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Accounting for Estimation Optimality Criteria in
Simulated Annealing1

P. Goovaerts2

This paper presents both estimation and simulation as optimization problems that differ in the
optimization criteria, minimization of a local expected loss for estimation and reproduction of global
statistics (semivariogram, histogram) for simulation. An intermediate approach is proposed whereby
an initial random image is gradually modified using simulated annealing so as to better match both
local and global constraints. The relative weights of the different constraints in the objective function
allow the user to strike a balance between smoothness of the estimated map and reproduction of
spatial variability by simulated maps. The procedure is illustrated using a synthetic dataset. The
proposed approach is shown to enhance the influence of observations on neighboring simulated
values, hence the final realizations appear to be "better conditioned" to the sample information.
It also produces maps that are more accurate (smaller prediction error) than stochastic simulation
ignoring local constraints, but not as accurate as E-type estimation. Flow simulation results show
that accounting for local constraints yields, on average, smaller errors in production forecast than
a smooth estimated map or a simulated map that reproduces only the histogram and semivariogram.
The approach thus reduces the risk associated with the use of a single realization for forecasting
and planning.

INTRODUCTION

Until the late 1980s, a typical geostatistical study proceeded in three steps:
exploratory data analysis, modeling of the spatial variability (semivariogram)
and, last, prediction of attribute values at unsampled locations. Most users are
now aware that least-squares interpolation algorithms such as kriging tend to
smooth out local details of the spatial variation of the attribute, with small values
typically overestimated and large values underestimated. The use of smooth
interpolated maps is inappropriate for applications sensitive to presence of ex-
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treme values and their patterns of continuity, such as the evaluation of recover-
able resources in mining deposits (Journel and Alabert, 1990; Nowak, Srivas-
tava, and Sinclair, 1993), the modeling of fluid flow in porous media
(Schafmeister and De Marsily, 1993), or the delineation of contaminated areas
(Desbarats, 1996; Goovaerts, 1997a). Because it allows the generation of maps
(realizations) that reproduce the sample variability, stochastic simulation is in-
creasingly preferred to estimation.

One may generate many realizations that all match reasonably the same
statistics (histogram, semivariogram); this contrasts with the uniqueness of an
estimated map for a given optimality criterion. The set of alternative realizations
is particularly useful to assess the uncertainty about the spatial distribution of
attribute values, and investigate the performance of different scenarios of, e.g.,
mine planning or pollution remediation. Nevertheless, to reduce the computa-
tional cost stochastic modeling studies often use a single realization as a basis
for forecasting and planning (Srivastava, 1996), a potentially hazardous option
as illustrated for categorical variables by Goovaerts (1996). Another option
consists of correcting a posteriori the unique estimated map to make it more
variable.

To remove the smoothing of kriging, Olea and Pawlowsky (1996) proposed
a two-step approach they called "compensated kriging": the relation between
smoothed kriging estimates and data values is first modeled using cross-vali-
dation and linear regression, the model is then inverted to correct the estimates
at unsampled locations. If some corrected values lie outside the admissible
interval, the parameters of the linear model are modified using a trial-and-error
procedure. A case study showed that compensated kriging has properties inter-
mediate between ordinary kriging and conditional simulation in terms of mean
square error and reproduction of histogram and semivariogram. An alternative
would consist of postprocessing the estimates using the rank-preserving algo-
rithm developed by Journel and Xu (1994) to improve the reproduction of a
target histogram, in this case the sample histogram. This variant of rank-trans-
form allows the honoring of data values without significant modification of the
spatial pattern of the original values.

A common shortcoming of these correction algorithms is the lack of control
on the reproduction of spatial statistics such as the semivariogram and on the
preservation of desirable properties of kriging such as local accuracy. In this
paper, both estimation and simulation are formulated as an optimization prob-
lem: their common objective is to generate map(s) that match a set of constraints
specified by the user. For estimation, the constraints are local in that they involve
each grid node separately, e.g., the minimization of a local error variance. In
contrast, the constraints implemented in simulation algorithms, such as repro-
duction of histogram or semivariogram, are global because they involve all grid
nodes jointly. We propose to combine the different local and global constraints
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into a single objective function which is then used to postprocess an initial
random image or an estimated map using simulated annealing. The focus is not
on the construction of an hybrid between estimated and simulated maps, but
rather on the minimization of the risk associated with the use of a single real-
ization through the incorporation of local estimation constraints in simulated
annealing.

