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Abstract. We consider perturbations of a model quantum system consisting of a single bound
state and continuum radiation modes. In many problems involving the interaction of matter
and radiation, one is interested in the effect of time-dependent perturbations. A time-dependent
perturbationwill couple the bound and continuummodes causing `radiative transitions'. Using
techniques of time-dependent resonance theory, developed in earlier work on resonances in
linear and nonlinear Hamiltonian dispersive systems, we develop the scattering theory of
short-lived �O�tÿ1ÿe�� spatially localized perturbations. For weak pertubations, we compute
(to second order) the ionization probability, the probability of transition from the bound state
to the continuum states. These results can also be interpreted as a calculation, in the paraxial
approximation, of the energy loss resulting from wave propagation in a waveguide in the
presence of a localized defect.
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1. Introduction

The interactions of matter with electromagnetic ¢elds play a major role in many
¢elds of physics, chemistry, and engineering [2]. The study of laser interactions with
atoms and electron microscopes, as well as the sudden approximation in quantum
mechanics, lead us to consider the time-dependent Schro« dinger equation with a
perturbing potential which is short lived, that is, localized in time. A typical model
of this type is

i@tf�t; x� � ÿDx � V �x�� �f�t; x� � b�t; x�f�t; x�; �1:1�

where V �x� is localized in x 2 Rd and b is localized in x and t 2 R.
Another important area of application is in the propagation of waves in optical

waveguides (e.g. optical ¢bers) in the paraxial approximation. Let x denote the
coordinates which are transverse to the guiding structure and let z denote the
coordinate along the direction of propagation in the waveguide. Then,
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f � f�z; x�, the slowly varying envelope of the electric ¢eld, solves an equation of the
form (1.1) where z plays the role of the time variable. The potential V �x� models
transverse variations in the refractive index and may have localized modes associ-
ated with it. The perturbation, b�z; x� models perturbations in the refractive index
which vary along the waveguide. A `short-lived' (in z) potential corresponds to a
local `defect' or local perturbation in the refractive index [7].

We consider a general class of problems including (1.1) in which the unperturbed
Hamiltonian, H0, has one bound state c0; kc0k � 1. The perturbation, b�t�, has
the e¡ect of coupling the bound state to continuum (dispersive) modes and leads
to energy transfer. Our aim in this Letter is the analysis of the large time behavior
of such systems where b�t� is symmetric short lived and localized; see (2.4). The quan-
tities P�t� � jhf�t�;c0ij2 and 1ÿ P�t� can be interpreted, respectively, as the prob-
ability that the system is in the state c0 and the ionization probability. In the
context of optical waveguides, P�t� is a measure of the amount of energy trapped
by the defect and 1 ÿ P�t� the amount of energy radiated away.

Our results are stated precisely in Theorems 2.1 and 2.2. Theorem 2.1 states that
any solution of the initial value problem converges as t!�1 to an asymptotic
bound state eÿil0tA��1�c0 plus a purely dispersive part. The perturbation is not
assumed to be small in Theorem 2.1. Theorem 2.2 gives a more detailed description
of the solution as t!1 and in particular gives, in the case of a small perturbation
b�t�, a useful expression for the the asymptotic bound state component. Suppose
the perturbed dynamical system is initialized in the state c0. Theorem 2.2 implies

P�1� � eÿ2G 1�O� khbk2L1 �
ÿ �

; �1:2�
where khbkL1 is an integrated measure of the strength of the perturbation; see (2.4).
This gives an explicit and useful expression for the ionization probability for weak
perturbations. Note that its validity does not rely on pointwise smallness of b�t�.
The quantity G is given by the formula

G � kPcb̂�l0 ÿH0�c0k2

�
Z

g�m� dm; �1:3�

where

g�m� � jFH0 �b̂�m�c0��l0 ÿ m�j2; �1:4�
where FH0 denotes the (generalized) Fourier transform with respect the continuous
spectral part of the operator H0; see also (2.17). The integration in (1.3) is over
the support of b̂�m�. This formula is an analogue of the Fermi golden rule* appro-
priate for perturbations which are localized in t.

