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O. Approach 

We use the notation and terminology of [12]. The r a m s e y  number 
r(m, n) as traditionally studied in graph theory may be defined as t h e  mini- 
mum number p such that  every graph with p points which does not contain 
the complete graph Km must have n independent points. Alternatively, it is 
the smallest p for which every coloring of the lines of Kp with two colors, 
green and red, contains either a green Km or a red K n. ThuS the diagonal 
ram.~ey numbers r(n, r~) can be described in terms of 2-coloring tt~e lines:of Kp and 
regarding K~ as a forbidden monochromatic subgraph without regard to color. 

This viewpoint suggests the more general situation in which an arbi- 
t rary graph G has a c-coloring of its lines and the number of  monochromatic 
occurrences of a forbidden subgraph F (or of a forbidden family of graphs) 
is Calculated. A host of problem areas within graph theory can be subsumed 
under such a formulation. These include the line,chromatic num})erl ifi which 
the 3-point path is forbidden. The arboricity of G involves forbidding M1 
cycles. The thickness of a graph forbids the Kuratowski  graphs. Complete 
biparti te graphs can be taken for both G and F,  and s o  can cubes Qn and Qm. 

There has long been a sentiment in graph theory that  there is a n  inti- 
mate  relationship between extremal graph theory and ramsey  numbers. I t  
does not appear possible to derive either TIJ~AN's Theorem or: RA~sEY's 
Theorem from the other. However, extremal biparti te graph theory does in 
fact imply the bipartite form of RAMSEY'S Theorem. The mystery behind 
these implications is revealed by Theorem 1. 

A combinatorial technique used by ERD6S to find a lower bound for 
diagonal ramsey numbers r(n, n) is extended to generalized ramsey numbers 
for a rb i t ra ry  graphs and forbidden subgraphs. 

1. Introduction 

Let o~ be a family of graphs, G a given graph, and c a positive integer. 
We denote by _R(G, o~, c) the greatest integer n with the property that,  in every 
coloration of the  lines of G with c colors, there are at least n monochromatic 
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occurences of a member of ~. Without any loss of generality, we can assume 
tha t  every forbidden subgraph F ~ ~ has no isolated points. Among the 
typical  families ~ of forbidden subgraphs, we mention the family ~ of all.  
cycles, the family ~0 of odd cycles, and the family ~ of Kuratowski graphs, 
namely those homeomorphic to K 5 or Ka, 3. I f  $ contains just one forbidden 
subgraph F then we write simply R(G, F, c) instead of R(G, (F},  c). 

The numbers R(G, ~, c) are useful in formulating various graph theoret- 
ical problems and results. For instance, the four color conjecture states that  

R(G, ~, 1) z 0 implies R(G, ~o, 2) ---- 0, 

i.e., that  every planar graph is the line-disjoint union of two bigraphs. An 
equivalent formulation of the four color conjecture is: 

For every bridgeless cubic planar graph G, R(G, P3, 3 ) ~  0, in other 
words, every bridgeless cubic planar graph is 1-factorable. Vizing [18] proved 
tha t  

R(G, P3, A + 1 ) ~ 0  

when he showed that  the line-chromatic number of every G is either A or 
/J + 1. Obviously, the thickness of a graph G is the minimum n such that  

R(G, ~C, n) -~ O. 

Similarly, the arboricity of G is the minimum n such that  

R(G, ~, n) = O. 

NASH-WILLIAMS [14] proved that  the arboricity of a graph G is equal to 

n<~p 

where q. is the maximum number of lines spanned by n points. When RAMSEu 
theorem [15] is specialized to graphs, it asserts that  given any positive in- 
tegers m and c there is always an integer n = n(m, c) such tha t  

R(K,. Kin, c) ~ 0. 

Similarly, ERD6S and RaDo [6] proved for complete bigraphs that  given 
any positive integers m and c there is always an integer n = n(m,c) such that  

R(K.,,. Kin,m, c) > 0; 

this is sometimes called the theorem on polarized partition relations. 

We now present a brief summary of results involving R-numbers. 
EI~DSS and SZEKERES [ 8 ]  proved that  

n ~  [ 2 : - -  21) implies R(Kn, Km,2)~O,  
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while ERD6S [3] proved that  

(1.1) m > 3, n ~ 2 m/z implies R(K. ,  Km, 2) = 0, 

which was generalized in C~VhTAL [2] to 

(1.2) n < c m]~ I m~t" tl/m implies R(Kn K,., c) = O. 
(c1+m/21 

GRE]~WOOD and GLEASO~ [10] showed that  r(4,4) = 18 by  establishing tha t  

(1.3) R(K17, K 4, 2) = 0 and R(K~s, K 4, 2) > 0. 