The proposed technique is illustrated using a synthetic 2-D dataset. Perme-
ability maps are generated conditional to 60 well locations using either esti-
mation or simulation algorithms with different weighting schemes for local vs.
global constraints. Prediction performance is assessed by comparing the refer-
ence permeability values with the estimated or simulated ones. The set of maps
are also submitted to a waterflood flow simulation, and the production forecasts
(water cuts and recovered oil) are compared to the values provided by the
reference dataset.

OPTIMUM STOCHASTIC ESTIMATION

Consider the problem of estimating the value of a continuous attribute z at
an unsampled location u conditional to the dataset {z(ua), a = 1, ... , n}.
Estimation can be formulated as an optimization process; the objective is to
select, within the range of possible z-values at u, a single value, denoted z*(u),
that is "optimal" for some criterion (Journel, 1989, p. 27-28; Christakos, 1992,
p. 341-343). A possible criterion is the minimization of the impact attached to
the estimation error e(u) = z(u) - z*(u) that is likely to occur. Such impact
can be expressed as a function L(-) of that error, e.g., L(e(u)) = [e(u)]2. Given
that particular loss function, the estimate z*(u) should be chosen as to minimize
the resulting loss L(z(u) - z*(u)).

Because the actual value z(u) is unknown, the actual loss L(z(u) - z*(u))
cannot be computed in practice. However, the uncertainty about z(u) can be
modeled by the conditional cumulative distribution function (ccdf) of the random
variable Z at u:

where the notation "|(n)" expresses conditioning to the local information, say,
n(n) neighboring data z(ua). Ccdf values can be determined using multi-Gauss-
ian or indicator algorithms (Deutsch and Journel, 1998, p. 76; Goovaerts, 1994a).
The idea is then to use this model of uncertainty to determine the expected loss:
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The ' 'L-optimal'' estimate for the loss function L( •) is the z-value that minimizes
the expected loss (2).

Unlike interpolation algorithms such as simple or ordinary kriging, the
determination of an optimal estimate here proceeds in two steps:

1. the uncertainty about the unknown value z(u) is first modeled by the
conditional cdf F(u; z|(n)),

2. from that model, an estimate z*(u) is deduced according to a specific
optimality criterion.

This dichotomy between assessment of uncertainty and estimation makes clear
that there is no best estimate for all situations. For a given model of uncertainty,
different estimates can be obtained depending on the loss function chosen (Jour-
nel, 1984; Srivastava, 1987; Goovaerts, 1997b, p. 340-346).

Examples of Loss Functions

In this section, one briefly reviews three types of loss functions that allow
a straightforward (analytical) determination of the optimal estimate. In absence
of such an analytical solution, the expected loss can be computed for a series
of z-values, and the one yielding the smallest expected loss is retained as the
optimal estimate.

A common approach consists of modeling the loss as a quadratic function
of the estimation error:

The optimal estimate is shown to be the expected value of the ccdf at location
u, also called E-type estimate:

The corresponding expected loss is but the variance of the conditional cdf:

Instead of a quadratic function of the estimation error, one might consider
a linear function such as:

where the nonnegative parameters w1 and w2 are the relative impacts attached
to overestimation and underestimation, respectively. The optimal estimate is
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then shown to be the p-quantile of the ccdf (Journel, 1984):

If w1 = w2, the loss function (6) is symmetric, which means that underestimation
and overestimation are penalized equally as in expression (3). The optimal
estimate is then the median q0.5(u). If w1 = w 2 , both sign and magnitude of the
estimation error are accounted for. For example, if w1 > w2, the impact of
overestimation is larger than that of underestimation of the same magnitude.
Thus, p < 0.5, and the optimal estimate is smaller than the median. The
expected loss associated with the optimal estimate is:

A third type of loss model is the indicator function:

where m(qp(u)) is the mean of the truncated distribution:

The optimal estimate is the most plausible outcome of the conditional distri-
bution, that is the mode of the corresponding density function f (u; z|(n)). The
expected loss is the probability of nonoccurrence of this estimate:

Differences between estimates arise from both the ccdf model and the op-
timality criterion. For symmetric conditional distributions, the minimization of
the second criterion (6) with p = 0.5 yields the same estimate as the first criterion
(3); the mean and median are the same. If the distribution is Gaussian, the three
types of loss functions yield the same estimate; the mean, median and mode of
the ccdf are identical.

Map of Optimal Estimates

Estimation rarely concerns a single location u. Most often, the estimation
is performed at N grid nodes u' discretizing a study area G. For a given loss
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function L(-), the selection of an optimal estimate at u is independent of the
estimation at other grid nodes. Thus, the unique solution to the optimization
problem is the set of N "locally optimal" estimates {z*(uj), j = 1, . . . , N},
denoted S*. The global expected loss associated with the "L-optimal" esti-
mation grid is the sum of local expected losses:

For example, for the loss function (3), the global loss (11) is the sum of the
variances of the N ccdfs F(u'; z|(n)). The uniqueness of the "L-optimal"
estimation grid entails that any other set of estimates, S* = {z*(uj), j =
1, ... , N}, with S* ^ S*, yields a larger global expected loss:

STOCHASTIC SIMULATION

Consider now the simulation of the continuous attribute z at N grid nodes
U' conditional to the dataset (z(ua), a = 1 , . . . , n } . The creation of a stochastic
image can also be formulated as an optimization problem; the objective is to
generate a set of z-values {z(1)u ';), j = 1, . . . , N} which match approximately
constraints such as reproduction of a target histogram or semivariogram model.
For example, if the objective is to reproduce the semivariogram model y(h)
over the first S lags, the set of simulated values should be such as to lower the
objective function to a value close to zero:

where y(hs) is the value of the target semivariogram model at lag hs, and
7(hs) is the corresponding experimental semivariogram value of the realization
{z(1)(u',)j = 1 , . . . ,N}.

Whereas the loss functions introduced for estimation involve each grid node
uf separately, the objective function (12) involve many grid nodes simulta-
neously because the computation of the semivariogram values y(hs) calls for
many different pairs of z-values. Thus, an optimum cannot be reached if the
simulated values are derived independently from one another. A second differ-
ence with estimation is that there are usually many solutions (i.e., sets of sim-
ulated values) to the optimization problem, which contrasts with the uniqueness
of the "L-optimal" estimation grid. Consequently, the minimization of an ob-
jective function of type (12) is not as straightforward as the minimization of
local loss functions, and requires iterative algorithms such as simulated anneal-
ing.



Accounting for Estimation Optimality Criteria 517

Simulated Annealing

Simulated annealing is a generic name for a family of optimization algo-
rithms based on the principle of stochastic relaxation (Geman and Geman, 1984;
Farmer, 1988). Once the objective function has been established, the optimi-
zation process amounts to systematically modifying an initial image or realiza-
tion so as to decrease the value of that objective function, getting the realization
acceptably close to the target statistics.

There are many possible implementations of simulated annealing, depend-
ing on the way the initial realization is generated and then perturbed, on the
components that enter the objective function, and on the type of decision rule
and convergence criterion that are adopted for the iterative algorithm (Deutsch
and Cockerham, 1994). The following procedure is here used to generate
realizations that reproduce both the histogram and semivariogram model:

1. Generate an initial realization {z(1)/(u'), j = 1, . . . , N} by freezing
data values at their locations and assigning to each unsampled grid node
a z-value drawn at random from the target cdf F(z). This approach is
fast and yields a set of initial images that already honor the conditioning
data and match the target histogram.

2. Compute the initial value of the objective function corresponding to that
initial realization:

where •Y(0)(hs) is the semivariogram value at lag hs of the initial reali-
zation. The division by the square of the semivariogram model at each
lag hs gives more weight to reproduction of the semivariogram model
near the origin.