A T -periodic in perturbation may be thought of as a sequence of t-localized
defects. After encountering N defects we have P�NT � � exp�ÿ2NGone defect�. Thus
*See [10, 11] and references cited therein.
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roughly, neglecting dispersive component of the solution, we have exponential decay
as jtj increases. The results of [11, 6] (see also the exactly solvable model considered
in [3, 9]) show that this is valid for large but ¢nite t. For example, in [11] it is proved
for b�t; x� � cos�m0t�b�x� that P�t� � exp�ÿ2g�ÿm0�jtj�; for jtj � O�bÿ2�. For a large
class of perturbations with discrete time-frequency content (periodic, almost peri-
odic in t), the very large time behavior (t >> O�bÿ2�) is characterized by algebraic
decay to zero with increasing t [11, 6].

The methods of this Letter are a natural extension of the techniques of time depen-
dent resonance theory developed in [10^12] to the case of time-localized
perturbations. These methods can be extended to the case where H0 has multiple
bound states [6].

2. Preliminaries and Results

We assume that the system under consideration is given by the following
Hamiltonian:

H�t� � H0 � b�t�; �2:1�

and satis¢es the Schro« dinger equation

i
@f
@t
� H�t�f: �2:2�

We assume that H0 is a self-adjoint operator densely de¢ned on a Hilbert spaceH
and having exactly one bound state, with eigenvalue l0, and normalized
eigenfunction c0:

H0c0 � l0c0; kc0k � 1: �2:3�

The projection Pc � I ÿ h�;c0ic0 is onto the continuous part of H0, We de¢ne
`weights' w� and wÿ satisfying

�i� w�X cI ; c > 0;

�ii� wÿ 2 L�H�;
�iii� wÿw� Pc � Pc � Pcwÿw�:

We also assume that w�c0 2 H. This is the setting used in [11].

EXAMPLE 2.1. The example to keep in mind isH � L2�Rn�,H0 � ÿD� V �x�, with
V �x� suf¢ciently regular and decaying rapidly as jxj ! 1. Typical weights chosen in
this case are: w� � hxi�s, where hxi � �1� jxj2�12 and s is suf¢ciently large and
positive. In this case, the estimates (2.6)^(2.7) hold; see, for example, [10].
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b�t� is assumed to be a symmetric and bounded operator, such that

hb�t� � kw�b�t�w�kB�H� 2 L1�R; dt�: �2:4�

For simplicity we'll assume that b�t� is supported for t > 0 and extend it as an even
operator-valued function on R. In the above example, one often has in applications
a perturbation of the form b�t; x� �Pj bj�t�Vj�x�.

Remark and Warning: Introduce the Fourier transform of the operator b de¢ned
for any v 2 H:

b�t�v �
Z
R

eimtb̂�m�v dm; b̂�m�v � �2p�ÿ1
Z
R

eÿimtb�t�v dt; �2:5�

Using the spectral theorem, one can then de¢ne b̂�A�, where A is a self-adjoint
operator; we shall use this below withA � l0 ÿH0. In applications, as in the example
above, one often has b�t� � b�t; x� and therefore b̂�A� � b̂�A; x�may be, for example,
a pseudo-di¡erential operator. In our general setting, we shall simply write b̂�A�with
the understanding that this is not simply a function of the operator A. Thus, in
general, b̂�H0�c0 6� b̂�l0�c0.