For a summary of other results on ramsey numbers, see [12], p. 17. Some 
exact results for R-numbers were found by GOODMA~r [9], who showed that  

l u ( u  -- 1) (u -- 2) for = 2u 

(1.4) R ( K ~ , K a , 2 ) =  2 u ( u - - 1 ) ( 4 u 4 -  1) for n = 4 u + l  

2 
3 u ( u 4 - 1 ) ( 4 u - -  1) for n = 4 u 4 -  3. 

EI~DSS [4] also obtained the inequality 

R(Kn , Kr., 2) > - -  
2(7) 

In CI-IV2{TAL [1], tWO inequalities for bigraphs were proved: 

n ~ mc" implies R(Kn.n, Kin. m, c) > 0, 
(1.5) 

( ~ ]  implies R(g . .n ,  Kin. r~, c) : O. 

NIV]~I, see [11], completely characterized those a, b for which 

R(K2.m, Ka.o, 2) : O for m-- - -2 ,3 ,4 .  

EI~I)SS and Moo~ [5] derived the following limit: 

lira R(Km'n 'Ka 'b '2) - -  2 

Finally, Moozq and MosE~ [13] obtained the inequalities 

1 
2u~(u --  1) (4u -- 3) if n = 4u 

R ( K . . , K z , z , 2 ) >  2ua(4u--3)  if u = 4 u +  1 
' =~ u ( 2 u 4 - 1 ) ( 4 u  2 - u - l )  if n----4u-r 

u2(2u 4- l) (4u 4- 3) if n = 4u 4- 3.  



] l ~  O[tV~_TAL, HARAR:Y: GENEP~ALIZED RAMSEu THEORY FOP~ GR_&PHS 

Before proceeding, we mention some simple relations satisfied by the 
function R. I f  gl  and $2 are families of graphs such that  given any F 1 C $:1 
there is an F 2 E ~ with F 2 c F 1 then we write ~1 < ~2. In particular, ~ ~ ~,~ 
implies ~1 < ~e, and F2 ~ F~ implies {F~} < {F2}. It  is not difficult to 
see that  

(1.6) 
G 1 c G 2, c I >_ c 2 implies 

< R( r  c) = o 

R(G~, ~:, c) ~ R(G2, ~:, %), 

implies R(G, ~Yl, c) : O. 

2. From extremal theory to line-coloring theorY 

TtmA~ [17] founded extremal graph theory when he determined the 
greatest q-----q(p,n) such that  net  every (p,q) graph contains K n. For any 
family ~ of graphs, let us define ex(p, $, c) as the greatest q such that  not 
every (p, q) graph satisfies R(G, g~, c) > O. Then for a single forbidden graph F,  
ex(p, $, 1) is the same as ex(p, F) defined in [12], p. 18. Thus the numbers 
determined by T c ~  are precisely ex(p, K~, 1). The problem of determining 
an asymptotic value of ex(p, F, 1) for an arbitrary graph F was solved by 
E~D6S and SIMONOVI~S [7]: 

(2.1) lim ex(p, F, 1) _ 1 -- - 1 

In  these terms, the well-known maximum number of lines in an aeyelic graph 
and in a planar graph with p ~ 3 are given respectively by: 

ex(p, @, 1) = p -- 1, 

ex(p, ~E, 1)---- 3p -- 6. 

Tu~s observed that  numerically, the forbidding of triangles is tan tamount  
to the exclusion of all odd cycles: 

Not surprisingly, there is a monotonic relation between the function ex and 
all its variables: 

Pl ~ P2, g'2 ~'( ~ cl ~ c2 implies ex(pl, ~1, el) ~ ex(p2, ~ c2) 
(2.2) 

ex(p, ~, clc2) ~ c 1 ex(p, ~, c2). 

The numbers ex(p, K n, c) were investigated by S6s [I6]; she observed that  

(2.3) ex(p, K,,  c) = ex(p, .K,  1), where r = r(K~, c). 
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The "easy half" of  (2.3) follows at once from the more general inequality 

ex(p, F ,  c) ~ ex(p, G, 1), 

which holds for any two graphs F and G such that  R(G, F ,  c) ~ O. 

We now state and prove a general theorem which links extremal graph 
theory with line-coloring. 

T]~Ol~Elvi 1. Let ~ be a fami ly  of graphs containing a bicolorable graph 
F and let G 1, Ge, . . . be a sequence of graphs with p~ = p(G,) and q, = q(G,) 
such tha~" 

(2.4) lira p~ : ~- co, 

(2.5) lira inf q--~-~ ~ 0. 