3. Perturb the realization by swapping z-values at any two unsampled lo-
cations u'- and u' chosen at random: z(1)(u ') becomes z ( 1 ) (u ' ) and vice
versa. Assess the impact of the perturbation on the reproduction of target
statistics by recomputing the objective function, Onew(0), accounting for
the modification of the initial image.

4. Accept all perturbations that diminish the objective function. Unfavor-
able perturbations are accepted according to a negative exponential prob-
ability distribution:

Prob{Accept ith perturbation}
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The idea is to start with an initially high temperature t(0), which allows
a large proportion of unfavorable perturbations to be accepted at the
beginning of the simulation. As the simulation proceeds, the temperature
is gradually lowered so as to limit discontinuous modification of the
stochastic image. Two important issues are the timing and magnitude
of the temperature reduction, which defines the annealing schedule.
According to Deutsch and Cockerham's typology, a fast annealing
schedule was used; that is, the initial temperature was set to 1 and
lowered by a factor 20 (reduction factor = 0.05) whenever enough
perturbations (5 X N) have been accepted or too many (50 x N) have
been tried.

5. If the perturbation is accepted, update the initial realization into a new
image { Z ( 1 ) ( u ' ) , j = 1, . . . , N} with objective function value 0(1) =
Onew(0).

6. Repeat steps 3 to 5 until either the target low value Omin = 0.001 is
reached or the maximum number of attempted perturbations at the same
temperature has been reached three times.

Other realizations { z ( 1 ) ( u ' ) , j = 1, . . . , N}, l' = l, are generated by repeating
the entire process starting from different initial realizations. Typically, the num-
ber of nodes N is so large and the semivariogram is so little constraining that
there exist many solutions to the optimization problem.

AN INTERMEDIATE APPROACH

As mentioned previously, for a given loss function L(.), estimation at the
N grid nodes u' can be viewed as the selection of N values, S* = (z*(u'),
j = 1, ... , N}, that yield the smallest global expected loss:

For example, for the loss function (3), the optimal estimation grid is but the set
of E-type estimates {z*(uj), j = 1, . . . , N} as defined in (4). The same solu-
tion can be reached by processing any initial random image3 {z(0)(u'), j =
1, ... , N} using simulated annealing with the following objective function to
be lowered:

3To simplify notation, the superscript (/), which refers to a particular realization, is omitted in this
section.
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where z(i)(u') is the z-value at node u' at the ith perturbation. The perturbation
mechanism amounts to selecting randomly a single location u' and replacing
the corresponding z-value z ( i - 1 )(u') by a new value z(i)(u'), say a value randomly
drawn from the marginal cdf F(z).

Consider the situation where the L-optimal estimate and the corresponding
expected loss are known a priori, e.g., the mean and variance of the ccdf for
the loss function (3). Thus, minimizing the objective function (14) amounts to
lowering to zero the following objective function:

One retrieves the usual formulation of an annealing-type objective function as
the difference between target and actual statistics of the image.

Formulation of the estimation process as the minimization of an objective
function of type (15) allows a straightforward incorporation of estimation opti-
mality criteria in stochastic simulation. Consider the problem of generating a
realization that reproduces a target cdf F(z) and a semivariogram -y(h) while
keeping the desirable features of estimation such as the minimization of a local
loss function. The proposed approach consists of processing an initial random
image that already matches the target cdf using simulated annealing and a two-
components objective function:

where:

To prevent the component with the largest unit from dominating the objective
function, each component Ok is standardized by its initial value Ok(0). The
relative importance of each component is controlled by the weights Gk that sum
to 1, which allows the user to strike a balance between a local criterion (min-
imization of a local expected loss) and a global criterion (reproduction of a target
semivariogram).
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Reseating of E-Type Estimates

This new formulation allows an interesting interpretation of the rescaling
of E-type estimates using the correction algorithm proposed by Journel and Xu
(1994). Consider the problem of generating a realization that reproduces a target
cdf F(z) while minimizing the global expected loss for the quadratic loss function
[e(u)]2. This can be done by processing an initial random image that already
matches the target cdf using simulated annealing and the objective function (16)
with G1 = 1 and X2 = 0.

