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ABSTRACT. We describe a universal algebraic model which, being read appropriately, yields
{periodic and infinits) discrete dynamical systems, as well as their ‘continuous limits’, which cover
all differential scalar Lax systems. For this model we give: Two different constructions of an
infinity of integrals; modified equations; deformations; infinitesimal automorphisms. The basic
tools are supplied by symbolic calculus and the abstract Hamiltonian formalism.

l. INTRODUCTION

At the present time, the structure of large classes of integrable systems is well understood, both
in the differential case [! 3] and for discrete systems of classical mechanics [4—6]. Here by
‘integrable’ in the differential situation we mean ‘with an infinite number of conservation laws’.
However, methods employed in both cases are so different that it is not clear what, if any, are
the relationships between the two situations. And if we ever want to understand connexions
between continuous and discrete, the rich phenomenon of integrability is the first candidate for
analysis.

In this note we describe an algebraic scheme which provides, among other things, the above-
mentioned connexion between ‘continuous’ and ‘discrete’ systems which are, in turn, specializations
of the unjversal model. The plan is as follows. We introduce abstract Lax equations, algebras with
automorphisms, corresponding formal calculus (paratle] to the differential algebraic case) and
Hamiltonian formalism. Then we specialize our situation to symbolic Lax equations, construct
their ¢.1.’s (conservation laws) and Hamiltonian form(s), continuous limits, modified systems and
their canonical maps. Finally, we obtain deformations of all previously considered unmodified
systems together with their reductions and infinitesimal automorphisms.

2. ABSTRACT LAX DERIVATIONS

Let R be an associative F-algebra over the field 734, o« € Z, ,j, NEE, {0}, R[x] =R[xg, x4, ... ] where
x;’s are associative homogeneous generators withrkx; =i — of, Ry [X] = R[X]/(xn. X5 114 -)-

In the closure R[¥] of R[¥] fix L =x¢ + %, + ... . IfR[X] 2P=IP, rkP.=s, let £, = Ty 5 o Py,
P =P-P ,ResP=Py.lety=af(i,a). Fork© Z.v,take P = 1% and define the derivation Xp of
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R[%]by: Xp = 0onR;rkXp=0and Xp(L)= [P., L] [L, P_].

THEOREM1. () IfI € Z,v, Q =L' then [Xp, Xp] =0. (i) Xp (Res @) = Res [Qy, £_]. (iii) Xp is
correctly defined on Ry [x].

3, SYMBOLIC CALCULUS

Let Ay, ..., A K = K be r commuting automorphisms of an associative algebra X over F. For any
0=(0y,..,0,) EZ denote A" = Al .. A7, put K=Kb gl = K[q,("l')] where v; € Z" and q,("f)
are independent commuting variables qj(o) = gq;. The action of A’s is uniquely extended on £ by
A"(q(")) q("+ *). Denote Z,=1-48,,ImP=2Z,1m 2,.

Suppose K is commutative. Consxder a Lie algebra of evolutmn fields’ 2°¥ = 9*"’(](} =
(Xe per (K)JXA" =AX, Yoe Z'}. Any such Xis uniquely defined by the vector
X =X(@): X = 20°(X))(3/3q/)). Let Q' = 0! (K) be the usual K-bimodule of differentials with
the naturdl derivation d: K - Q7 d(q(")) dq(c’) Extend A'son Q' such that dA’ = A°d, Vo EZ". Let
Q=% K dq;.

THEOREM 2. () 31 5: K - 2} such that VHER, v € %, X(iy=% 16H

mod Im 2: 6 = T8 H/5q;)dq;, BHjbq,)=Z A“’(BH/aq N, (ii) Im .@ C Ker 8. If the A's act
zdentzcally onK thenKers =Im @ o K. (iii) 31 5: Q! Q2 such that X _Jw= ¥ 18w mod Im 2,
VX E 2% Vwe Q. Sob =584, cf (7).

