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A B S T R ACT. We describe a universal algebraic model which, being read appropriately, yields 

(periodic and infinite) discrete dynamical systems, as well as their 'continuous limits', which cover 

all differential scalar Lax systems. For this model we give: Two different constructions of an 

infinity of  integrals; modified equations; deformations; infinitesimal automorphisms. The basic 

tools are supplied by symbolic calculus and the abstract Hamiltonian formalism. 

1. I N T R O D U C T I O N  

At the present time, the structure of  large classes of integrable systems is well understood, both 

in the differential case [1-3]  and for discrete systems of classical mechanics [4 -6 ] .  Here by 

'integrable' in the differential situation we mean 'with an infinite number of  conservation laws'. 

However, methods employed in both cases are so different that it is not clear what, if any, are 

the relationships between the two situations. And if we ever want to understand connexions 

between continuous and discrete, the rich phenomenon of integrability is the first candidate for 

analysis. 

In this note we describe an algebraic scheme which provides, among other things, the above- 

mentioned connexion between 'continuous' and 'discrete' systems which are, in turn, specializations 

of the universal model. The plan is as follows. We introduce abstract Lax equations, algebras with 

automorphisms, corresponding formal calculus (parallel to the differential algebraic case) and 

Hamiltonian formalism. Then we specialize our situation to symbolic Lax equations, construct 

their c.l.'s (conservation laws) and Hamiltonian form(s), continuous limits, modified systems and 

their canonical maps. Finally, we obtain deformations of all previously considered unmodified 

systems together with their reductions and infinitesimal automorphisms. 

2. A B S T R A C T  LAX D E R I V A T I O N S  

Let R be an associative F-algebra over the field F; L a E Z+ ,L N E L .  U {0},R [x-] =R [Xo, xl .... ] where 

x/'s are associative homogeneous generators with  rk xj  = i - od, R N [ x-] = R [ x--] / (X N, X N + 1 . . . .  ). 

In the closure/~ [~-] of R [Y] fix L = xo + xl + .... If/~ [Y] ~ P = ZsPs, rkPs = s, let P+ = Zs>>-oPs, 

P_ =P-P+,  Res P = Po- Let 3' = a/(L a). For k E 7~+7, take P = L g and define the derivation X e of 
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R [E ]by :  Xp = 0 onR;rkXp = 0 and X2,(L) = [P+, L] [L, P _ ] .  

THEOREM 1. ( i ) / f l  e Z+3', Q = L l then [XB, XQ] = O. (ii) Xp (Res Q) = Res [Q+, P_  ]. (iii) Xp is 
^ 

correctly defined on R N [E]. 

3. SYMBOLIC CALCULUS 

Let At,  ..., A,: K ~ K be r commuting automorphisms of  an associative algebra K over F. For any 

0 (0"1, Or) E Z r denote A ~ = A~, or = = K[q(sVi ) ]  E 7.. r and q(/'/) = . . . . . . .  A r , put K K zx [q-] where vj 

are independent commuting variables, q}O) = qj. The action of  A's is uniquely extended on K by  

~L,. . Denote ~ p  1 - Ap, Im ~ = Ep lm ~ p .  

Suppose K is commutative. Consider a Lie algebra of  'evolutmn fields' = ~ev(~-) 

{ 2 ~  ~er  ( K ) I X &  ~ = a ^ A X, Vo ~ zr}.  Any such .~is uniquely defined by the vector 
X =  X(q-) : 2 = zAo(xi)(a/aq}a)). Let a 1 = s z (h') be the usual K-bimodule of  differentials with 

the natural derivation d: K-* ~2 ~, d(q (~ = dq~ ~). Extend Ns on ~ t  such that dA ~ = A~ u  7, ~. Let 

THEOREM 2. (i) ] !  6:K ~ ~ such that VHeK, VXE ~ev ,  X(H) =-.,~I 6H 
mod Im ~ :  6H = Y,i(fH/Sqi)dqi, (6H/fqi) = Y, oA-~176 (ii) Im ~ C Ker 6. I f  the A's act 

identically on K then Ker 6 = Im ~ �9 K. (iii) 3 ! 6 : ~21 ~ ~2~ such that X_Jw -- X A ~  rood Im ~ ,  

V.~ ~ ~ ,  Vw ~ S2 ~. So 6 = gd, el. (7). 

If  M, S are ~'-modules and A ~ HomF (M, S), the adjoint operator A+: S* = Hom~ (S, K) -*M* 

is defmed by  (A+n*)m = n*(Am) mod Im ~ .  I f  S* = M = M** then A is called skew (resp. 

symmetric) i fA  + = - A  (resp. A + = A). I f M  = S = k', (mAa) + = A-~ For skew B: ~2~ -* ~ e v ,  

F = B6 is called Hamiltonian if F(F(H)(F))  = [P(H), F(F) ] ,  VH, F C K, see [7]. In what follows, 

we identity s and ~ ev with ~ '=,  and require B E Matoo (~')[A~, ..., Am] For T E  ~,~o, its Frechet 

Jacobian D(T--) E Mato. (K)[A 1 ... . .  A m ] is defined by O(~')X = X(T) ,  V.,~ E ~ev .  