An alternative consists of starting with the set of E-type estimates S* which
minimizes the global expected loss and transforming (rescaling) these estimates
so as to reproduce the target cdf while keeping the global expected loss as small
as possible. A straightforward way to perform this a posteriori correction of
optimal estimates is to apply the rank-preserving transform:

where z*(u') is the value corrected from the original estimate z*(u') = z|(u'),
and F L ( . ) is the cdf of the N estimates. One can show that the set of corrected
values S* is the unique optimum for the joint constraints of histogram repro-
duction and minimization of global expected loss. Let d(u') be the difference
between corrected and initial values at u', z*(u') - z*(uj'). Accounting for
definitions (2)-(5), the expected loss associated with the corrected value
z*(u') is:

The global expected loss computed over the N nodes u' is thus:

Minimizing the global loss (18) amounts to minimizing the sum of squares of
differences between corrected and initial values, which is ensured by the rank-
preserving transform (17).
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CASE STUDY

Throughout this paper, the map shown at the top of Figure 1 (left graph)
is considered as the reference exhaustive distribution of permeability in a 2-D
section of a reservoir (Goovaerts, 1996). The reference dataset comprises 50 x
50 permeability values on a regular square grid. The corresponding histogram
is positively skewed and indicates the presence of a few large values. Sixty
locations were drawn at random and form the sample dataset available to re-
construct the reference image. Because of the sparsity of sampling, the sample
mean and variance deviate from the reference statistics (Fig. 1 middle graph).

Generation of Permeability Maps

Fifty initial realizations of the spatial distribution of permeability values
were generated by freezing data values at their locations and assigning to each
unsampled grid node a permeability value drawn at random from the sample
histogram. Each of these realizations was postprocessed using simulated an-
nealing and the two-components objective function (16). The local expected loss
in the first component O1was computed using the quadratic function (3) and
ccdf models provided by ordinary indicator kriging; ccdf values were estimated
for nine thresholds corresponding to the deciles of the sample histogram, and
the resolution of the discrete ccdf was increased by performing a linear inter-
polation between tabulated bounds provided by the sample cdf (Deutsch and
Journel, 1998, p. 134-138). Reproduction of semivariograms of highly skewed
variables generally entails edge effects in the final realization, that is, extreme
values tend to be pushed to the edges because they contribute only once to the
semivariogram calculation (Deutsch and Cockerham, 1994). To avoid such ar-
tifacts, the semivariogram of logarithms shown at the bottom of Figure 1 was
used as target in the second component. A geometric anisotropy model was
fitted with a slightly smaller range in the E-W direction (anisotropy ratio =
0.77).

To investigate the relative influence of both components on the final real-
izations, five different sets of weights were considered. Figure 2 shows, for
each weighting scheme, the first realization generated. E-type estimates were
also computed from the ccdf models using the following approximation:

where zk, k = 1, . . . , K, are K threshold values discretizing the range of
variation of z-values. By convention, F(u;Z0|(n)) = 0 and F(u; zK+1/(n)=1) = 1.
Other thresholds zk were identified to p-quantiles corresponding to regularly
spaced ccdf increments, i.e., zk = F -1(u; kl[K + l]|(n)). zk is the mean of the
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Figure 1. Reference permeability map with the corresponding histogram and semivariogram of
logarithms computed in two directions: N-S (solid line) and E-W (dashed line). The information
available consists of 60 randomly drawn values and the sample histogram.
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Figure 2. The reference permeability map, the first realization generated using an increasing
weight G1 for the component that controls the minimization of the local expected loss, and
the maps of rescaled and original E-type estimates.
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class (zk-1 Zk] which depends on the intraclass interpolation model, e.g., for
the linear model: zk = (zk-1 + zk)/2. To correct for the smoothing effect, the
E-type estimates were transformed (rescaled) using relation (17) which ensures
reproduction of the sample cdf. Figure 2 (bottom graphs) shows the maps of
E-type estimates after and before rescaling.

