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GENERALIZED RAMSEY THEORY FOR GRAPHS,
I. DIAGONAL NUMBERS

by
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Dedicated to the memory of ALFRED RENYT

0. Approach

We use the notation and terminology of [12]. The ramsey number
r(m, n) as traditionally studied in graph theory may be defined as the mini-
mum number p such that every graph with p points which does not contain
the complete graph K, must have »n independent points. Alternatively, it is
the smallest p for which every coloring of the lines of K, with two colors,
green and red, contains either a green K, or a red K,. Thus the diagonal
ramsey numbers r(n,n) can be described in terms of 2-coloring the lines of K pand
regarding K, as a forbidden monochromatic subgraph without regard to color.

This viewpoint suggests the more general situation in which an arbi-
trary graph @ has a c-coloring of its lines and the number of monochromatic
occurrences of a forbidden subgraph F (or of a forbidden family of graphs)
is calculated. A host of problem areas within graph theory can be subsumed
under such a formulation. These include the line-chromatic number. il which
the 3-point path is forbidden. The arboricity of & involves forbidding all
cycles. The thickness of a graph forbids the Kuratowski graphs. Complete
bipartite graphs can be taken for both G and F, and so.can cubes @, and @,.

There has long been a sentiment in graph theory that there is an inti-
mate relationship between extremal graph theory and ramsey numbers. It
does not appear possible to derive either TurRAN’s Theorem or RAMSEY’s
Theorem from the other. However, extremal bipartite graph theory does in
fact imply the bipartite form of Ramsey’s Theorem. The mystery behind
these implications ig revealed by Theorem 1.

A combinatorial technique used by Erpés to find a lower bound for
diagonal ramsey numbers #(n, n) is extended to generalized ramsey numbers
for arbitrary graphs and forbidden subgraphs.

1. Introduction

Let & be a family of graphs, & a given graph, and ¢ a positive integer.
We denote by R(G, &, c) the greatest integer n with the property that, in every
coloration of the lines of G with ¢ colors, there are at least » monochromatic
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occurences of a member of &. Without any loss of generality, we can assume
that every forbidden subgraph F ¢ & has no isolated points. Among the
typical families & of forbidden subgraphs, we mention the family € of all
cycles, the family @, of odd cycles, and the family & of Kuratowski graphs,
namely those homeomorphic to K or Ky, If & contains just one forbidden
subgraph F then we write simply R(@, F, ¢) instead of R(G, {F},c).
The numbers R(@, &, ¢) are useful in formulating various graph theoret-

ical problems and results. For instance, the four color conjecture states that

R(@, ¥, 1) = 0 implies R(G, C,, 2) = 0,

i.e., that every planar graph is the line-disjoint union of two bigraphs. An
equivalent formulation of the four color conjecture is:

For every bridgeless cubic planar graph G, R(G, Ps, 3) = 0, in other
words, every bridgeless cubic planar graph is 1-factorable. Vizing [18] proved
that

R@G,P;, 44+1)=0

when he showed that the line-chromatic number of every G is either A or
4 + 1. Obviously, the thickness of a graph @ is the minimum » such that

R, H,n) = 0.
Similarly, the arboricity of G is the minimum % such that
R(@G, €, n) = 0.
N asH-WiLLiams [14] proved that the arboricity of a graph G is equal to

max ]_In
nsp | — 1
where ¢, is the maximum number of lines spanned by » points. When RAMSEY’s

theorem [15] is specialized to graphs, it asserts that given any positive in-
tegers m and ¢ there is always an integer n = n(m, ¢) such that

R(Krn Km, C) > 0.

Similarly, Erp6s and Rapo [6] proved for complete bigraphs that given
any positive integers m and c there is always an integer n = n(m,c) such that

R(Kn,n’ Km,m’ C) > 0;

this is sometimes called the theorem on polarized partition relations.