We also assume that H0 satis¢es the following:

Local energy decay: For some r > 1,

kwÿeÿiH0tPc�H0� f k2 W chtiÿrkw� f k2: �2:6�

Theorem 2.1 and most of Theorem 2.2 rely mainly on the estimate (2.6) alone. The
assertion in Theorem 2.2 concerning the rate of approach of P�t� to its asymptotic
value requires an additional technical assumption. In particular, we shall use the
following estimate which holds in the situation where f may not lie in the domain
of w�:

Weak local energy decay:Z
R
kwÿeÿiH0tPc�H0� f k22 dtWCk f k22: �2:7�

Remark 2.1. The estimate (2.7) is applied with f � b̂�l0 ÿH0�c0. Consider the
setting of Example 2.1, H0 � ÿD� V �x�. Let s � 2� y; y > 0, jV �x�jWChxiÿs
and assume that zero is neither an eigenvalue nor a resonance of H0. Then, (2.7)
is a consequence of results in [1].

Remark 2.2. Improvements in decay, which are of an intermediate character
between (2.7) and (2.6) can be obtained from appropriate assumptions on com-
mutators of weights with b̂�l0 ÿH0�. For Example 2.1 by assuming that the
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commutators:

hxi; � � � hxi; b̂�l0 ÿH0�
h ih i

; � jW k times� �2:8�

are bounded operators on H, we can obtain improved decay:

khxiÿseÿiH0t Pc�H0� f k2 W chtiÿminfk;n2gkhxikf k2: �2:9�

The above boundedness assumption on commutators amounts to spatial localization
of b�t; x� and smoothness of b̂�m; x� in m. These are ensured by the assumption:Z

R
htikkhxisb�t; ��kL2 dt <1: �2:10�

Remark 2.3. For the choice of r appearing in estimates (2.6), the integral

Ir�hb��t� �
Z t

0
htÿ siÿrhb�s� ds; �2:11�

arises. Since r > 1, by Young's inequality

kIr�hb�kL1 W ckhbkL1 and; furthermore; kIr�hb�kL1 W khbkL1 :

Under the above conditions it is known that f�t� exists for all times t, for any given
f�x; 0� 2 D�H0�, the domain of H0.

Furthermore, since b is symmetric, we have the conservation of energy

kf�t�k � kf�0�k: �2:12�

We will prove the following theorem:

THEOREM 2.1. Consider the initial value problem for (2.2) with data f�0� 2 D�H�.
The large time behavior of f�t� is a linear combination of free waves and the bound
state c0 (orthogonal to f�t� for all t). In particular, there exists a complex number
A�1� and a vector f� 2 H such that

f�t� ÿ eÿil0tA�1�c0 � eÿiH0tPc�H0�f�
� � �2:13�

tends to zero in H as t!�1.

The following result gives a more detailed picture of the asymptotic behavior and
provides a useful expression for the small b (in khbkL1 ) behavior.
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THEOREM 2.2. For tX 0, and khbkL1 W 1 we have

f�t� � e
ÿi�l0t�

R 1
0
hc0;b�s�c0i ds�L�

eÿG �

� a1 �O
Z 1
t

hb�s� ds
� �� �

c0 �

� fd�t�; �2:14�

where

a1 � a�0� � O kfd�0�k khbkL1 � kf�0�k khbk2L1

ÿ � �2:15�

and fd�t� is dispersive and satis¢es the decay estimate

kwÿfd�t�kW c1kw�fd�0�khtiÿr � c2 kf�0�kIr�hb��t�: �2:16�

G and L are given by

G � p2
Z
R

dmhPcb̂�m�c0; d�H0 ÿ �l0 ÿ m��Pcb̂�m�c0i �2:17�

� kPcb̂�l0 ÿH0�c0k2;
L � p P:V:

Z
R

dmhPcb̂�m�c0; �H0 ÿ �l0 ÿ m��ÿ1Pcb̂�m�c0i: �2:18�

Finally, for P�t� (see the Introduction) we have that there exists p1X 0 such that

P�t� � eÿ2Gp1 �O
Z 1
t

hb�s�ab�s� ds
� �

; �2:19�

where

p1 � 1�O khbk2L1

ÿ �
and ab�t� 2 L2�R; dt�: �2:20�

3. Decomposition and Proof of Theorem 2.1

Our ¢rst aim is to derive a system of equations, equivalent to (2.1), for the coupled
evolution of the bound state and dispersive channels [10^12]. A natural basis to
use is that of the unperturbed dynamics.

