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ABSTRACT. Estimates on a minimal classification o f  relative equilibria in the planar n-body 

problem of  celestial mechanics have been announced in [1], [2]. Our main theorem asserts that 

these estimates are actually met for any n > 3 on an open set in IR~_. For any n > 4, this open set 

is proper. 

1. INTRODUCTION 

In a preceding paper [2] we gave the setting of  relative equilibria in the planar n-body problem. 

We study the set of  critical points of  a real analytic function V,n < 0 which is defined on a real 

analytic manifold X m where n > 3 and m = (rnt .... rnn) E IR. n are fixed. The critical points of  

Vm correspond in a 1-1 fashion with classes of  relative equilibria. 

For each (mz) E IR n we have that X m is homeomorphic to a Stein manifold P n _ 2 ( r  - ~ n - 2  

where IP n_ 2 (12) is complex projective space of  (complex) dimension equal to n - 2 and An-2  

represents the configurations where two different masses coincide. ~ n - =  is the union of  n ( n -  1)/2 

codimension 1 complex projective subspaces. There is an involution on X m which corresponds to 

the action induced on P n -  2 (12) by complex conjugation. This places a further restriction on the 

set of  critical points of Vm- It is well known that as a Stein manifold IP n_ 2 (12) - ~Xn-2 (hence 

X m) has the homotopy type o f  a CW complex of  (real) dimension n - 2. The involution places 

on this CW complex the restriction that the cellular decomposition must be invariant under com- 

plex conjugation. Now ~g m is a real analytic function with a compact critical set; therefore, by 

the main theorem of nondegenerate Morse theory (and a little work) we may always write 

lPn-2(r  = Z~n_2 O el U .... U er where dim ek > n - 2 

and the standard notation for attaching a cell to a space is used. 

It is an easy observation that this relative cellular decomposition of  P n - 2 ( r  gives a partition 

o f  P n -  2 (It) - An-  2 by open cells which are the interios of  the cells el ..... e r. Furthermore, this 

relative decomposition of  P n -  2(12) (or, the associated open partition of  P n -  2 (12) - A n - 2 )  

generates by duality the CW complex of  (real) dimension n - 2 with the same homotype type. 
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We conclude that by studying the CW complexes with the same homotype as Xm (or, 

equivalently, the partitions of  Xm by open cells o f  dimension which equals or exceeds n - 2) 

which are invariant under complex conjugation, we obtain the decompositions possibly given by 

~'m in the manner indicated above. 

2. MAIN THEOREMS 

In this section for any n > 3, for any k > 0 and for any L 0 =< i _5 2n - 4, let cq(n, k)  denote the 

number of  cells of  dimension equal to i which are allowed in a CW complex of  dimension equal 

to n - 2, which has the same homotopy type as P n - 2 ( r  - An-2 ,  and which is defined by 

recurrence. CW complexes which are (possibly) induced by Vm have index k even. 

T H E O R E M 1. For any n > 3, for  any k > 0 and for  any i, 0 < i < n - 2, 

ai(n, k) = (n --1 -- i + k)  oq(n - 1, k )  + (2n - 2 - i + k) c~i- 1 (n - 1, k) 

and ai(n, k)  = 0 for  any i > n - 2. 

We now give in the corollaries below some combinatioral consequences of  this theorem. Here 

Cp,q represents a binomial coefficient. 

COROLLARY 1.1 .Forany n > 3 , f o r a n y  k >0 and forany  L 0 <i<=n - 2, 

k 

ai(n, k) = Cn+k, i 1T (n - 1 - i +]) (n - 2)!/(k + 1)! 
j=o 

C O R O L L A R Y  1.2. For any n >3 and for  any k >=O 

n - 2  n - - 2  
2 ~dn, k ) = ( n - 2 ) !  Y,, 

i = 0  i = 0  
2tCk+l+i, k+l- 

C O R O L L A R Y  1.3. For any n > 3 and for  any k > 0 

n - - 2  

i = 0  
ai(n, k) = ( -1)n(n  - 2)! 

We write A( t )  >> B(t)  for any two polynomials A(t),  B(t)  provided that A( t )  - B(t)  = (1 + t)C(t) 

where C(t) has positive coefficients and the degree of  C(t) is one less than the maximum of  the 

degrees of  A(t) and B(t). Compare A( t )  > B(t)  [2]. 

C O R O L L A R Y  1.4. Forany n >3 and forany  k >0  

r e - 2  n - - 2  
E ~i(n, k)ti>> 2 ~i(n)t i. 

i = 0  i = 0  
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Here ~i(n) = rank Hi(P n_ 2 (12) ~n- 2) for any i, 0 < i < n - 2 and H .  is integral singular 

homology. Corollary 1.4 gives sharp Morse-type inequalities between the cellular decomposition 

and the homology of Xm. 

Let t~i(n ) denote a uniform greatest lower bound to the number of critical points of  ~'m with 

index equal to 2n - 4 - i whenever ~'m is a Morse function. We state an important consequence 

of Theorem 1. 

T H E O R E M  2. For any n > 3 and for any i, 0 < i < n - 2,/Ji(n) = c~i(n, O) and ~zi(n ) = 0 for  any 

i > n - 2 .  

n - 2  
COROLLARY 2.1. E u i ( n ) = [ 2 n - ~ ( n - - 2 ) + l ]  ( n - - 2 ) ! f o r a n y n > 3 .  

i=0 

This corollary bounds the number of  critical points which Vm as a nondegenerate function has. 

In [4] Smale asks whether this greatest lower bound on the distribution of  types of  critical 

points of  Vrn is ever realized. By a theorem [3] on the existence of degeneracies of  Vm for some 

(mi) E IR~ and for any n > 4 the minimal classification is not always realized. For any three 

positive masses ~',n is always a Morse function so that in this case the lower bound is always 

realized. Our main result follows. 

