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Abstract. It was proved by Renguria and Lieb that for an atom where the ‘electrons’ do not satisfy the 
exclusion principle, the critical electron number NC, i.e., the maximal number of electrons the atom can 
bind, satisfies lim inf,,, NC/Z 2 1 + y, where Z is the nuclear charge. Here y is a positive constant 
derived from the Hartree model. We complete this result by proving that the correct asymptotics for 
N,(Z) is indeed lim,,, NC/Z = 1 +y. 

AMS subject cIas&catIon (1980). 81-xX. 

1. Introduction 

In this Letter, we study the atomic Schrodinger operator 

(1) 

acting on X = Lz( R3N). The ground state energy of H(N) is 

E(N) = inf spec,ZZ(N). (2) 

This is the same as if we had restricted H(N) to the space of functions symmetric 
in the N space variables. E(N) thus corresponds to the energy of an atom where the 
‘electrons’ obey Bose symmetry. We define the ionization energy by 

Z(N) = E(N - 1) - E(N) > 0. (3) 

There exists N,(Z) < 22 + 1 (see [ 81) such that 

Z(N,(Z)) > 0 and Z(N) = 0 for all N > N,(Z). (4) 
N,(Z) is the maximal number of Bosonic ‘electrons’ that can be bound by the 
nucleus. 

We will here study the asymptotics of NC as Z + 00. The motivation for this 
comes from [2], where it was proved by comparison with the Hartree model that 

l$ni~f~> 1 +y (5) 

for a constant y > 0. 

* This work was done while the author was a graduate student at Princeton University supported by a 
Danish Research Academy fellowship and U.S. National Science Foundation grant PHY-85-15288-A03. 
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The Hartree model is defined by the functional 

where 

Wf, g) = i 
s 

f(x) Ix - ~1 - ‘g(y) dx dy. (7) 

L,H is defined on the set of functions p > 0 with & E ZP(R3). The energy in this 
model is 

EE(N)=inf(L”(p)]/p(x)dx=Nj. (8) 

Then by scaling we find 

E,H(N) = -mZ3e(N/Z), (9) 

where e(t) is a monotone nondecreasing, concave function. There exists p,“, such 
that 

L,H(p,n) = II$l E:(N) = mE(Z), 

where E(Z) = -Z3 min e. 

(10) 

It is known (see [7] where the more general Thomas-Fermi-von Weizslcker 
(TFW) theory is studied) that if we write $2 = SE, then I++,” is the unique 
positive solution to 

-rn-‘Al::-(~-~,HIXI-‘)+::=O (11) 

s p,“(x) dx = (1 + y)Z. (12) 

This is the same y as in (5). It was proved by Benguria (for a reference, see [ 7j) that 
O<y < 1. The numerical value (see [1]) is y =0.21. If N>(l +y)Z then 
E:(N) = ml?(Z), i.e., e(t) = min e when t > y + 1. 

Here we complete the result (5) by proving a similar upper bound, i.e. 

THEOREM 1. 

lim N,(z) -=l+y. 
z-tco z (13) 

In the case of fermions we have asymptotic neutrality, i.e., the above limit is 1. This 
was proved in [lo] and, recently, by a different method, in [4]. 
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2. Bounds on the Ground State Energy 

In this Section we improve the energy bounds from [2]. By choosing a product trial 
function it is easy to conclude (see [2]) that 

E(N) < E,H =, (N). (14) 

We will now prove a lower bound to E(N). In fact we will prove a lower bound 
to the operator H. 

For all functions cp E L2( P) symmetric in the N space variables (but not 
necessarily normalized) we define the one-particle density 

p,(x) = N 
s 

I&x, x2 . . . , xN)12 dx, * . . dx, 

and the two-particle correlation 

p’,“(x,y)=N(N-1) I~(x,y,...,x~)]~dx~...dx~. 
s 

To get the lower bound, we proceed as in [2]. From the simple kinetic energy 
inequality of Hoffmann-Ostenhof [ 51 (Lemma 2), we find that for any symmetric 
function cp 6 L2(llP) 

We estimate the last term with the Lieb-Oxford inequality (see [6] and [9]) 

2 lb (I-2&,, P,) - (1.68) I(rp I( -2’3 sp$’ dx 

- llrp I12Qd!, P,“) - (1.68) (Iv I( -2’3 j-pz3 dx, 

where p: was given in (10). If we insert this above we obtain 
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Using the Sobolev inequality ]]Vg (1: > 3(x/2)“’ I]g (12 and Holder’s inequality 

spy3 < (Jp;r6/lq l1513N5/6 

we easily get (see also [2]) 

where a = 0.13. We now choose m = 1 + E. Since $,” satisfies the Hartree equation 
(11) we see that m&Z) = - D(pz, p,“) and since @,” > 0, @E is the ground state of 

-m -‘A- i-j+ 1x(-i 
> 

. 