We now present a brief summary of results involving R-numbers.
ErDGs and SzekxerEs [8] proved that
2m — 2

"=
m— 1

] implies  R(K,, K,,2)>0,
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while ErpGs [3] proved that

(1.1) m >3, n<2m? implies R(K,, K, 2) =0,
which was generalized in CHVATAL [2] to
1 1/m
(1.2) n < em 1"1’";/2 implies R(K,, K,,, ¢) = 0.
ol
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GrEENWOOD and GLEASON [10] showed that r(4,4) = 18 by establishing that

(1.3) R(Ky, K;,2) =0 and R(Ky, K,, 2) > 0.

For a summary of other results on ramsey numbers, see [12], p. 17. Some
exact results for B-numbers were found by Goopmax [9], who showed that

—;u(u~l)(u~2) for n = 2u

(1.4) R(K,, 6 K;,2)= %u(uwl)(élu—i—l) for n=4u+1

ErD&s [4] also obtained the inequality
o)

KE

R(K,, K, 2) >

In Cavirat [1], two inequalities for bigraphs were proved:

n > mc™ implies R(K, ,, K, ,,,¢) >0,

1y 1/m
n < cm? [%n:) implies  R(K,, ,, K, m,c) = 0.

(1.5)

¢
NiveN, see [11], completely characterized those a, b for which
R(Kym, Ko, 2) =0 for m=2,3,4.
Erp6s and Moow [5] derived the following limit:
B(Km,n Kaps2) _ 2

lim —R S22 =
m,n—eo m\[n 2ab
a)\db
Finally, Moox and MosgRr [13] obtained the inequalities
2u(u — 1) (4u — 3) if n=4u
R(Knn)K2252)Z 2%3(4?&*3) lf n:4u—f~l

W2u 4+ 1) (402 —u —1) if n=4u+ 2

u?(2u + 1) (4w + 3) if n=4u-4 3.

%u(u—}» 1)(4u — 1) for n=4u -+ 3.
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Before proceeding, we mention some simple relations satisfied by the
function R. If &, and &, are families of graphs such that given any F, € &,
there is an F, € &, with I, C F; then we write &, < &,. In particular, & c &,
implies &, < &,, and F,  F, implies {F,} < {F,}. It is not difficult to
see that

G, C Gy, ¢, = ¢, implies R(G, &, c) < R(Gy, &, ¢,),
F, < &y R(G, Ty c) =0 implies R(G, &F,c)=0.

(1.6)

2. From extremal theory to line-coloring theory

TurAx [17] founded extremal graph theory when he determined the
greatest ¢ = g(p,n) such that not every (p,q) graph contains K,. For any
family & of graphs, let us define ex(p, &, ¢) as the greatest ¢ such that not
every (p, q) graph satisfies R(G, &, ¢) > 0. Then for a single forbidden graph F,
ex(p, &, 1) is the same as ex(p, F) defined in [12], p. 18. Thus the numbers
determined by TURAN are precisely ex(p, K, 1). The problem of determining
an asymptotic value of ex(p, F, 1) for an arbitrary graph F was colved by
Erp6s and Simowovits [7]:

ex(p, F,1) 1 1

(2.1) lim — S
preo p} A(F)—1
(2

In these terms, the well-known maximum number of lines in an acyclic graph
and in a planar graph with p >> 3 are given respectively by:

ex(p, €, 1) =p — 1,
ex(p, K, 1) = 3p — 6.

TurAN observed that numerically, the forbidding of triangles is tantamount
to the exclusion of all odd cycles:

P
ex(p, €, 1) =ex(p, K;,1) = [T]

Not surprisingly, there is a monotonic relation between the function ex and
all its variables: '

(2.2) P1L= Py Ty < T 0g < implies  ex(py, &y, ) < ex(ps, 3}2} )
ex(p, &, ¢16y) < ¢, ex(p, &, ¢,).
The numbers ex(p, K,, ¢) were investigated by Sds [16]; she observed that

(2.3) ex(p, K,, ¢) = ex(p, K,, 1), where r = r(K,,c).
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The “easy half” of (2.3) follows at once from the more general inequality
ex(p, F, c) < ex(p, G, 1),
which holds for any two graphs ¥ and @ such that R(G, F,c) > 0.

We now state and prove a general theorem which links extremal graph
theory with line-coloring.