Impact of the Weighting Scheme

The semivariogram of logarithms was computed in the E-W and N-S
directions for each of the map of simulated or estimated values. For each weight-
ing scheme, the 50 semivariograms were averaged and displayed with the target
model in Figure 3. When all the weight is given to the reproduction of semi-
variogram (X1 = 0), the spatial pattern of the reference image is not well
reproduced by the first realization, in particular the clustering of high values is
not apparent. A visual improvement is obtained by giving a small weight to the
minimization of local expected loss (X1 = 0.2). In fact, the incorporation of
local constraints based on ccdfs enhances the influence of each observation on
the neighboring simulated values, hence the final realization appears to be "bet-
ter conditioned" to the sample information. As the weight given to the first
component increases, the realization becomes smoother while deviation from
the semivariogram model increases. When all the weight is given to the min-
imization of local expected loss (X1 = 1), the realization is very close to the
smooth map of rescaled E-type estimates (Fig. 2, left bottom graph), which has
been shown to be the optimum for the joint constraints of histogram reproduction
and minimization of local expected loss, recall previous section. As expected,
the semivariogram model is not reproduced anymore. Figure 2 (right bottom
graph) shows the map of E-type estimates, which is the optimum for the first
component (i.e., minimum expected loss) but reproduces neither the histogram
nor the semivariogram.

The set of 50 alternative realizations generated by simulated annealing
provides a measure of uncertainty about the spatial distribution of permeability
values. Local differences between realizations can be depicted by mapping some
measure of the spread of the distribution of 50 simulated values at each grid
node. Figure 4 shows, for each weighting scheme, the maps of the standard
deviation of the distribution of the 50 simulated values at each location. White
pixels correspond to single-valued distributions at the sixty data locations. Giv-
ing more weight to the minimization of expected loss reduces differences be-
tween realizations which become more similar to the unique optimum, that is
the map of rescaled E-type estimates.

Prediction Performances

Table 1 (2nd column) gives the global expected loss obtained on average
over 50 realizations for the different weighting schemes. As expected, the loss
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Figure 3. Reproduction of the anisotropic semivariogram model of logarithms obtained on average
over 50 realizations generated using an increasing weight X, for the local constraint, and for the
maps of rescaled and original E-type estimates.
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Figure 4. Maps of the standard deviations of the local distributions of permeability values
generated using simulated annealing with an increasing weight X1 for the local constraint.
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Table 1. Statistics Measuring the Prediction Performances Obtained on Average over 50 Realizations
Generated Using an Increasing Weight X1 for the Local Constraint, and for the Rescaled and Original
E-Type Estimates. For the Global Expected Loss and the Mean Square Error of Prediction, Results
Are Expressed as Percentage of the Simulation Score When Local Constraints Are Ignored

(X1 = 0)

Algorithm

Simulation
X1 = 0.0
X1 = 0.2
X, = 0.5
X1 = 0.8
X1 = 1.0

Rescaled E-type
E-type

Loss (%)

100
87
84
83
81
74
41

MSE (%)

100
88
86
85
83
80
69

Aver. [Ref. values-predicted values]

Kx
ff (md)

4.68
2.26
2.95
4.81
20.1
36.1
75.7

Ky
ff (md)

1.59
2.22
2.08
2.18
8.86

28.6
73.9

Water (year)

2.22
1.38
1.28
0.78
1.59
1.49
1.65

Oil (year)

3.19
3.01
2.01
0.83
1.05
1.40
2.67

decreases as the weight X1 given to the first component increases. When all the
weight is given to the minimization of local expected loss (X1 = 1), the loss is
81%, which is larger than the score of the rescaled E-type estimates (74%).
Consequently, if the objective is to minimize the local expected loss while
reproducing a target histogram, better results are obtained by rescaling E-type
estimates using a transform of type (17). This unique optimum cannot be reached
by simulated annealing and the realizations appear to be trapped in suboptimal
situations. In the absence of constraint of histogram reproduction, the optimum
is the map of E-type estimates which yields a global loss of 41%.