THEOREM 3. (i) D(fH) is symmetric VI lE K. (ii) For skew B E Mat= (K), B6 is Hamiltonian. 

0i0 For CEK((A1 .... .  Am)), C = ZacaA a, let Res C = Co. Then Res [Cz, C2] E I m  ~ ,  

v c , ,  . . . .  , A m ) ) .  

4. SYMBOLIC LAX EQUATIONS 

Consider an associative graded F-algebra ~-((~-i )), rk~ = 1, rkK, = 0, with relations ~Sm = AS(m)~ s, 

Ys E Z, Ym EK, where from now on r = 1, A 1 = A and I write ~ instead of  A in operators. Pick up some 

bo, bl ..... E/t" and put xj = ~i-~r = E Then abstract Lax equations associated with the derivation con- 

structed above in the standard fashion(see (1)), turn into symbolic dynamical systems for variables bo, bl .... 

Informal models: (A) Discrete systems on the lattice XZ C IR ~ : ql E Map (XZ, �9 ), A = S~ where 

Sx: nX ~ (n + 1)X is the shift operator. Since all our constructions commute with S x, we can pass 
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to the periodic lattice XZn C S  ~ ; (B) Differential systems: q~ E Map (IR ~ , .), iX = S~ and X is con- 

sidered as a formal ( 'small ') parameter, in other words, iX = exp (X d/dx) E fl~!d/dx] ((X)) and one 

has to obviously modify  the usual differential algebraic constructions to incorporate ~, (8). 

(Finite X is not interesting enough). 

Now Theorems 1 (ii) and 3(iii) yield an infinity of  common c.l.'s and Theorem 1 (iii) asserts 

that in fact we are dealing with the universal case: Starting from any N we can put all bj>~N t o  

zero. For inessential simplicity we put i = 1, a = 1 (the case a > 1 is similar to the case a = 2 which 

we shall comment  upon later). Then 3' = 1 and we have one ' f low' qt = Xzk(O)  for every k ~ Z+ 

(we put bo = 1, bj+ ~ = q]). We denote c.l.'s k -1 Res L k by H~ (we assume char F = 0). 

Let B ~ = B~ denote the matrix of  the (formal) Kirillov form on the dual space of the Lie 

algebra generated by the associative algebra K[  [~] (we write ~3~ to indicate variables involved). 

tHEOREM 4 (First Hamiltonian structure for  symbolic Lax equations). -~Lg(q) = B~ (fiHg + l ) and 

B ~ 6 is Hamiltonian. 

REMARK. One can get c.l.'s Hk by the formal analog of the Kos tan t -Symes  theorem via the 

'Adler scheme' [9] applied to the Lie algebra generated by ~ ( ( ~ - l ) ) ,  with nondegenerate ad-invariant 

form ( Ca I C2 ) = Res (C1 C2 ). 

For any ~ E ~o~ denote Y~ = (p~- 1 + ~pT/~/') E ~'((~)) where 

Z/(A/+ 1 _ 1) (ix - 1) -  1 A - / -  1 (qi + l ~//+ i ) and consider the matrix B 2 - Bq E Mat~ (K) [z3, A- 1 ] 

defined by Z / U  J (B 2 ~1)i = L(  Y~L )_ - (L Yq)_L,  see [3].  

THEOREM 5 (Second Hamiltonian structure for  symbolic Lax equations). (i) f~L k ( ~  = B 2 (SHk ) 

_ 2 +eBB . and B26 is Hamittonian. (ii) For any c E F let ~ + c = (q o + c, q l ... ). Then B~ + c - B q 

~ )  i f  ~ = 2 then consider L(2) = ~ + E/G- 2/- t b! as specialization S (2) o f  L = ~ + Zi~-Jq/ by 
S (z) = {qzj = O, q2j+ 1 = bj).  Denote by 6(2) operator 6 on K(2) = K a [b-] and let 

H~k = (2k) -1 ResL~2~ (in ~'(2)((~-1))). ThenxL2g:K~=B3 ' (2)w.' (6 (2)H2k) where B 3 = B~ is a correcth, 

defined specialization o f  B 2 , and B: 6 (2) is Hamiltonian. 

REMARK. Matrix B ~ does not survive specialization S (2). 
Define 3j, dj c K by ~ = L - ~,jfll L - l ,  (Lk)_ = Z/d/L - j  - l 

T H E 0 R E M 6 (Second construction o f  c. l. 's for  symbolic Lax equations). (i) ~ r  k [ln ( 1 - Z/3iZ i+ l)] = 

~(~jdjZ/+ 1) in ~'[  [Z] ] where Z commutes with K. (ii) Define 7 /C  K by 

~/~[jZ j+l = - I n  (l  - Ejfljzj+I). Then 7/=-Hi+t mod Im ~ .  

REMARK. Theorem 6 is the symbolic counterpart of  G. Wilson's treatment of  differential case*. 

