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Abstract, The authors obtain an upper bound on the free energy of  the spin I/2 Heisenberg ferromagnet. 
The zero field bound is, at low temperature, similar to the formula given by the magnon approximation. 
That is, its functional dependence on temperature is the same but the constant is different. 
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I. Introduction 

Let 7/d be the integer lattice in d dimensions. For integer L -- 1, 2 . . . . .  let A be the 
intersection of  7/d with a 'cube'  of  side L, 

A = [0, L]dnT/d. (1.1) 

We impose periodic boundary conditions on A by identifying endpoints. Then A 

becomes a d-dimensional torus with volume IA] = L d. We shall be interested in the 
spin �89 nearest neighbor Heisenberg ferromagnet on A. 

To each R ~ A, we attach a spin vector S(R) = (Sx(R), Sv(R), Sz(R)) where the 
components of  S(R) are given in terms of the Pauli spin matrices ax, a~., a_ by 

S~(R) TO',c, S ; , ( R )  1 S z ( R  ) 1 = _ . = Say, = yrz. (1.2) 

It easily follows that 

S(R)2 = Sx(R)2 + S,,(R)2 + S.(R)2 = 3. (1.3) 

1 The spin ~ Heisenberg Hamiltonian on A is then given by 

1 "~A = 2 ~ [(S(R) -- S(R + 6))2 i], (1.4) 
R~A,b 
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where 6 ranges over all vectors in the lattice with length 1. The Hamiltonian (1.4) 
has been normalized to make the ground state zero. The number operator corre- 
sponding to "~A is 9l A, where 

T/A= ~ [S~(R) +�89 (1.5) 
R ~ A  

1 Thus 916 counts the number of  sites R with Sz(R) = 5. In particular, the vacuum 
1 ~IA = 0 consists of  all sites R taking the value StiR) = - 5 .  It is well known that 0IA 

commutes with -~A, whence [0IA, "~A] = 0. 
The physical free energy per unit volume at inverse temperature fl > 0 and field 

h, - o o  < h < 0% is given by - f l -  lfA, where 

fA(fl, h) = IAI-I log Tr e x p [ -  fl(~A + hOlA)]. (1.6) 

For simplicity of  notation, we shall refer from here on to fA and its analogues as 
free energy. The thermodynamic limit of  f A, 

f(fl, h) = iAllim fA(fl, h) (1.7) 

is known to exist [9] and gives a continuous convex function of  fl and h. We shall 
be concerned with the zero field free energy f(fl, 0) at large ft. 

The standard method of  understanding heuristically the low temperature Heisen- 
berg model is the magnon approximation [2]. Let HAm be the Hamiltonian ~A 
restricted to the space 91A = N, N = 0, 1, 2 , . . . .  Then in view of our normalization 
of  ~A, HA,O is just the zero Hamiltonian acting on the complex numbers C. Let 
L2(A) be the Hilbert space of  functions 0, 

L 2 ( A ) = {  0"A- -*C  ,cA ~ I~O(R)[2<~ (1.8) 

Then HA,1 is the negative lattice Laplacian acting on L2(A), i.e. for ~b e L2(A) 

HA, 1 ~/(R) = 2 d~b(R) - ~ ~k(R + 6). (1.9) 

The magnon approximation consists then of  assuming that the low temperature 
Heisenberg model at nonnegative field behaves like the free Bose gas generated by 
HA. 1 . Since it is possible to calculate the free energy of a Bose gas precisely one 
expects from the magnon approximation that the Heisenberg free energy (1.7) 
satisfies 

lim fla/2f(fl, O) = Ca, (1.10) 
f l ~ o o  

where 

C d = log[ 1 -- e-k2] dk. (1.11) 
d 
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We prove here a lower bound on the zero field free energy of the Heisenberg model 
which is of  magnon form (1.10). Thus, we have 

T H E O R E M  1.1. Let ca be defined by 

ca = ~ ae -k2 dk = (2x//-~)-a. (1.12) 

Then there is the inequality 

lira inf ~a/2f(B, 0) >1 �89 (1.13) 

In dimension d = 3, the constant Ca = 0.0301, which is to be compared to our bound 
lc  d = 0.0112. 

To prove Theorem 1.1, we actually consider a model which lies between the Ising 
model and the Heisenberg. This is the reason why we get the constant Ca occurring 
in (1.13) instead of Ca as in (1.10). Indeed, for the intermediate model, the constant 
ca would be the correct free gas lower bound (see the remark after Theorem 1.2), 
Unfortunately, in (1.13) we cannot even go all the way to ca. 