Each generated map was compared with the reference permeability map,
and the mean square error of prediction was computed as:

Table 1 (3rd column) gives the error obtained on average over 50 realizations
for the different weighting schemes. Prediction errors were also computed for
the E-type estimates before and after rescaling. The smallest errors are obtained
using an estimation approach (E-type) that seeks only the minimization of local
expected loss. When the constraint of histogram reproduction is included, the
prediction error increases. As for the global expected loss in the second column,
better results are obtained by rescaling E-type estimates (MSE = 80%) instead
of processing an initial random image using simulated annealing and a weight
G1 - 1 (MSE = 83%). When a third constraint of semivariogram reproduction
is included, the prediction error increases even more. In other words, reproduc-



tion of spatial variability as modeled by semivariogram is achieved at the ex-
pense of larger errors of prediction. Giving a small weight to the first component
(X1 = 0.2), however, suffices to reduce significantly the mean square error while
ensuring a fairly good reproduction of the semivariogram (Fig. 3, right top
graph).

Flow Properties

The effective permeability of each map was computed in the E-W and
N-S directions using the pressure solver flowsim_(Deutsch and Journel, 1992).
The reference values are Kx

ff = 38.6 md and Kyff = 39.3 md. The absolute
differences between the reference and predicted values were computed in average
over the 50 realizations (different weighting schemes), and for the maps of
rescaled and original E-type estimates (see Table 1,4th and 5th columns). Worst
results are obtained for the smooth map of E-type estimates which severely
overestimates the effective permeability. Rescaling of E-type estimates signifi-
cantly reduces prediction error, but the best results are obtained when semi-
variogram reproduction is accounted for. Along the N-S direction, the minim-
ization of the local expected loss (X1 = 0.2 or 0.5) improves the prediction
performances over the "classical" simulation approach that ignores local con-
straints (X1 = 0.0). To check whether this improvement is stable over the 50
realizations, prediction errors were compared for each of the 50 pairs of real-
izations that were generated by postprocessing the same initial random images
using simulated annealing and weights X1 = 0.0 or 0.5. Results are displayed
on the scattergram at the top of Figure 5. Forty-three out of 50 black dots are
below the 45° line, which means that accounting for local constraints yields
smaller prediction errors in 86% of cases.

A waterflood simulator (Eclipse, 1991) was applied to the reference perme-
ability map using the five spot injection/production pattern shown in Figure 6.
The fractional flow of water and the proportion of oil recovered were computed
for different time steps. Ten reference time values were retrieved for fractional
flows of water of 5%, 15%, ... , and 95%. Five reference time values were
also retrieved for proportions of oil recovered of 10%, 20%, . . . , and 50%.
The absolute differences between these reference values and predicted values
were computed in average over the 50 realizations (different weighting schemes),
and for the maps of rescaled and original E-type estimates (see Table 1, last
two columns). Best results are obtained when both the reproduction of the
semivariogram and the minimization of local expected loss are incorporated into
the objective function. When one of these two components is ignored, prediction
error increases. As for the N-S effective permeability, results are quite stable
over all realizations. For example, scattergrams at the bottom of Figure 5 in-
dicate that accounting for local constraints (X1 = 0.8) yields smaller prediction
errors for 84% of the realizations.
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Figure 6. Locations of the producer (black dot) and the four injectors (open circles)
on the reference permeability map.

Figure 5. Scattergrams of prediction errors for realizations generated using the
reference approach (X1 = 0.0) vs. realizations that account for local constraints (X1

= 0.5 or 0.8).



Figures 7 and 8 show histograms of N-S effective permeabilities and three
flow characteristics for 50 realizations generated using three different sets of
weights. The black dot in the box plot below each histogram is the true value
obtained from the reference image, and the three vertical lines are the 0.025
quantile, the median and the 0.975 quantile of the output distribution. A good
simulation algorithm should generate an output distribution that is both accurate
and precise. An output distribution is accurate if some fixed probability interval,
e.g., the 95% probability interval, contains the true response. The precision of
the output distribution is measured by its variance, the larger the spread of that
distribution the larger the uncertainty of any prediction. Accounting for local
constraints generally reduces the space of uncertainty, which agrees with pre-
vious results obtained for categorical variables (Goovaerts, 1994b) and with the
variance maps of Figure 4. Except for effective permeability, the reduction is
drastic when a large weight X1 =0.8 is given to local constraints. It is worth
noting that most of the distributions still contain the true value: increase in
precision is not achieved at the expense of accuracy.

