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Abstract. In this paper we present a simulator designed to handle multibody systems with changing
constraints, wherein the equations of motion for each of its constraint configurations are formulated
in minimal ODE form with constraints embedded before they are passed to an ODE solver. The
constraint-embedded equations are formulated symbolically according to a re-combination of terms
of the unconstrained equations, and this symbolic process is undertaken on-line by the simulator.
Constraint-embedding undertaken on-the-fly enables the simulation of systems with an ODE solver
for which constraints are not known prior to simulation start or for which the enumeration of all
constraint conditions would be unwieldy because of their complexity or number. Issues of drift
associated with DAE solvers that usually require stabilization are sidestepped with the constraint-
embedding approach. We apply nomenclature developed for hybrid dynamical systems to describe
the system with changing constraints and to distinguish the roles of the forward dynamics solver,
a collision detector, and an impact resolver. We have prototyped the simulator in MATLAB and
demonstrate the design using three representative examples.
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1. Introduction

Various methods are available for the production of the equations of motion for
constrained multibody systems, and each method typically produces the equations
in a particular form. While the equations are equivalent in the sense that they possess
the same solution, the form of the equations usually dictates which of several avail-
able numerical methods may be applied to obtain a solution. While the following
classification is not exhaustive, let us identify three major families for the produc-
tion and solution of constrained multibody systems [1]: (1) constraint appending
using the method of Lagrange multipliers, which produces differential algebraic
equations (DAESs) for solution by a DAE solver, (2) projecting the unconstrained
equations through a matrix produced numerically, which produces DAEs or ODEs
requiring stabilization, and (3) symbolic constraint embedding, which produces
ODEs.
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Basically, a whole spectrum of techniques is available to account for the effects
of constraints: from the symbolic constraint embedding methods applied during
formulation to numerical multiplier and projection methods applied during simu-
lation by a DAE solver. The constraint-embedding approach is appealing because
it permits one to apply an ODE solver, which generally requires less expertise than
a DAE solver. Since the constraint-embedded equations contain only those vari-
ables that are associated with the degrees of freedom of the constrained system,
the solution cannot stray from the constraint manifold and does not require stabi-
lization. Also, the constraint-embedded equations are fewer in number and have
fewer unknowns than their constraint-appended counterparts, which can lead to
compact and numerically efficient equations, though such an outcome also requires
the judicious use of generalized speeds (quasi-velocities) [2, 3].!

On the other hand, DAE solvers offer a solution to the constrained system dynam-
ics without requiring the symbolic operations involved in eliminating dependent
variables. One simply needs to invoke a high index DAE solver or negotiate the
options available for index reduction and stabilization to ensure that the DAE solver
provides a solution that satisfies the requirements of a given application [4].

Now, in certain multibody systems, changes in constraint conditions are likely
to occur during the time period in which the solution of the equations of motion
is desired. Such systems are said to have changing topology [5, 6] or intermittent
motion [7]. Choosing a solution method and concomitantly choosing a formulation
method requires special consideration for such systems. At first glance, it appears
that only the numerical approach embodied in DAE solvers can be readily adapted
for treatment of changing constraints. The core unconstrained equations remain
untouched through the change in constraint using the constraint-appending or nu-
merical projection methods. Thus, changes in constraint may be reflected simply by
changing the constraint equations that are imposed numerically during each epoch
of the simulation [7]. Use of constraint-embedding, on the other hand, would require
re-formulation of the entire set of equations upon each change in constraint condi-
tion. If all constraint conditions can be enumerated prior to simulation, then quite
plausibly the various constrained system formulations could be linked together at
run-time to form a hybrid dynamical system [8]. However, the ability to handle
constraints that are not specified prior to the start of simulation would require the
incorporation of symbolic manipulation routines into the run-time solution code.
This might seem like an unlikely approach, given the computational demands and
very distinct heritage of symbolic methods and numerical methods. However, that
is precisely what we have undertaken in our work and demonstrate in this paper.

Another motivating issue for the development of on-line constraint embedding
lies in the treatment of representation singularities. For certain mechanisms (e.g.,

IThe reduced equations are often dismissed as less numerically efficient [1, 4], especially given
the availability of sparse matrix techniques for the constraint-appended equations. However, the use
of generalized speeds is not usually considered in such estimations.
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robots, spacecraft) it may prove difficult to define a single set of independent motion
variables suitable for all regions of the coordinate space. In such cases, a change in
the choice of independent motion variables may be undertaken during simulation
to avoid break-down of the solution method. Again, although the DAE approach
essentially avoids this problem since it does not rely on a model in independent
coordinates, the development of on-line constraint embedding, by incorporating
symbolic routines into the run-time simulator code, would allow ODE solvers to be
applied. Detection of the suitability of the active set of independent coordinates can
be accomplished using a check of the condition number of the constraint Jacobian,
and a new set can be chosen and re-formulation undertaken to avoid simulator crash,
as described in [9].