T H E O R E M  3. For any n > 3 there is a maximal open set in IR~ for  which the distribution o f  

critical points o f  [z m as a nondegenerate function corresponds to the minimal classification given 

by ~ Idi(n)t i. For any n > 4 this open set is proper. 

Remark. In [1] it is shown that this minimal classification exists as well on the boundary of  

the openset of  Theorem 3, where degeneracies of  Vm occur, if we give a homology interpretation 

as in [ 1, Theorem 4].  The homology condition is closed for the minimal classification; therefore, 

the boundary of  the open region is included. 

3. H O M O L O G Y  C L A S S I F I C A T I O N S  

Critical point theory may be applied to ~'m for any (mi) E IR~. This allows us to conclude that 

~'m always imposes a cellular decomposition of P n - 2  (12) - / S  n_ 2. This decomposition must have 

e~i(n, O)t i as a lower bound and for some k > O, 2 o~i(n , k)t  i must be an upper bound on the 

cellular decomposition given by Vm- The upper bound is a uniform bound provided that it holds 

for each (mi) E IR n. We need to assert only that such a uniform upper bound exists; i.e. that given 

any n > 3, there is a k n >= 0 such that Z o~i(n , kn)t  i bounds the cellular decomposition given by 
F" m for any (mi) E IR~. 

THEOREM 4. For any n > 3 there exists a uniform upper bound on the number o f  critical points 

o f  Vm in each index 2n - 4 - i, 0 < i <= n - 2, for  any (mi) E IR n for  which Vm is nondegenerate. 

Let  ffli(n ) denote this upper bound and let tJi(n , m)  denote the number o f  critical points o f  [z m 

with index equal to 2n - 4 - i whenever Vm is a nondegenerate function. Then 
~i(n)t  i > ~ t~i(n, m) t  i. 
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C 0 R 0 L L A R Y 4.1. ~ ~ i ( n ) t  i gives a uniform upper bound on the cellular decomposition arising 

from Vm for any n > 3 and for any (mi) E IR~. I f  2 ai(n, m)t i denotes the cellular decomposition 

which corresponds to Vm, then 

~ i ( n ) t  i > ~ o~i(n, m)t i. 

Here we understand all sums above to range over 0 --< i < n - 2. 

Finally we give the relation between the cellular decomposition of  X m by ~'m and the relative 

homology of  the critical set of  ~'m. 

For any n --> 3 and for any (mi) E IR n let C~ < ... < Cr < 0 be the (finitely many) critical 

values of ~'m' Set Co = -,,o and for any j, 1 < ]  < r, let W/be defined by V-~m(C i_ 1, Cj). Let A/ 

be the set of  critical points of  Vm with critical value C/, 1 < ]  < r. Finally, for any i, 0 < i < 2n - 4, 

define ri(n, m) by ri(n, m) = E~= 1 rank H2n-4- i (W/U A], W]). By the fact that the index of  any 

critical point of  ~'m equals or exceeds n - 2 [3],  we have l"i(n, m) = 0 for any i >  n - 2. 

For any n > 3 and for any (mi) E ]R~ let ai(n, m) equal the number of  cells of  dimension i in 

the CW complex which ~'m by duality defines. 

THEOREM 5. For any n >3 and for any (mi) E IR n 

n --2 n --2 
c~i(n, m)t i> ~ ri(n, m)t i. 

Ii=O i=0 

COROLLARY 5.1. For any n > 3 and for any (mi)C IR n for which Vm has only nondegenerate 

critical points, 

n - 2  n - 2  
2 ~i(n, m)t i= ~ ri(n, m)t i. 

i=0 i=0 

4. M I N I M A L  C L A S S I F I C A T I O N S  

It is easy to see that the minimal classification induced by 2 ~i(n, O)t i in the nondegenerate case, 

Theorem 2, or with the homology interpretation arises on a proper subset of  IR n for any n > 4. 

We refer to previous results [3] on the existence of  degeneracies of Vm for some (mi)E IR n and 

for any n > 4. Here there is a one parameter family of  relative equilibria classes along which an 

index change occurs from maximum (index = 2n - 4) to saddle (index - 2n - 6) at a unique ratio 

of  the masses. For certain choices of  the masses, there is an excess of  (at least) (n - 2)! maxima 

over the number of  maxima given by the minimal classification with either the nondegenerate or 

homology interpretation. 

Let Nn be the set of  all (mi) E IR n for which there exists a degenerate relative equilibria class. 

Several possibilities arise. Let UC lR~_ - I; n be a maximal open set on which the minimal classifica- 

tion occurs. Then on the boundary of  U, which is contained ni Nn, the homology minimal classi- 

fication must arise. This is the essential closure property which is referred to in Section 2. However, 
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it may happen that  the homology minimal classification is realized for some (mi) ~ 2n but does 

not occur locally in IR.~ - En. Such is the case o f n  = 4 masses [1]. 

In [3] we prove that Zn has positive (n - 1) dimensional (Hausdorff) measure in IR~_ for any 

n > 4. En extends to the boundary of IR~ in IR n. This allows an induction to be carried out from 

2n- 1 to 2; n . In this way, in particular, the minimal classification can be shown to exist on an 

open set in IR~. for any n > 4. 

By comparing Z l~i(n)t i with the Betti numbers ~ [Ji(n)t i we find that the sharp Morse-type 

inequalities given by  Corollary 1.4 show an excess of  critical points in every dimension, 0 =< i <= n - 2. 

By comparing Corollary 2.1 and ~ 13i(n ) = n!/2 [2] we find an excess of  critical points equal to 

~(2t n _ n _ l ) ( n _ 2 ) ( n _ 2 ) ! f o r a n y n > 3 .  
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