TaEOREM 1. Let & be a family of graphs containing a bicolorable graph
F and let Gy, Q,, ... be a sequence of graphs with p, = p(@,) and ¢, = ¢(@,)
such that

(2.4) lim p, = - oo,
N> oo
(2.5) lim inf 22 >0 .
nee Py

Then given any positive integer ¢ there is a subscript ny = ny(c) such thot
n_=>mn, implies R(G, & c¢)>0.

Proor. Let us denote the left-hand side of (2.5) by L. By (2.1) for
some p,,

)1 L
ex(p )<__‘

HE

By (2.4) and (2.5), there is a value #, such that

p=p, implies

n>mn, implies p,>p, and g,/p; > L/2.

But then we have for each n > n,
ex(pm F’ C) g ceX(pn’ F: 1) < L (z;nJ < an

and so, by the very definition of ex(p, F, ¢), we have
R, F,c) > 0.

As the singleton {F} < &, we have by (1.6),
B@,, &, c) >0

which is the desired result.

When in Theorem 1, we take the particular families of graphs & = {Kpm, 1}
and G, = K, ,, we obtain as a corollary the above mentioned theorem of
Ezp06s and Rapo on polarized partition relations. However, RaAMSEY’s theorem
cannot be obtained in this way since ex(p, K,, 1) is too large. More generally,
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the above approach is bound to fail whenever & = {F} and y(F) > 2, for
then by (2.1),

i X, F, 1)
proo p
4

and so the method does not work. Thus the ‘“Turanisation” of Ramsey-type
theorems is fruitful if and only if the forbidden subgraphs are bicolorable.

v

1
2

3. A combinatorial method for R-numbers

Erp6s’ proof of the lower bound (1.1) for ramsey numbers is based on
a combinatorial counting argument. Applying his proof technique to a more
general situation with arbitrary F and ¢ colors, we obtain

TarorEM 2. > R(G, F,1) c™%P+ <1 implies R(G, &, c) = 0.
Fecg
Proor. Let us consider the set S of all the line-colorings of @ with ¢
colors. By a bad coloring, we mean one which gives rise to a monochromatic

subgraph of & isomorphic to a member of &. Let Sgp denote the bad colorings
in 8. Clearly, we have

(3.1) |8] = ¢"©@
and moreover

(3.2) 1Spi < SR(G, F, 1)ccd@—4(F),
Feg

The inequality (3.2) follows from the fact that each f€ Sg is completely
determined by (a) the choice of F ¢ &, (b) the choice of a subgraph Fjg iso-
morphic to F which may occur in R(G, F, 1) ways, (c) the choice of one of
the ¢ colors for the lines of Fp, and also (d) the choice of any colors for the

remaining ¢(@) — q(F) lines of G.

If the hypothesis of the theorem holds, then the right hand side of
(8.2) is strictly smaller than the right hand side of (3.1) and so we have

[Sg| << |S|, so that § — Sp==4,

and hence R(G, &, ¢) = 0, completing the proof. '

Although R(G, F, 1) is often difficult to evaluate, it can be found quite
easily when @ = K,

Without any loss of generality, we can assume that every forbidden
subgraph F € & has no isolated points. For convenience, let p = p{F), and
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let s = s(F) be the order of the automorphism group of F, i.e., the number
of symmetries of F. Since F has no isolated points,

RK,, F’l):n(n~—1)...(n—p+_1): (n
$ P

p!
=

Indeed, ¥ can be imbedded within K, in

n] p! ways and these imbeddings
p

fall into equivalence classes, each of these having exactly s members.

In order to express the next three corollaries of Theorem 2 compactly.,
we require the following notation. Given any graph F and a positive integer
¢ there is always (by Ramsey’s theorem) an integer n with R(K,, F, c¢) > 0.
The smallest such n will be denoted by »(F, c).

The first corollary gives a general lower bound for this number.

COROLLARY 2A. r(F, c¢) > (sc? )17,

Proor. If p > n then bbviously R(K,, F,c)=0. On the other hand,
when
1<<p<n< (st 1)
then we have
! p
R(@, F,1)c 0t < (9’?/} &C-—q-f-l <&c—q+lg 1
p) s 8

and so, by Theorem 2; B(K,, F,c) = 0 again. Therefore
R(K,, F,c) >0 implies n > (sc?~1)lr
which is the desired result.