The configuration space for the Heisenberg N particle Hamiltonian HAm is [3] 

A~z = {R = (R1, R 2 , . . . ,  RN) E AN IR, ~ Rj, 1 ~< i < j  ~< N}. (1.14) 

The boundary of  A~2 is 

OA~2 = ANkA~2. (1.15) 

The Hamiltonian HA,~r is then the lattice Neumann Laplacian on Al~2, N =  
2, 3 . . . . .  Thus, HA,N is a self-adjoint operator on the Hilbert space L2(A~2), 

L2(A~2) = {4s'A~2--*C [ ~ .~k(R).2< ~ } .  (1.16) 
REAI~ 2 

The quadratic form defining HAm is given by 

<~, HA.N~ > 
N 

= Z E'~ . . .  , R, 1, R, + 6, R,+ 1 . . . . .  RN) - ~ k ( R ,  . . . . .  RN)I 2, 
t = l  R 

(1.17) 

where the second E (') in (1.17) is taken over all pairs 

R = ( R l  . . . . .  RN) and R , (6 )=(R1  . . . . .  R, l , R i + 6 ,  R,+l . . . . .  R N )  

such that R, R, (6) are in A~/2 . T h e  N particle Heisenberg Hamiltonian is then HAm 
acting on symmetric functions O(R1 . . . . .  R N ) .  Thus, the Heisenberg model corre- 
sponds to Bose-Einstein statistics [3]. Let us consider the system corresponding to 
Maxwell-Boltzmann statistics. Thus we consider HAm acting on the full L 2 space 
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(1.16) and then the Maxwell-Boltzmann free energy is 

FA(fl, h) = ]A[ -1 log N~--Tr exp(--flHA,N) �9 (1.18) 
0 

Note that N is restricted to N ~< Im[ in the above sum. 
This Maxwell-Boltzmann model lies between the Ising model and the Heisenberg 

in the sense that 

~A(fl, h) < FA(fl, h) ~fA(fl, h), 

where ~A(fl, h) is the Ising model free energy 

~A(/~, h) 

= 

o'(R) = + 1/2 
R ~ A  

(1.19) 

(1.20) 

The inequalities (1.19) are easily seen from the representation (given in [3]) of the 
partition functions in terms of random walk expansions. In fact, the first inequality 
was explicitly stated in [3]. 

One can prove the existence of the thermodynamic limit for the Maxwell-Boltz- 
mann model just as for the Heisenberg model. Let F(fl, h) be the infinite volume 
free energy per unit volume. The finite volume magnetization MA(fl, h) is 

MA (fl, h) = 1 + ~ ~FA (fl, h)/Oh. (1.21) 

Since FA has the symmetry 

FA(fl, h) = FA(fl, --h) - flh, (1.22) 

it follows that MA(fl, 0 ) =  0. It is not difficult to show that the thermodynamic 
magnetization M(fl, h) = limA~o o MA(fl, h) satisfied M(fl, 0) = 0 for small fl: We 
have the following estimates on thermodynamic free energy and magnetization for 

large ft. 

THEOREM 1.2. With Ca as in (1.12), there are the inequalities 

lim inf fld/2F(fl, O) >i �89 (1.23) 

lim inf fla/2[M(fl, O) - 11 >1 ca. (1.24) 

Remark. Observe that the bounds in Theorem 1.2 are not free gas lower bounds. 
The free gas lower bounds from (1.23) would correspond to replacing Ca/2 by ca on 
the right-hand side of the inequality. Inequality (1.24) is known to exist for the 
Heisenberg model [2] and is proved by using Mermin-Wagner-type arguments 
[4, 9]. 
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Evidently, the inequality (1.23) implies Theorem 1.1. It is natural to ask if upper 

bounds corresponding to (1.23) and (1.24) exist. This is a much more difficult 
question than the one we have answered. The reason is that the Heisenberg process, 
viewed as a random walk [3], differs from the free system in that the walks have 
been slowed down. The estimates (1.23), (1.24) and the Mermin-Wagner  argument 
[9] are rigorous versions of this intuition. To obtain upper bounds, one needs to 
estimate the degree of  slowing down or subdiffusivity. Remarkably, an upper bound 
of the form (1.24) is known to exist for the Heisenberg antiferromagnet. This was 
proved in [4] using the method of Gaussian domination. The constant there is also 
off, by a factor of  3/2, coming from an overcounting of  degrees of freedom. 