If M, S are K-modules and 4 € Homg (M, S), the adjoint operator A*: §* = Homg (S, K )>M*
is defined by (A*n*)m = n*(4m) mod Im 2. If S"‘ =M = M** then 4 is called skew (resp,
symmetric) if A" = -4 (resp. A™ = A). IfM §=K (mA”) = A‘ m. For skew B: Qg + 2,

['= B3 is called Hamiltonian if I‘(F(H)(F)) [T, l"(F )] vH, F ek, see [7].1n what follows,
we identity §2§ and 2° thh K- , and require B € Mat.. (K) [y, - ,,,] For TEXK™ ,its Frechet
Jacobian IXT) € Matw (K)[By, ..., Ay ] is defined by D(THX = )?(T), vic 2

THEOREM 3. (i) D(8H) is symmetric VH € K (ii) For skew B € Mat, (K), B§ is Hamiltonian,
(iii) For CE K((Ay 5 .- By ), C= Zuc oY, let Res C=cy. Then Res [Cy, (3] €EIm 2,
v, C EK((Ay, .y Ay

4, SYMBOLIC LAX EQUATIONS

Consider an assomatwe graded F-algebra K (&), rkg=1, kK = 0, with relations £¥m = A*(m)E",
Vs Z ¥m EK where fromnow on 7=1,A; =A and I write £ instead of A in operators. Pick up some
bosb1y ey €K and put x;= E"“"bj,R =F Then abstract Lax equations associated witli the derivation con-
structed above in the standard fashion(see (1)), turn into symbolic dynamical systems for variables b, &, ...
Informal models: (A) Discrete systems on the lattice AZ C R' : g, € Map (AZ, - ), A = §¥ where
Sy: #h = (r + DA is the shift operator. Since all our constructions commute with 55 , we can pass
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to the periodic lattice AZ,, CS'; (B} Differential systems: g; € Map (IR, ), A = 5% and X is con-
sidered as a formal (‘small’} parameter, in other words, A = exp (A d/dx) € ®/d/dx]{(1)) and one
has to obviously modify the usual differential algebraic constructions to incorporate A, (8).
(Finite A is not nteresting enough).

Now Theorems 1(ii} and 3(1ii) yield an infinity of common ¢.I.’s and Theorem 1{iii) asserts
that in fact we are dealing with the universal case: Starting from any V we can put all ; 5, 5 to
zero. For inessential simplicity we put i =1, a = | (the case & > 1 is similar to the case o = 2 which
we shall comment upon later). Then y = 1 and we have one ‘flow’ §,; = /JY\'L k(g)forevery k€ Z,
(we put bg =1, b5, 1 =q;). We denote c.l.’s k~! Res L* by H; (we assume char F = 0),

Let &' = B,% denote the matrix of the (formal) Kirillov form on the dual space of the Lie
algebra generated by the associative algebra K [[£] (we write ﬁ% to indicate variables involved).

THEOREM 4 (First Hamiltonian structure for symbolic Lax equations). X, (7)) = B (8H . ) and
B'8 is Hamiltonian.

REMARK. One can get c.l.’s H; by the formal analog of the Kostant—Symes theorem via the
‘Adler scheme’ [9] applied to the Lie algebra generated by X ({¢~')), with nondegenerate ad-invariant
form{C,1Cy ) = Res (C,C3).

Forany 7 € K™ denote Y= (yg*‘ +ImiEh e K((t)) where
p=ZAAN M — 1A 1) 'A7 7 Ygj4 mj+ 1) and consider the matrix B? = B € Mat.., E)[AA ]
defined by T8 /(B*7); = L(Y5L)_ ~ (LY7)_L, see [3].

THEOREM 5 (Second Hamiltonian structure for symbolic Lax equations). (i) X Lk(g) = B*(8H,)
and B*§ is Hamiltonian. (ii) For any c EFlet g +¢=(go * ¢, ¢, ... . Then B .= B% + cBy.
(i} i & = 2 then consider Liyy = £+ Z;&~ - 1!) as speczczhzatzor S(z) of L=§+ Z;87 j‘?f by

5@ = {g2i=0, (12]“ = ,}NDenote by 83 operator bonkKp = K%[b] and ler

Hy = (267! Res L(z) (in K(z)((!g’l ). Then xL(zzk)(f,) =B3(§ (2)H2k) where B2 =B% is @ correctly
defined specialization of B*, and 325(2, is Hamiltonign.

REMARK. Matrix B' does not survive specialization 5@,
Define , dj CK by § =L - 8L, (1F)_ =il 11,

THEOREM 6 (S‘econa’ construction of c.L’s for symbohc Lax equatzons) (i) YLk IIn (1 - Z’”)] =
G(Zd; ZI Y in K[ [Z)] where Z commutes with K (i) Define y; € X by
Tyt = Jn (1~ 8,2/* ). Then v, = i, mod Im &

REMARK. Theorem 6 is the symbolic counterpart of G. Wilson’s treatment of differential case®.