5. CONTINUOUS LIMITS 

Let q~p = F[P(o/o) ... .  , p0QV)] and 4~u = F[u(o 1~ ..... u(~ ?v) be two differential rings over F with 

*Wdson, G., 'On Two Constructions of Conservation Laws for Lax Equations', Quart. J. Math. (Oxford), to appear. 
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derivation ~, 3(p}n)) = p}n + O, ~(u}n)) = u} n + D. We make Kp = Cp((k)) and K u = Cu(tk)) into 

rings with automorphism by defining A = exp (-~3)  (?, commutes with everything). In Ku(([ -L) )  
take L g = ~ + ~N U e -  2s- l . s=0 sr . Let ~u be the monomorphism of associative rings 

Ku((~-I )) ~ K u [ [  ~ ]] via ~ -~ exp ( -  k~). Consider an isomorphism ~ of Ku [ [~] ] ontoKp [[~] ], 

identical on k,(~ and)~ and given by ~(ui)= (-1)/(2j + 1) -~ ( ;  : I1)+ N~=o(-1)J-s (N./. - Ss)PskS+2. 

THEOREM ,'7. ~dPu(LN) = O N + k N  + 2 L[N] + 0(k N+3) where  ON E ~ and  
N s LIN I = (2N+ 4) -1 ( -2b)  N+2 + Es=oPN-s(--2O) �9 

REMARKS. (A) Since r (Im 9 )  C Im ~, we not only cover the basic theory of differential scalar 

Lax operators LIN ] [1,2] but find the whole h-series of which it is just the first term (constant 

O N can be ignored). (B) Changing ~, in the first nontrivial order of k one can get equations which 

do not come from any scalar Lax operator. 

6. MODIFIED SYSTEMS 

These are based on the 2 x 2 matrix operator L with entries L , ,  = L22 = 0,L,2 = 11 = ~ + u, 

"L21 = 12 = 1 + Ei~-/-1~ vj: Vk  E 7~ + , XZ'2k(L ) = [(~2k)+, ~] = [~, (~2k)_] in Mat2 (K')((~-l)), 

K' = K A [u, v-]. Since L 2 = diag (l112, t~ ll ) and X~'2k(L "2 ) = [(~2)k)+, L"~2 ], we get two separate 

symbolic Lax equations for Ii 12 and l 2 Ii (for each k). Denote by M~" and M~ the correspondhag maps 

~" -~ K' (so that Ml, 3'/2 send 'solutions' of L into 'solutions' of L), let h k = k-  l Res (l112 )k. Let 

/~  = B4 u, ~rbe a skew matrix with entries: 0 in (u, u)-place; u(1 - A - / -  ~)vj in (u, v/)-place; B~as 

(E ~) submatrix. 

THEOREM 8. (i) The modified equations are Hamiltonian: (u, ~)t  = B4 (6hk). (ii) Both Mr  and 

M~2 are canonical ( i. e., preserve Poisson brackets) between B 46 and B 26. 

REMARKS. (A) B4(6 In u) = 0 so the modified equations have nonpolynomial c.1. in u. (B) The 

presence of two different canonical maps is the counterpart of the 'permutation of roots' symmetry 
in the differential case [3]. 

7. DEFORMATIONS 

Theorem 5 (ii) shows that the shift in qo by constant e -1 can be compensated for by recom- 
bination of H's. Since both ~ and M~2 are quadratic, we can make a simple affme transformation 

u = U + e-  1, v/= e V/such that both M~I and M~2 will have the form: q o ~ U + 0(e), q]§ 1 ~ V/+ 0 (e). 

We call M1 and M~ 'reductions' [10] Denote by B s = B s - the (regular in e) matrix that 
�9 U ,  V 

represents eB45 in U, V_ variables. 

THEOREM 9. The reductions are canonical maps between B s 6 and (B~ + eBb)5. (ii) B~(SH1 ) = 0 

thus [ 10] two deformations o f  the equation -q t = B z (6 Hk ) are 
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" (U, T")t = BS(63//~a ' 22~--g(- 1)/e- 1 -]Hk_]). (iii) M~I(M*) -1 is an infinitesimal automorphism o f  

both the namiltonian operator (B~ + eBb)6 and all scalar Lax equations (extended in ~'[ [el ] ). 

RE  M A R K.  Physicists would consider e as t'mite, M~l (M~2)-1 as a genuine map and call it a 

'Bgcklund transformation'. 

EXAMPLE. For L = ~ + qo + ~-1ql the Toda hierarchy can be written as 

- A - l ) q l  qo 0 (1 ~(6nk+l). ( q l ) t = ( q x A - - A - l q ' ]  q ~  (~Hk)=(q l (A  1)} 
\ q l (A-1)qo  q l ( A - A - 1 ) q l ]  0 / 

R e d u c t i o n s :  

For 

M~l(qo) = u + ev ( -0 ,  M~l(ql ) = v + euv; 

M~2(qo) = u + ev, M~2(ql ) = v + euO)v. 

k=  1: HI =qo, 

qc~t =qi - ql -l), 

vt = v(u (1) - u). 

/-/~ =(q~ + q~ + q t -~) ) /2 ,  

ql , t=q1(q~ 1) - qo ) ,  u t = (  1 +eu) (v -v ( -O) ,  
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