We conjecture that upper bounds of the form (1.23), (1.24) are not correct in 
dimension d = 1 but are correct in dimension d ~> 3. For d = 1, F A =fA and the 
model can be exactly solved [7, 10]. However, we can find no reference to estimating 

f(fl, 0) for large ft. We expect that in d = l, there is the inequality 

lim inff(fl,  0) > 0. (1.25) 

To explain why we make these conjectures let G(fl, p) be the thermodynamic free 
energy 

{' } a(fl, O) = A+~lim Inl-' log ~..Trexp(--flHA,u). , (1.26) 
N/IA I = p 

where 0 < p < 1. Then 

F(fl, h) = sup [- f lhp + G(fl, p)], (1.27) 
0 < p < [  

and G(fl, p) is a concave function of p satisfying the conditions 

6(fl, p) = G(fl, 1 - p), G(fl, 0) = 0. (1.28) 

It follows from (1.28) that G(fl, p) as a function of p increases as p goes from 0 to 
1 and then decreases. Let p(fl) be defined by 

p(fl) =inf{p > 0 :  G(fl, p) = sup G(fl, p')}. (1.29) 
0 < p ' < l  

Then p(fl) is related to the zero field magnetization M(fl, 0) by 

M(fl, 0) = 1 - 2p(fl). (1.30) 

Now in d = 1 there is no phase transition [9], whence M(fl, 0) = 0 and so p(fl) = �89 
1 However, if p = ~ then one expects that particles on average can diffuse only a finite 

distance, whence G(fl, �89 = 0(I) as fl ~ oo. 
Our conjecture in d t> 3 is based on the expectation that the Heisenberg ferro- 

magnet has a phase transition for d i> 3. There appears to be a relation between this 
problem and the problem of random walk in random environment [1, 5]. It has 
been recently shown in a remarkable paper [1] that random walk in a weak random 
environment is diffusive for d ~> 3. This suggests for our situation that if g is the 
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quantity corresponding to (1.26) for the Heisenberg model, then 

lim fla/2g(fl, p) = c < oo for 0 < p < e, (1.31) 
f l ~ o o  

in d >/3, where ~ is a sufficiently small number. Now suppose that an upper bound 
of the form (1.23) does not hold in d/> 3. Then, of course, it does not hold for the 
Heisenberg model. We conclude from (1.31) that in the Heisenberg model 
p(fl) ~> ~ > 0 for large fl, whence the zero field magnetization does not converge to 
1 as fl-~ oo. Thus, if (1.23) does not hold in d/> 3, there is either no phase 
transition in the Heisenberg ferromagnet or the nature of the transition is quite 
different from what has formally been assumed. 

The anisotropic Heisenberg ferromagnet at low temperature is already well 
understood, and it has been shown in [6, 8] that a phase transition does exist in 
d >~ 3. The existence of a phase transition in the Heisenberg isotropic antiferromag- 
net has been given in [4]. 

5. P roo f  of  Theorem 1.2 

For N ~> 1, we consider the set 

QN = {~ = (R, R') I R ~ A~2, R" e A}, (2.1) 

and the Hilbert space 

= z 

Evidently, LE(Q N) is just a tensor product, 

LE(Q u) = LZ(A~z) | LE(A). (2.3) 

Hence, the operator HA,tO | 1 + 1 | HA, 1 acts on it in a natural way. 
There is also another operator which acts naturally on L2(QN). The set Q~ can 

be decomposed into N + 1 disjoint subsets 

N 

Q~r Q~w [,.) Qr u, (2.4) 
r = l  

where 

Q~V= {~ = (~,, {2 . . . .  , {N+,)I  r r ~j, 1 <~i<j<~N+ 1}, 
(2.5) 

Q~ = {{= ( ~ t , . . . ,  ~N+I) 14, r ~j, 1 .N<i < j  ~<N, ~, = i s+ ,} -  

It is clear that Q~ is identical to Al~ +1 and that Q~, r = 1 . . . . .  N are each 
isomorphic to A~2. The decomposition (2.4) leads to a decomposition of L2(QJV), 

N 

LZ(Q N) = (~) LZ(Q~). (2.6) 
r = 0  
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Now HA.U+ 1 acts naturally on L2(Q~) and HA. N on each of L2(QN), r = 1 , . . . ,  N. 
Let us denote HAm acting on L2(Q~ u) by HA.N(r), r = 1 . . . . .  N. Hence, the operator  

N 
HA.N+' r E HA. N(r) (2.7) 

r=, 

also acts on the space L2(QN). 