Let

f�t� � a�t�c0 � fd�t�; hc0;fd�t�i � 0 �3:1�
with H0c0 � l0c0:

Then, from (2.1) we get

i@ta�t�c0 � i@tfd � H0fd � l0a�t�c0 � ba�t�c0 � bfd : �3:2�
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Taking the scalar product with c0, we get

i@ta�t� � l0a�t� � hc0; bc0ia�t� � hc0; bfdi: �3:3�

Letting

a�t� � eÿil0tA�t�; �3:4�

we have

i@tA�t� � hc0; bc0iA�t� � eil0thc0; bfdi �3:5�

and, by applying Pc to (3.3), we get

i@tfd � H0fd � Pcbfd � eÿil0tA�t�Pcbc0 �3:6�

and Pcfd � fd :

Our aim is to prove that A�1� � limt!1 A�t� exists.
Solving Equation (3.6), we get

fd�t� � eÿiH0tfd �0� ÿ i
Z t

0
eÿiH0�tÿs�Pcb�s�fd�s� dsÿ

ÿ i
Z t

0
eÿiH0�tÿs�eÿil0sA�s�Pcb�s�c0 ds

� f0 � f1 � f2: �3:7�

We estimate kwÿfd �t�k by considering each term individually. First,
f0�t� � eÿiH0tfd�0� satis¢es local decay since fd�0� � Pcfd�0� � Pcf0: Thus,

kwÿf0�t�kW ckw�fd�0�khtiÿr: �3:8�

Estimating f1, we have

kwÿf1�t�kW kwÿ
Z t

0
eÿiH0�tÿs�Pcb�s�fd�s� dskL2

W c
Z t

0
htÿ siÿrkw�b�s�w� � wÿfd�s�kB�H� ds

W ckfd�0�kIr�hb��t�: �3:9�

We have also used that khxiÿsfd�s�kL2 W kfd �0�k is bounded as a consequence of L2

conservation and orthogonality:

kf�t�k2 � jA�t�j2 � kfd�t�k2 � kf�0�k2:
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Finally, we estimate the local decay norm of f2 in a similar way:

kwÿf2�t�kW c
Z t

0
htÿ siÿrjA�s�j kw�b�s�c0k ds

W c
Z t

0
htÿ siÿrhb�s� ds

� �
� sup

a<sW t
jA�s�j

 !
�3:10�

W ckf�0�k Ir�hb��t�: �3:11�

Therefore, we have local energy decay of fd :

kwÿfd�t�kW c1kw�fd�0�khtiÿr � c2 kf�0�k Ir�hb��t�: �3:12�

To study the detailed asymptotic behavior of fd�t�, we rewrite (3.7) as

fd�t� ÿ eÿiH0tf�

� eÿiH0t i
Z 1
t

eiH0sPc b�s�fd�s� � eÿil0sA�s�b�s�c0
� �

ds
� �

;

where

f� � fd�0� ÿ i
Z 1
0

eiH0sPcb�s�fd�s� ds ÿ

ÿ i
Z 1
0

eiH0s eÿil0sA�s�Pcb�s�c0 ds: �3:13�

It follows that

kfd �t� ÿ eÿiH0tf�k � O
Z 1
t

hb�s� ds
� �

: �3:14�

If one additionally has asymptotic completeness for H0 [8], then there exists �f� 2 H
such that

keÿiH0tf� ÿ eiDt �f�k ! 0: �3:15�

To see that A�1� � limt"1 A�t� exists, we solve (3.5) for A�t� to get

A�t� � e
ÿi
R t

0
hc0;b�s�c0i dsA�0� �

� e
ÿi
R t

0
hc0;b�s�c0i ds

Z t

0
e
i
R s

0
hc0;b�u�c0iJ�s� ds

� �
; �3:16�

where J�s� � eil0shc0; b�s�fd�s�i:
Since hc0; b�s�c0i is integrable in s, and fd �s� is bounded (even decaying), the

existence of the limit A�1� follows.
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4. Proof of Theorem 2 ^ Ionization Probability

Our aim now is to ¢nd A�1� to second order in b, for b small in the appropriate
sense. However, the expressions we get can be used as the starting point to ¢nding
the ionization probability for the general case (b large).

