4. Since M is closed and totally disconnected, there exists a
directed polygonal arc P that begins at the point 0, lies in @ \ M, and separates

¢ into two components @, and ¢, each of diameter less than V§(4/ 5). Similarly,
there exist two directed polygonal arcs P, and P; in Q,\ M and @\ M,
with a common initial point on P, and such that each of the four corresponding

sets Qoo Qo> o @11 has diameter less than V§(4/5)2. We continue the dissec-
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tion of @ indefinitely, in such a way that each polygonal arc of the n™ stage
is divided into two parts by the common initial point of two arcs of the (n + 1)
stage. The union of the anterior parts thus determined constitutes a tree 7',
and each vertex of 7', (except the point «x = 0) has degree 2 or 3 (see the heavily
drawn portion of Figure 1). We may assume that the directions of two con-
secutive segments of 7', always differ by less than =/2.

Fig. 1

Because the set M meets none of the polygonal arcs P, Py, Py, Py,
Py, ..., each point of M is the limit point of exactly one simple path that
begins at 0 and lies in 7'y. The union of all simple paths beginning at 0, lying
in Ty, and having a limit point in M constitutes our tree 7'.

The domain G, We arrange the segments of 7' into a sequence {S,}
so that m, < m whenever S,, precedes S, in 7T, and so that |m, —m | =1
whenever S, and S, have a common initial point. We then choose a sequence
{#m} of positive numbers, and we denote by H,, the set of all points whose
distance from S,, is less than &,. If 8, — 0 rapidly enough, then the set
G, = U H,, is a Jordan domain, and for each index m the intersection of M
with the closure of H,, is empty.

The analytic device. Barring an obvious geometric obstacle, the following
lemma allows us to pass from any univalent function f in |z | <7y (ry > 1)
to a univalent function g such that the essential difference between the domains
f(D) and g(D) is a narrow rod of prescribed base, length, and direction.

LEMMA (compare [1], pp. 43—44). Suppose that the function [ is holo-
morphic and univalent in some disk |z | <ry (ro > 1). Let { = ¢, and let L
be a complex number such that

(1) | arg L — arg {f'(0) | << w/2
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and such that the line segment S joining the points f() and f(C) + L meets the
set f(D U C) only at f(C). Corresponding to each real number ¢ (o < 1), write
(2)

. log(1 — z/z,)
ge(z) = f(z) + Ll———Qg(l ~ 1)) ’

where zy = ¢, Then there exists a constant gy (g, > 1) such that for 1 < g <g,
the function g , is univalent in some disk |z | <r (1 < r; < 0).

To prove the lemma, we write ¢ = 1 -+ ¢, we impose the preliminary
restrictions £ < 1/e and ¢ < (r, — 1)/2, and we observe that the univalence
of fin |z | < r, implies the existence of a positive constant 4, such that the
inequality

(3) [ flze) —fla) | = Ay |2 — 2|

holds for all z; and 2z, in D U C. We write 2/{ = « + i8 (@ and B real), and we
consider the function g, separately in the two overlapping regions

Dy={z:12]1<1, a<1—K/|loge]|},

Dy={z:|2]<1, «>1— (log|loge{)~1}

(see Figure 2); here K denotes a positive number to be chosen below.

Fig. 2
2 Periodica Mat. 2 (1—4)
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Since
L

4(2) —f(z) = }m,

and since in D, the maximum modulus of the right-hand member is

L] LI/K
{logﬁlel(eJrK/llogel)<J Y

the inequality :
[ 90(z) — 9o(21) | = 125 — 2 [ (dy — [ L|[K)
holds for all z; and z, in D,. In particular, the choice K = A4,/2 | L | gives the
inequality : '
| 9o(z) — go(2) | = Ay 120 — 2 /2,
and therefore g, is univalent in D,.

To establish univalence in D,, we examine the argument of the derivative

I L 1
e ~_zolio ‘10g5/9| (l—z/zo)].

By the inequality (1), the argument of the first term in the brackets is restricted
to some interval [arg L — 7, arg L + 5], where 5 < /2 if ¢ is sufficiently
small. Because the argument of the second term is also restricted to such an
interval, the theorem of K. Nosarro and S. E. WarscaAwSK: implies that the
function g, is univalent in D, (see [4], Theorem 12, p. 151; [5], Lemma 1,
p. 312).

To conclude the proof of the lemma, we shall show that if 2z, € D, \ D,
and 2, € D, \ D;, then g,(z) lies at a greater distance from the segment S
than g,(z,).

Our hypothesis on the line segment S implies the existence of a positive
constant A, such that for each z in D U C the distance between f(z) and the
segment S is at least 4, | z — { |. Therefore the distance between f(z,) and the
segment S is at least A,(log | log & |)~1. Since the imaginary part of log(1 — 2/z,)
is bounded by 7/2, the distance between g,(z,) and § is at least

Ay(log [log e )t — 2 [ L] - [log e |71 > dy(log | log &[)~*

On the other hand, (2) implies that if 4, denotes the maximum modulus of f’
on C, then the distance between g,(z,) and § is less than

|Ljmj2
|log gfo]

This shows that g,(2;) # g,(z,), and the lemma is proved.

A, V2K [[loge| 4 <A/V|10gs]
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Construction of the domain G. We choose any point 2, in the perfect set Z,
and we denote by L, the coordinate of the endpoint of the segment S; in the
tree T'. If o, — 1 is small enough, then the function

log 1 _Z/lel)
L 28 T ARy
B = I ey

maps the set D | C onto a region lying in A, and containing the segment §,.
If L, is not a branch point of the tree 7', we write z, = 2;, and we construct
the function

- log (1 — z/os2,)
fol2) = filz) + L, mlog (1 — 1/o) ,

choosing L, so that f, maps z, onto the endpoint of S,, and choosing p, near
enough to 1 so that f(D U C) < H,U H,. If L, is a branch point of 7T, we
choose two distinct points z, and z; of E near z; (this is possible, since ¥ is
perfect), and we construct the function f; so that

fs(DUC)CH,UH,U Hy,

and so that fy(z,) and fs(z;) are near enough to the endpoints of S, and §; to
allow the obvious continuation of the process.

Clearly, the function f == lim f,, is univalent and continuous in D |J C,
and f(D) < ¢4. Since E is closed and each point of M is a limit point of the
sequence {f(zn)}, the set M lies in the set f(E). This concludes the proof of
the theorem.

If we drop the hypothesis that the set M is bounded, the theorem remains
valid provided we interpret continuity in terms of the spherical metric.
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