L E M M A  2.1. The following operator inequality holds on L2(QN). 

N 
HA,N| 1 + 1 | >~HA,N+,r ~ HA,N(r). 

r=,  

Proof. We have for ~k ~ L2(QN), 

N+, 
= E ,  E - 

= ~ , ~ , ( 6 ) e Q o  

N N 

+ Z  Z Z 2, 
r = , l =  ' ~ , % , ( 6 ) c Q  N 

where 

~,(6) =(~, . . . . .  ~,_,, ~, +6, ~,+, . . . . .  ~N, ~N+, +6) 

~1(6) =(r  . . . . .  ~t--,, r "~-6, ~t+, . . . . .  ~N+,) 
i f i = N + l  or ~ Q N \ Q N ,  I<~i<~N. 

For  ~ = (r . . . . .  CU+ , )  E QN, let us write 

~'=(~, . . . . .  ~N), ~=(~',~N+,), ~'eA,~2 

and define 

~;(6) for l ~ < i ~ < U  

by 

Let ~ e Q~,  1 ~< i ~< N. From (2.10), we have the elementary inequality 

Jq,(~,, (a)) - r 
II]/(~; (6), ~N+I + 6 )  --I/1(~', ~N+I +6)[  2+  

+ Iq,(~; (6), CN+ ,) -~0(~', CN+ ,)p2+ 
+ Ir ~N+, +a)  -~0(~', ~N+,)I2 + 
+ [q,(~;(a), CN+, + 6) - q,(~;(6), ~N+ ,)]2. 

(2.8) 

(2.9) 

if ~eQN, l <<.i ~ N, 

(2.10) 

(2.11) 

(2.12) 

(2.13) 
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Substituting (2.13) into (2.9) we have that 

(~]'[HA,Nq-I~r~=IHA,N(r)II/]) 
N 

~< E E N Iq'(~;(a),r 2+ 
t =  1 ~',~,~(6)eAu2 

~ N + I  EA 

+ ~.~,~:~. I~,(~', CN+, +6) -~,(~', ~+,)1: 
~N + 1 •A 

= (~h, [HA,N@ 1 + 1 (~  H A , , ] ~ / ) .  

C O R O L L A R Y  2.1. For N >>, 1 and fl > O, there is the trace inequality 

Tr exp[ - flHA,N + l ] 

/> [Tr exp[ - f lH^, l ]  -- N] Tr exp[--flHA,N]. 

Proof. This follows immediately from (2.8). 

We turn to the proof  of Theorem 1.1. We have from (1.9) that 

lim IAI -~ Wr exp[--flnA,1] 
A ~ o o  

1 I e -~(*) dk = fl --d/2])d(fl)  , 
- ( 2 ~ )  d . . . .  1 a 

where 

e(k) = 4 i__~ 1 s in2(~) .  

It follows that 

lim Ye(fl) = (2x/~)-d.  

Hence, for large A and N satisfying 

N/IA[ <. yd(fl)/2fl alE, 

we have 

Tr exp[ -- flHA,N] >1 [Yd (fl) /2fl a/2] UlAff" 

For N = 0, 1, 2 , . . .  let aN,A be 

1 
aN'A = N. t  Tr exp[ - -  flHA.N]. 
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(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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T h e n ,  f r o m  (1.27),  we h a v e  tha t  

F(fl, O) >~ lira 
A ~ c o  

N/IA [ = yd(fl)/2/i'u/2 

>~ lira 
A ~ c z o  

N/IA  [ = 7d(fl)/2fld/2 

= ~ d ( ~ ) / e U / 2  

]A t - i log aN, A 

, A , '  log{~.w [~d(fl)/2fld/2]U'A[ N} 

231 

(2.22) 

by Stirling's formula. This proves (1.23). 
To prove (1.24), we observe that au, A is increasing as a function of N provided 

N/IA I ~< 7,~(/~)/2/~ a/2. It follows from this and (1.29) that 

p(fl) >~ 7d(fl)/2fl a/2. (2.23) 

The inequality (1.24) then follows from (/.30). 
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