Then given any positive integer e there is a subscript n o = no(c ) such that 

n ~ n  o implies R(G~,2~ ,c )~O.  

1)~OOF. Let us denote the left-hand side of (2.5) by L. By (2.1) for 
some Po, 

P ~ Po i m plies ex(p, F,  1) ~ _L_L . 

By  (2.4) and (2.5), there is a value n o such that  

n ~ n  o implies P n ~ P o  and q n / p ~ > L / 2 .  

:But then we have for each n ~ n o 

ex(p~, F,  c) ~ c ex(p~, F,  1) < L < q~ 

and so, by the very definition of ex(p, F ,  c), we have 

R(G., F, e) ~ O. 

As the singleton {F} ~ $, we have by (1.6), 

R(Gn, ~,  c) ~ 0 

which is the desired result. 

.... When in Theorem 1, we take the particular f~milies of graphs ~ = {K~, m} 
and G. = K . , . ,  we obtain as a corollary the above mentioned theorem of 
EtCDSS and I~A~)o on polarized parti t ion relations. However,  RAMSnu theorem 
cannot be obtained in this way since ex(p, K n, 1) is too large. More generally, 
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the above approach is bound to fail whenever ~ = {F} and Z(F) > 2, for 
then by (2.1), 

lim ex(p, F, 1) ~ 1 

and so the method does not work. Thus the "Turanisation" of Ramsey-type 
theorems is fruitful if ~nd only if the forbidden subgraphs are bic01orable. 

3. A combinatorial method for R.numbers 

ERD6S' proof of the lower bound (1.1) for ramsey numbers is based on 
a eombinatoriM counting argument: Applying his proof technique to a more 
general situation with arbitrary F and c colors, we obtain 

T~EO~E~ 2. ~ R(G, F, l) c -q(F)Jcl < 1 implies R(G, o~, c) = O. 
F E ~  

PRoof. Let us consider the set S of all the line-colorings of G with c 
colors. By a bad coloring, we mean one which gives rise to a monochromatic 
subgraph of G isomorphic to a member of o~. Let Ss denote the bad colorings 
in S. Clearly, we have 

(3.1) 

and moreover 

(3.2) 

IS I = cq(~ 

iSsl ~ . ~  R(G, F, 1)CO q(O)-q(F). 

The inequality (3.2) follows from the fact tha t  each f ~  SB is completely 
determined by (a) the choice of F ~ o~, (b) the choice of a subgraph F s  iso- 
morphic to E which may occur in R(G, F, 1) ways, (c) the choice of one of 
the c colors for the lines of FB, and also (d) the choice of a, ny colors for the 
remaining q(G) -- q(F) lines of G. 

I f  the hypothesis of the theorem holds, then the right hand side of 
(3.2) is strictly smaller than  the right hand side of (3.1) and so we have 

I S s I < [ S I ,  so tha t  S - - S B ~ O ,  

and hence R(G, o~, c) = 0, completing the proof. 

Although R(G, F, 1) is often difficult to evaluate, it can be found quite 
easily when G ~ K n. 

Without any loss of generMity, we can assume tha t  every forbidden 
subgraph F ~ ~ has no isolated points. For convenience, let p = p[F), and 
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let s = s(F) be the order of the autom0rphism group of F,  i.e., the number  
of symmetries of F.  Since F has no isolated points, 

Indeed, F c a n b e i m b e d d e d w i t h i n K ,  i n ( ; ) p , w a y s a n d t h e s e i m b e d d i n g s  

fall into equivMenee classes, each of these having exactly s members. 

In order to express the next three corollaries of Theorem 2 compactly, 
we require the following notation. Given any graph F and a positive integer 
c there is always (by Ramsey's theorem) an integer n with R(Kn, F, c) ~ O. 
The smMlest such n will be denoted by r(F, c). 

The first corollary gives a general lower bound for this number. 

COROLLARY 2A. r(F, c) > (scq-1) lip. 

PROOF. I f  p > n then obviously R(K,, F, c) ~- O. On the other hand~ 
when 

1 ~ p  ~ fb ~.. (8c, q-l) 1/p 
then we have 

R(G'F'  I) c-q+I ~ (;] p~l" c-q+l ~ npc-q+l 8 

and so, by Theorem 2; R(K n, F, c) ---- 0 again. Therefore 

R(K,, F, c) ~ 0 implies n ~ (seq-1) lip 

which is the desired result. 