Setting F' = K, in Corollary 2A, we obtain (1.2) as a special case.
Setting F' = K., ,, we have p = 2m, ¢ = m?, s = 2(m!)? and so, by Corollary
2A, we obtain an inequality for complete bigraphs corresponding to (1.2).

CorOLLARY 2B.
2(m !)2)]/2'" P

(K, €) > ™2 [
¢

To show that this inequality is not too horrible, we remark that (1.5)
implies
7(Kopm,€) < 2me™.

Finally, in the case of the cube, F = @,, we have p = 27, ¢ = m2"™},
s = m!2™ and so we obtain another analogous inequality.

CoroLrArY 2C.

(@ €) > ™2 (m_'?i'J 1/2m.

c
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4. Cubical R-numbers

In this section, we shall evaluate R(Q, F, ¢y when F and G are both
cubes. First of all, it is not difficult to calculate that

”] on—m
m/

R(Qy, @y 1) = [

This can be also verified by the recursive formula

R(@Qn, @my1, 1) = 2B(Q,, @, 1) + B(Qn, Q1) ).
On the other hand, we will show that
(4.1) R(Q,,Q5,2) = 0 for all n.
To prove this, represent the points of @, by subsets of {1,2,...,n}; color
the line uw green if min (ju |, {v|) is even, color uv red if min (|u|, {v]) is

odd. It is easy to verify that ¢, colored in this way contains no monochro-
matic @,.

Obviously, (4.1) implies
R@Q,, @, c) =0 whenever min (m,c) > 1.
The only remaining case is m = 1, when obviously
R(Qn, Qu,0) = 9(@y) = 02"t
Summarizing these results, we obtain

THEOREM 3.

n
R(Qn ’ Qms ¢) = [m

0 otherwise.

] 2n=m if min(m, ¢) =1

5. R-numbers for trees

As in all of graph theory, trees are easier to handle than arbitrary graphs.
Let us consider R(T,, T';, ¢) where T, and 7', are trees. It is easy to see that
R(T, P,2)=0 for any tree 7. Thus, we have P, CT;,¢c > 2 implies
R(T,, Ty, ¢) = 0. If P,&T,, then T, is a star. It is not difficult to evaluate
R(K, p, Ky ,,¢). For this purpose, let us define M(m, n, ¢} as the minimum of
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c xZ ) [
( l) over all the partitions » = X x; into integers x;. Evidently, when
i=1 \M i=1

n_:am—{—b with 0 << b < m, we have

a

b a—+1

m

M(m,n,c) =

]+m—m[

:4Q+6MiJ

R( 1Ln lm, C) = M(WL, n, C).

mv
and

Furthermore, the lines of any tree I' can be colored with ¢ colors so that at
each point %, the number of occurrences of each color on the lines of the star
are almost equal.

THEHEOREM 4. For any two trees Ty and T, such that T, is not a star,
BT, Ty, ¢) =0 whenever ¢ > 2.

On the other hand, if Ty = K, , is a star and d,, d,, . . . , d,, is the degree sequence
of Ty, then

p
R(TZ! lec ZMWL d11

i=1

6. Open Problems

1. In another paper in this series, we develop corresponding theorems and
numerical results for the nondiagonal case. Here we deal with families of
forbidden subgraphs &, &,, . . ., & and require a line-coloring of an arbitrary
graph G with ¢ colors to contain no member of family &; which is monochro-
matic with color 4.

2. One paper in this series, to be written jointly with P. HeLL, studies
forbidden digraphs.

3. It is now also natural to investigate generalized ramsey numbers for
multigraphs.

4. Recall that r(F, c) is the smallest integer p such that every ¢-coloring of
the lines of K, contains a monochromatic #. We determine the exact values
of #(F, 2) for all forbidden graphs F with at most four points in our next
paper. This brings us to the frontier of solved problems as the calculation of
the number (K, 2) has been open for decades and is still not known.
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