5. CONTINUOQUS LIMITS

Let ¢, = F[pgm, iy pf";"‘”] and ¢, = F[uf,’ﬂ). u](\{)v) be two differential rings over £ with

*Wilson, G., ‘On Two Constructions of Conservation Laws for Lax Equations’, Quart. J Math. [Gxford), Lo appear.
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derivation &, a(p}"}) = p§" D, a(u§”)) =uft’ D We make Ky = (M)} and K, = ¢,((})) into

rings with automorphism by defining A = exp (—A\d) (A commutes with everything). In K,((¢™"))
take Ly = ¢+ N qu g~ %~ L. Let ¢, be the monomorphism of associative rings

K (") > K, [[2]] via £ > exp (—Ad). Consider an isomorphism ¥ of K, [[8] ] onto K, [[8]],
identical on \, (£ and) 8 and given by () = (~1)4(2j + 1) (" ' 1) F Rl (-1 (fj e,

THEOREM 7. WM(LN) =0y + )\N”L[Nl + OO 3y where 6 € Q and
Liny = QN+ 471 (=202 + E by - (20",

REMARKS. (A) Since ¢, (Im 2) C lm 3, we not only cover the basic theory of differential scalar
Lax operatars Ly [1, 2] but find the whole A-series of which it is just the first term (constant

6 5 can be ignored). (B) Changing y, in the first nontrivial order of A one can get equations which
do not come from any scalar Lax operator.

6. MODRIFIED SYSTEMS

These are based on the 2 x 2 matrix operator L with entries Zl 1 = Z” =0, Zn =l =E+tu,

Ly =ly =1+ T oy VREZT, Xpan(D) = (%), L] = [L, (L**)_Yin Mat, (K)((£™1)),
K'=K"%[u, 7). Since 1% = diag ({14, 14 ) and Xzik(Lz) [(L2 ), Ll] we get two separate
symbohc Lax equations for {;; and I, /, (for each k). Denote by M{* and M5 the corresponding maps
K-k (so that M,, M, send ‘solutions’ of L into ‘solutions’ of L), let by = k=1 Res (1, 1;)*. Let
B* =B} pbea skew matrix with entries: 0 in (u, u)-place; u(1 — A™/~ V), in (u, v;)-place; B as

(v, 2) submatrix.

THEOREM 8. {i) The modified equations are Hamiltonian: (u, 7); = B* (k). (ii) Both M} and
M3 are canonical (i.e., preserve Poisson brackets) between B*§ and B*5.

REMARKS. (A) B*(8 In u) = 0 so the modified equations have nonpolynomial ¢.l. In u. (B) The
presence of two different canonical maps is the counterpart of the “permutation of roots’ symmetry
in the differential case [3].

7. DEFORMATIONS

Theorem 3 (i) shows that the shift in g, by constant e * can be compensated for by recom-
bination of H’s. Since both M} and M3 are quadratic, we can make a simple affine transformation
u=U+e !, v; = eV} such that both M7 and M¥ will have the form: g, = U + 0(e), Gjs17> V; + 0(€).
We call M, and M, ‘reductions’ [10]. Denote by B® = Bf,’ v the (regulor in €) matrix that
represents éB*6 in U, ¥_ variables.

THEOREMOY. The reductions are canonical maps between B*5 and (B%, +eB%)8. (ii) B};(&Hl) =0
thus [10] two deformations of the equation G, = B*(8Hy) are
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(U, V), = BSE MY ZE 1Y e I H ). (i) MYME) ! is an infinitesimal automorphism of
both the Hamiltonian operator (B + €BZ)8 and all scalar Lax equations (extended in K[[e] ]).

REMARK . Physicists would consider € as finite, M{(M¥)~" as a genuine map and call it a
‘Backlund transfermation’.

EXAMPLE. For L = £ + go + £ 'q, the Toda hierarchy can be written as

qo 1A - 87'q | go(1 —A gy _( 0 |(1~A_l)ql)
= SH - H+ .
(fh)r ( %(A—])%ICIl(A-'A"l)Ql) ®He) QI(A“I)l 0 (EHy1)

Reductions:
M¥go)=u+edt™V,  MHq,)=v+eun

M3(go)=u+ev, M:(‘T1)=v+€u(”v.

For
k=1 Hi=q, Hy=lq}+q+qi")2,
qor=q1 - a7 aueca@) —q0),  u = (U ez — oY),
v, = o) = u).
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