From Equations (3.5) and (3.7) we have

@tA�t� � ÿihc0; b�t�c0iA�t� ÿ i eil0t
X2
j�0
hc0; b�t�fj�t�i: �4:1�

We now prove the following proposition:

PROPOSITION 4.1.

@tA�t� � ÿg�t�A�t� � R�t�; �4:2�

where

g�t� � ihc0; b�t�c0i � pheÿi�l0ÿH0�tPcb�t�c0;Pcb̂�l0 ÿH0�c0i ÿ

ÿ i PV

Z
dmheÿimtb�t�c0; �H0 ÿ �l0 ÿ m��ÿ1Pcb̂�m�c0i �4:3�

and

R�t� � ÿieil0t
X1
j�0
hc0; b�t�fj�t�i ÿ

ÿ ieil0tA�0�hb�t�c0; e
ÿiH0tT �0�c0i ÿ

ÿ ieil0t b�t�c0; e
ÿiH0t

Z t

0
ei�H0ÿl0�sT �s� _A�s� ds c0

� �
: �4:4�

Proof. The proposition is proved by expanding the j � 2 term in the sum in (4.1).

hc0; b�t�f2�t�i �
�
c0; b�t��ÿi�

Z t

0
eÿiH0�tÿs�eÿil0sPcb�s�c0 ds

�
� ÿi

�
b�t�c0; e

ÿiH0t
Z t

0
ds eiH0seÿil0sA�s�Pc

Z
dm eimsb̂�m�c0

�
� ÿi

�
b�t�c0; e

ÿiH0t
Z t

0
ds
Z

dm ei�H0ÿ�l0ÿm��sA�s�Pcb̂�m�c0

�
:

Now it could be that for some m in the support of b̂ that l0 ÿ m is in the continuous
spectrum ofH0. For such m, there is a resonance and we now compute its e¡ect. First,
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we introduce the operator

T �t� � lim
e#0

Z
eimt �H0 ÿ �l0 ÿ m� ÿ ie�ÿ1Pcb̂�m� dm �4:5�

The resonance effects are calculated using integration by parts:

ÿ ieil0t hc0; b�t�f2�t�i

� ÿieil0t lim
e#0
ÿi
�
b�t�c0; e

ÿiH0t
Z t

0
ds
Z

dm ei�H0ÿ�l0ÿm�ÿie�sA�s�Pcb̂�m�c0

�
� ieil0t lim

e#0

�
b�t�c0; e

ÿiH0t
Z t

0
ds
Z

dm
d

ds
ei�H0ÿ�l0ÿm�ÿie��s �

� �H0 ÿ �l0 ÿ m� ÿ ie�ÿ1A�s�Pcb̂�m�c0

�
� ieil0t

�
b�t�c0; e

ÿiH0t
Z

dm ei�H0ÿ�l0ÿm��t �

� �H0 ÿ �l0 ÿ m� ÿ i0�ÿ1A�t�Pcb̂�m�c0

�
ÿ ieil0t

�
b�t�c0; e

ÿiH0tA�0�
Z

dm �H0 ÿ �l0 ÿ m� ÿ i0�ÿ1Pcb̂�m�c0

�
ÿ ieil0t

�
b�t�c0; e

ÿiH0t
Z

dm
Z t

0
ds ei�H0ÿ�l0ÿm��s �

� �H0 ÿ �l0 ÿ m� ÿ i0�ÿ1 _A�s�Pcb̂�m�c0

�
� ihb�t�c0; T �t�c0iA�t�
ÿ ieil0tA�0�hb�t�c0; e

ÿiH0tT �0�c0i

ÿ ieil0t
�
b�t�c0; e

ÿiH0t
Z t

0
ei�H0ÿl0�sT �s� _A�s� ds c0

�
� S1 � S2 � S3: �4:6�

Remark 4.1. Operators of the type appearing in the integrand of T �t� arise in
[6, 10, 11], where the time-frequency content of the perturbation is discrete. In this
Letter, singular local energy decay estimates were required. The main di¡erence here
is that the perturbation b contains a continuum of time frequencies and therefore it is
possible that for some m in the support of b̂, we have that ÿl0 � m is at a threshold
energy ofH0 (e.g. endpoint of the continuous spectrum). Typically, for such energies
weaker local energy decay estimates hold and in the above cited works on quantum
resonances, and Hamiltonian systems parametrically forced by t-periodic and
almost periodic potentials, the discreteness of the frequency spectrum essentially
required that resonances with the continuous spectrum be bounded away from
thresholds. Here, however, the m integral has a smoothing e¡ect and we require
no such hypothesis; see Proposition 4.2 below.
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The explicit evaluation of S1 and estimation of S2 ÿ S3 will proceed using the
identity

�H0 ÿ �l0 ÿ m� ÿ i0�ÿ1 � PV�H0 ÿ �l0 ÿ m��ÿ1 � ipd�H0 ÿ �l0 ÿ m��: �4:7�

and the the following proposition:

PROPOSITION 4.2. Assume w�w 2 H. Then,

T �t�w � ip ei�l0ÿH0�tPcb̂�l0 ÿH0�w ÿ
ÿ i

Z
R

ei�l0ÿH0��tÿt�Pc sgn�tÿ t�b�t� dt w: �4:8�

Proof. By (4.7)

T �t�w � ip
Z
R

eimtd�mÿ �l0 ÿH0��b̂�m�c0 dm �

� PV

Z
R

eimtb̂�m��mÿ �l0 ÿH0��ÿ1 dm

� ip eil0teÿiH0tb̂�l0 ÿH0�c0 �HT�b̂�� � t���l0 ÿH0�;

where HT� f � �x� � PV
R

f �y�=�xÿ y� dy is the Hilbert transform.
Evaluation of the latter term using the Plancherel identity and the fact that
^H� f ��x� � i sgn�x� yields (4.8).
We use properties of the Fourier transform, (2.5), and the identity (4.7).
We now apply this proposition to the evaluation and estimation of of the terms

(4.6). Consider ¢rst S1. We have

S1 � ÿpheÿi�l0ÿH0�tPcb�t�c0;Pcb̂�l0 ÿH0�c0iA�t� �

�
�
b�t�c0;PV

Z
dm eimt�H0 ÿ �l0 ÿ m��ÿ1Pcb̂�m�c0

�
A�t�: �4:9�

The two terms in S1 are incorporated in the de¢nition of g�t�, displayed in (4.3), while
the terms S2 and S3 are included in R�t�. This proves Proposition 4.1.

We next estimate R�t�. Before stating the estimate we employ Proposition 4.2 to
obtain the following useful expressions for S2 and S3 which we then estimate. Begin-
ning with S2, we have

S2 � ÿieil0tA�0�hb�t�c0; e
ÿiH0tT �0�c0i

� pA�0�hb�t�c0; e
i�l0ÿH0�tPcb̂�l0 ÿH0�c0i�

� A�0�
�
b�t�c0;

Z
R

ei�l0ÿH0��tÿt�Pc sgn�t�b�t� dt c0

�
:
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Therefore,

jS2jW cjA�0�jhb�t�
�
kwÿeÿiH0tPcb̂�l0 ÿH0�c0k �

Z
R
htÿ tiÿrhb�t� dt

�
: �4:10�

For S3 we have

S3 � p eil0t�A�t� ÿ A�0��hb�t�c0; e
ÿiH0tPcb̂�l0 ÿH0�c0i ÿ

ÿ eil0t
�
b�t�c0; e

ÿiH0t
Z t

0

_A�s� ds �

�
Z
R

eÿil0�sÿt� eiH0�sÿtÿt� Pc sgn�sÿ t�b�t� dt ds c0

�
: �4:11�

Estimation of S3 gives

jS3jW ckf�0�khb�t�

�
�
kwÿ eÿiH0tPcb̂�l0 ÿH0�c0k � hb�t�

Z
R
Ir�hb��o�hb�oÿ t� do

�
: �4:12�

By weak local energy decay (2.7)