This is thus a positive operator. We can therefore conclude that 

Gi+-f(N)lp)a (l+@(Z) +NI!’ 
> 

IIcp]j2+ 

+ 11~ li-2D!~, - P#P 112, ~a - P:((CP II’). 
Using N < cZ and choosing E = cZw2i3 we have proved 

(1% 

LEMMA 2. For all symmetric rp E L2(R3N) we have 

GPIW%P)~@G) -cZ”~)II(PI(~+ (IcPII-~D(P, -~Pmnl(cpll~,~, -~S(lcpI(~), 
where m = 1 + cZe213. 

3. Structure of Ground State 

In this section we will prove Theorem 1. The main technical step is (in the fermionic 
case a similar result is given in [ 111) 

LEMMA 3. Let x, 8 E C’(R3) be nonnegative functions with x compactly supported. 
If N 2 (1 + y)Z and H(N) has a ground state 9 we then have the following estimate 
involving the ground state density p = p# and two point correlation pc2) = p$) 

(s > 
2 [P(‘)(h Y) - dWd4leWxW dx dy 

G cllvxll’[z’~~(j ) m-w dx 2 + zllvJql~ Jkhw d+ 

where m = 1 + cZp213. 
Proof. Since the ground state + of H(N) is symmetric we can write 

E(N) 
s 

pe dx = ,c, ($ [‘3x, MN))+ > 

= fl Oh le(x,)“2H(N)e(xi)“2 - W~~2111/>~ 
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where in the last equality we have used a simple commutation identity also used in 
the IMS formula (see [3]). If we let H(‘)(N - 1) denote the operator with the ith 
variable removed and use that the lowest eigenvalue of -A - (Z/lx 1) is - :Z’ we get 

E(N) 
s 

~6 dx > ,$, (l+!fle(X,)“2H(i’(N - l)e(XJ”21t)) - 

- iVll&lII~ -tZ2 
s 

p0 dx, 

where in the ith term we have neglected the repulsion between the ith electron and 
all the rest. If we now use Lemma 2 for H(‘)(N - 1) with cpi = &xi) ‘I*$ (here x, is 
a parameter) we get 

E(N) 
s 

pe dx > (E(Z) - cZ7’3) 
s 

pe dx - Nllv@II: + 

+ 5 
I 

(~c~~~~~~~~P~‘~~pp,H(~c~~~~~~ P’i’-p~~~‘Pi~~2) dxi, (16) 
i-1 

here 

p(iyx) = p,,(x) = N-~~(x,)P(*)(x, xi) 

and 

IIq# = (N - l)-’ 
s 

p”‘(X) dx = iv-~e(xi)p(xi). 

We can therefore write 

s 
b (*)(x, Y) - pit!< hW1 Wx ( N dx dy 

N 
= 

Kf 
(P”‘(Y) - IIcP~I(*P~H(Y)MY) dxi d.Y* 

r=l 
(17) 

We use the Fourier transform (denoted “) to estimate the last expression. This idea 
comes from [4]. It is here that we need some decay of x. 

> 2 

(P”‘(Y) - IIcP~II*P~H(Y))x(Y) dY 

> 2 = (P”’ - llvi I12p,H) h h&b) dp 

G Ix^l’IPI’dP 
s Sl I 

(PC”- IlViII*PmH) ̂ (P) ‘IpI-‘dP 
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and using Cauchy-Schwarz inequality 

> 2 (P”‘(Y) - IIcP~~~~PXY))X(.Y) dv dx, < KS (P”‘(Y) - II~iI12PL!(Y)MY) dY 211~~11-2~~ >I 4 IlVi(12dxi GCI(VXII~ ~(p(i)-p,HII~i~(2,p(i)-p,HII~i(~2)~~~iI(-2dx~N-’ s s pedx* 
Since N > (1 + y)Z we know that Ei= i(N) = E and hence from (14), 

E(N) < E(Z). We can estimate the above expression from (16) where the terms in 
the sum are independent of i. Inserting this into ( 17) and noticing again that the 
terms in the sum of ( 17) are all the same, we arrive at the final result (recall that 
N < 22 + 1). 0 

EXAMPLE. If we choose 8 = 1 in the Lemma we find with m = 1 + cZA213 

P(Y)X(X) dy - N 
s 

P,H(Y)x(Y) dr 2 < CN2Z7’311Vx )I2 

or 

~09x69 du - 
s 

P:WXW dy 
> 

2 G CZ7’31(Vxl12. (18) 

We can now give the 

Proof of Theorem 1. Because of the lower bound in [2], we only have to prove a 
similar upper bound. We can of course assume that N, > (1 + y)Z. We are now 
concentrating on the case N = N,. Since I(N,) > 0 it follows from the HVZ 
Theorem (see [3]) that H(N,) has a ground state. 