CONCLUSIONS

Both estimation and simulation approaches can be formulated as the selec-
tion of a set of attribute values that are optimal for specific criteria. Estimation
amounts at minimizing local criteria such as a conditional estimation variance,
whereas stochastic simulation aims at reproducing global statistics such as his-
togram or semivariogram. The search for a map that would have the local
accuracy of kriging and the nonsmoothing effect of simulation amounts to finding
a balance between local and global constraints which are usually conflicting.
Such a compromise can be achieved using simulated annealing and a weighted
combination of components that measure deviations from local or global features
of interest.

Two major issues of optimization processes are the number of solutions
that exist and the way these solutions can be reached. Local constraints imposed
for estimation involve each grid node separately and so, for a given optimality
criterion, the solution is unique and readily accessible, e.g., the map of E-type
or p-quantile estimates. The number of solutions, hence the space of uncertainty,
increases when several grid nodes are involved by the components in the ob-
jective function. For example, there are many different realizations that match
the same target histogram or semivariogram. One must be aware that simulated
annealing provides only approximate solutions to the optimization problem in
that the objective function is rarely lowered to zero. A good illustration is the
map of rescaled E-type estimates which has been shown to be the optimum for
the joint constraints of histogram reproduction and minimization of local ex-
pected loss. This unique solution is not reached using simulated annealing, and
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Figure 7. The distributions of N-S effective permeability and time to recover 50% of the oil derived
from SO realizations generated using the reference approach (X1 = 0.0) and accounting for local
constraints (X1 = 0.5 or 0.8). The black dot in the box plot below each histogram is the true value
obtained from the reference image, the three vertical lines are the 0.025 quantile, the median and
the 0.975 quantile of the output distribution.
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Figure 8. The distributions of the time to reach 5% or 95% water cut derived from 50 realizations
generated using the reference approach (X1 = 0.0) and accounting for local constraints (X1 = 0.5
or 0.8). The black dot in the box plot below each histogram is the true value obtained from the
reference image, the three vertical lines are the 0.025 quantile, the median and the 0.975 quantile
of the output distribution.



fluctuations between realizations, as depicted by the variance map at the bottom
of Figure 4, leads to an overestimation of the size of the space of uncertainty.
Future studies should investigate the impact of factors such as the annealing
schedule, the perturbation mechanism or the initial image (random image, es-
timated map, realization generated using other simulation algorithms) on the
lowering of the objective function.

The case study shows that the incorporation of local criteria in stochastic
simulation allows one to keep some desirable features of estimation such as
smaller prediction errors while reproducing the pattern of spatial variability
(semivariogram). The intermediate approach also yields, on average, smaller
errors in production forecasts than algorithm that accounts only for semivario-
gram and histogram reproduction. One should avoid giving too much weight to
local constraints because it can induce a dramatic reduction in the space of
uncertainty and so generate a precise but possibly inaccurate distribution of
outcomes. Note that if reservoir performance is to be predicted from a single
realization, one is better off sampling a distribution of outcomes that is precise
but slightly inaccurate than sampling a distribution that contains the true value
but is very wide, which increases the risk of drawing a single realization far
different from the reality. An alternative to reducing the spread of flow responses
consists of integrating more information, such as soft data, in the determination
of conditional cdfs, which can be easily done using indicator-based algorithms.

In the future, the approach should be extended to other types of loss func-
tion such as the asymmetric function (6) or the indicator function (9). In the
latter case, the minimization of a local expected loss amounts to maximizing
the local probability of occurrence of attribute values as determined from ccdf
models, which is analogous to the procedure developed by Goovaerts (1994b)
for categorical variables.
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