ab�t� � kwÿ eÿiH0tPcb̂�l0 ÿH0�c0k 2 L2�R; dt�: �4:13�

Note also that ab also satis¢es the following elementary uniform bound:

ab�t�W kb̂�l0 ÿH0�c0k

W k
Z

eÿi�l0ÿH0�tb�t�c0 dtW
Z
kb�t�c0k dt

W ckhbkL1 :

These considerations imply the following proposition:

PROPOSITION 4.3.

jR�t�jWC1kfd�0�khtiÿrIr�hb��t� � C2kf�0�khb�t�Ir�hb��t� �
� C3kf�0�khb�t� �

�
�

minfab�t�; khbkL1g �
Z
R
htÿ tiÿrhb�t� dt �

�
Z
R

Ir�hb��o� hb�oÿ t� do
�
: �4:14�
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Using the above bound for R�t�, we now analyze the equation for A�t�. From (59)
we have

A�t� � e
ÿ
R t

0
g�s� ds A�0� �

Z t

0
e

R x

0
g�t� dtR�x� dx

� �
; �4:15�

where g�t� is given by (4.3). We now seek a simple relation between the initial bound
state amplitude, A�0�, and the asymptotic bound state amplitude, A�1� by
re-expressing A�t� in (4.15) as its asymptotic value plus a decaying perturbation.

A�t� � A�1� � r�t�;
where

A�1� � e
ÿ
R 1
0

g�s� ds A�0� �
Z 1
0

e

R s

0
g�s1� ds1R�s� ds

� �
; �4:16�

and r�t� decays as t!1 and is given explicitly by

r�t� � e
ÿ
R 1
0

g�s�ds
e

R 1
t

g�s� ds ÿ 1
� �

A�0� �
Z 1
0

e

R s

0
g�s1� ds1R�s� ds

� �
ÿ

ÿ e
ÿ
R 1
0

g�s� ds
Z 1
t

e

R s

0
g�s1� ds1R�s� ds:

From (4.16), we see that it is necessary to evaluate the integral of g to obtainA�1�,
and the ionization probability, 1ÿ P�1�. We do this using the expression for g in
Proposition 4.1. The result is given in

PROPOSITION 4.4.Z 1
0

g�s� ds � i
2

Z
R

dt hc0; b�t�c0i � Gÿ iL; �4:17�

where

G � p2
Z
R

dmhPcb̂�m�c0; d�H0 ÿ �l0 ÿ m��Pcb̂�m�c0i �4:18�

� p2kPcb̂�l0 ÿH0�c0k2;
L � p PV

Z
R

dmhPcb̂�m�c0; �H0 ÿ �l0 ÿ m��ÿ1 Pcb̂�m�c0i: �4:19�

Therefore,

A�1� � eÿG e
ÿi�12
R
R
hc0;b�s�c0i ds�L� �

� A�0� � O kf�0�k khbk2L1

ÿ �� �
;

jA�1�j � eÿG jA�0�j � O kf�0�k khbk2L1

ÿ �� �
: �4:20�
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Finally, the assertions concerning the rate of convergence of hf�t�;c0i to an
asymptotic bound state and of P�t� to its asymptotic value, are obtained by estimat-
ing the above expressions for A�t� ÿ A�1� and of jA�t�j ÿ jA�1�j. These estimates
follow from (4.14) and an estimation of exp�R1t g�s� ds� ÿ 1 and
exp�R1t <g�s� ds� ÿ 1 using local energy and weak local energy decay estimates (2.6),
(2.7).

This concludes the proof of Theorem 2.2.
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