First choose localizing functions xR, OR as in the Lemma, but depending on a 
scale R. xR should be supported in a ball of radius R around the origin and be equal 
to 1 in a ball of radius ;R. Furthermore, we want xR + 8, = 1. Then 

[(VX~[(~ <CR and llV,/‘&ll, G CR-‘. 

We will use ( 18) to give a bound on J p(x)xR(x) dx. From the scaling of the Hartree 
model we find that 

p,“(x) = m 3Z4pH(mZx), 

where pH is the Hartree density corresponding to Z = 1 and m = 1. It follows from 
the results in [7] on the TFW theory, that pH is exponentially decaying at infinity. 
Now choose R = Z-‘19. Then it follows immediately from ( 18) that (recall that 
m = 1 + cZ-~‘~) 

IS 
p(x)xR(x) dx - (1 + y)Z < CZ7’9. 
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To estimate j p(x)e,(x) dx we proceed as in the beginning of the proof of Lemma 
3 and use the IMS formula to prove 

+ I p”‘(x, y)&(x)lxl Ix -yI-’ dx dy - NllV,/i$i II’,, 

here we have kept the repulsion between the ith electron and the others but 
neglected the -Ai term. We choose 0 < Iz < y/2 and restrict the y-integral above to 
(yl <AR, i.e., y E supp xIR. If x E supp 8, and y E supp XnR then lx - yI< 
(xl+ AR < (1 + 21)1x1 . Hence, from (4) 

0 2 -z 
s 

&)8R(x) dx + & 
s 

P% deRmR(.d dX dY - CNR-‘. 

We then apply Lemma 3 to estimate the second term, again using the results on pn 
mentioned above 

p(x)e,(x) dx - CNR -1 - 

- CR Wz7/6 

s 

p(x)e,(x) dx - CR -“2Z”2 ([P(X)&(X)dX)lli. 

Since 2A < y and j pt7, G const Z we find 

c(Z - 27’9) 
s 

p(x)eR(x) dx f cz’6’9. 

This then implies the final estimate 

NC = 
s s s 

p(X) dX = p(X)XR(X) dX -t p(X)&(X) dX G(i +y)z +Cz7'9 

from which Theorem 1 follows. 0 

References 
I. Baumgartner, B., On the Thomas-Fermi-von Weizsiicker and Hartree energies as functions of the 

degree of ionization, J. Whys. A 17, 1593-1602 (1984). 
2. Benguria, R. and Lieb, E. H., Proof of stability of highly negative ions in the absence of the Pauli 

principle, Phys. Reo. L&t. 50, 1771-1774 (1983). 
3. Cycon, H. L., Froese, R. G., Kirsch, W., and Simon, B., Schriidinger Operutors, Springer-Verlag, 

Berlin, Heidelberg, 1987. 
4. Fefferman, C. L. and Seco, L. A., Asymptotic neutrality of large ions, Comm. Math. P&s., to 

appear. 



172 JAN PHILIP SOLOVEJ 

5. Hoffmann-Ostenhof, M. and Hoffmann-Ostenhof, T., ‘SchrGdinger inequalities’ and asymptotic 
behavior of the electron density of atoms and molecules, Phys. Reu. A 16, 1782-1785 (1977). 

6. Lieb, E. H., A lower bound for Coulomb energies, Phys. Lett. 7OA, 444446 (1979). 
7. Lieb, E. H., Thomas-Fermi and related theories of atoms and molecules, Reu. Mod. Phys. 53, 

603-641 (1981). 
8. Lieb, E. H., Bound on the maximum negative ionization of atoms and molecules, Phys. Rev. A 29, 

30183028 (1984). 
9. Lieb, E. H. and Oxford, S., An improved lower bound on the indirect Coulomb energy, Int. J. 

Quantum Chem. 19, 427-439 (1981). 
10. Lieb, E. H., Sigal, I. M., Simon, B., and Thirring, W., Asymptotic neutrality of large-2 ions, Comm. 

Math. Phys. 116, 635-644 (1988). 
Il. Seco, L. A., Sigal, I. M., and Solovej, J. P., Bound on the ionization energy of large atoms, Comm. 

Math. Phys., to appear. 