Setting F = K m  in Corollary 2A, we obtain (1.2) as a special case. 
Setting F ---- Km,m we have p ---- 2m, q ---- m 2, s ---- 2(m !)2 and so, by Corollary 
2A, we obtain an inequality for complete bigraphs corresponding to (1.2}. 

COROLLARu 2B. 

r(Km,m, c) > c ml2 c ml2. 

To show tha t  this inequality is not too horrible, we remark tha t  (1.5) 
implies 

r(Km,m, c) ~ 2mc m. 

Finally, in the case of the cube, F---=Qm, we have p :  2 m, q:m2rn- l , .  
s = m!2 m and so we obtain another analogous inequality. 

COROLLARY 2C.  
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4. Cubical R-numbers 

In  this section, we shall evaluate R(G, F, c) when F and  G are both 
cubes. First  of all, it  is not  difficult to calculate t ha t  

R(Qn'Qm' l )=(n!2n-m'm 

This can be also verified by the recursive formula 

R(Q,~, Qm+~, 1) = 2R(Qn, Qm, 1) + R(Q,, Qm-1, 1). 

On the  other hand,  w e  will show t h a t  

(4.1) R(Qn, Q2,2) = 0 for all n .  

To prove this, represent the  points of Qn by subsets of  {1, 2, . . . ,  n}; color 
the  line uv green if  min ( lul ,  lvl) is even, color uv red if  min ([u I, Ivl) is 
odd. I t  is easy to verify t h a t  Qn co]ored in this way contains no monochro- 
matic  Q2. 

Obviously, (4.1) implies 

R(Q,, Qm, c) = 0 whenever min (m, c) ~> 1. 

The only remaining case is m = 1, when obviously 

R(Qn, Q1, c) = q(Q,) =- n2 "- i  . 

Summarizing these results, We obta in  

T~EO~E?ff 3. 

R(Qn, Qm, e) = 
otherwise. 

5. R-numbers for trees 

As in all of graph theory,  trees are easier to handle t h a n  arb i t ra ry  graphs. 
Le t  us consider R(T 2, T i, e) where T i and T 2 are trees. I t  is easy to see t h a t  
/?(T, P4,2) = 0 for any  tree T. Thus, we have P4 c T  1 , c ~ 2  implies 
/ / (T  2, T i, c) = 0. I f  P4q: Ti, t hen  T i is a star.  I t  is not  difficult to evaluate  
2R(Kl,m, Ki,n, e). For  this purpose, let us define M(m, n, e) as the  min imum of  
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over  ali t he  par t i t ions  n = , ~ x i  into integers xi. Ev id en t l y  when 
i = 1  i = l  

n = a m @ b  with 0 ~ b % n ,  we have  

a n d  

(:)  (:j (a} M ( m , n , c ) = b  a 1 + ( n _ b )  = n + 
m 

R(K1, n, K1,m, c) = M(m,  n, c). 

b[a/ 
m - -  1/ 

F u r the r more ,  the  lines of  any  t ree  T can be colored with c colors so t h a t  a t  
each  point  u, the  number  of  occurrences of  each color on the  lines of  the  s tar  
a re  a lmost  equal.  

T~EO~EM 4. For any two trees T 1 and T 2 such that T 1 is not a star, 

R ( T  2, T 1 , c ) = 0  whenever c ~ 2. 

On the other handl i f  T 1 = K 1 ,  m iS a star and d 1, d 2 . . . . .  d n is the degree sequence 
of  T2, then 

P 
R(T2, T1, c) = ~ M(m,  d~, c). 

i = 1  

6. Open Problems 

1. In  ano the r  paper  in this series, we develop corresponding theorems and  
numer ica l  results  for  the  nondiagonat  case. Here  we deal wi th  families of  
forb idden subgraphs ~F 1, o~ 2 . . . .  , o~c and  require a line-coloring of  an a rb i t r a ry  
g raph  G with c colors to  conta in  no member  of  family $ i  which is monochro-  
ma t i c  wi th  color i. 

2. One paper  in this series, to  be wr i t t en  jo int ly  with P. I-h~LL, studies 
fo rb idden  digraphs.  

3. I t  is now also na tura l  to invest igate  generalized ramsey  numbers  for 
mul t igraphs .  

4. Recal l  t h a t  r(F,  c) is the  smallest  integer  p such t h a t  every  c-coloring of  
t he  lines of  Kp contains a monochromat ic  F .  We de te rmine  the  exact  values 
o f  r(F,  2) for all forb idden graphs _~' wi th  at  most  four  points  in our  nex t  
paper .  This brings us to  the  f ront ier  of  solved problems as the  calculat ion of  
the n u m b e r  r(Ks, 2) has been open for decades and  is still not  known.  
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