We propose to apply computerized symbolic algebra not only to the process of
formulating equations of motion, but also to the process of simulation. Our aim
is to expand the tools available for simulation of systems with changing topology
to the point where they will reflect the variety of options available for constant
topology systems. We anticipate applications in which the relative simplicity and
stability of ODE solvers are desired and the ability to impose the effects of con-
straints whose specifications are not available prior to run-time is required. We
also anticipate the availability of sufficient computational power to invoke the sym-
bolic operations necessary for eliminating dependent coordinates within a single
time-step in a constant step-size solver. This would enable hardware- or human-
in-the-loop simulation for systems with changing constraints, where the particular
constraint conditions in effect are driven by a human or piece of hardware linked
to the simulated dynamics through a computer interface.

Examples of systems in which unforseen constraints may be imposed during
run-time include shared gaming environments, where objects passed between users
or agents are subject to on-line modifications of their surface shape. Another ex-
ample is a design environment in which multiple users can collaborate on the
specification of a virtual artifact. Changes to the shape of an object, especially
re-parameterizations of shape will require on-line symbolic re-formulation of the
constrained equations in independent coordinates if an ODE solver is to be used.
On-line formulation allows data-hiding in a distributed simulation environment.
That is, the parameterization of the shape of an object may be hidden from the sim-
ulation routine until the constraint is actually imposed. For example, the dynamics
of two contacting bodies, each described in separate but networked computational
environments, might be described in an independent coordinate formulation that
draws the surface shape descriptions from the networked computers only upon
contact. The simulation then becomes reactive, able to support interaction, even
through teleoperation, with other human or software agents. A second class of ap-
plications that motivates on-line constraint embedding lies in systems for which
the enumeration of all constraint conditions prior to simulation would be unwieldy
because of their complexity or number. On-line constraint embedding allows only
those constraints to be considered that are actually encountered during simulation.
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We are particularly interested in the use of on-line constraint embedding to cre-
ate virtual environments for exploration by a human user through a haptic interface.
Our simulator is intended to facilitate interaction with mechanisms that include es-
capements, stops, and latches specified by a geometric model that retains significant
independence from the dynamic solution engine. Our simulator treats collisions and
transitions between free, rolling, and sliding motion, all with an ODE solver. We
aim to reproduce the effects of making, possibly maintaining, and breaking contact
between bodies, knowing that these effects are often incited by a user exploring
a virtual environment. Naturally, interaction with a user in a virtual environment
requires real-time simulation.

We have prototyped a simulator with on-line constraint embedding in MATLAB.
Development of the equations of motion is based on Kane’s method and the on-line
re-formulation in independent coordinates is based on a re-combination of terms
in the unconstrained equations according to the algorithm outlined in [10] and
further extended in [3]. Although our simulator is currently not capable of real-
time constraint embedding within a single time-step in a fixed-step solver, we do
demonstrate embedding on-the-fly that runs in parallel with simulation and that is
initiated a short period before the new constrained equations are needed.

In the following sections, we further review the field of constrained system
formulation and simulation, contrasting on-line constraint embedding to existing
methods. Thereafter, we develop nomenclature from the field of hybrid dynamical
systems that we use to lay out our simulator design. Finally, we demonstrate the
simulator in three examples and conclude.

2. Dynamical System Modelling
2.1. KINEMATICAL AND DYNAMICAL DIFFERENTIAL EQUATIONS

Consider a multibody system S whose configuration is described by n generalized

coordinates g, (r = 1, ..., n). To enable the formulation of compact and efficient
equations of motion [11], one may define n generalized speeds u, (r = 1,...,n)
as linear combinations of the generalized coordinate derivatives ¢, (r = 1, ..., n)

[2]. One may express these definitions using
AL,
uZYq+Z, (1)

where u and ¢ are n x 1 matrices of #, and ¢,, and where the elements of the n x n
matrix ¥ and n x 1 matrix Z are functions of ¢, (r = 1, ..., n) and possibly time ¢.
The matrices Y and Z in Equation (1) must be chosen by the analyst in such a way
that the reciprocal relations exist in which the generalized coordinate derivatives
are expressed in terms of the generalized speeds:

q=Wu+X, )
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where the elements of the n x n matrix W and n x 1 matrix X are functions of
g- (r =1, ..., n)and possibly time ¢. Equation (2) is a matrix arrangement of the
kinematical differential equations, and forms the first of two portions of the state
equations or equations of motion that govern the behavior of system S.

The second portion, the dynamical differential equations, may be expressed in
matrix form as

M(qu = f(q, u, 1) 3)

which may be derived, for example, using Kane’s method. In Kane’s method, one
carries out dot products between partial velocity vectors and applied and inertia
forces, and between partial angular velocity vectors and applied and inertia torques.
The partial velocity and partial angular velocity vectors are obtained by inspection
of the pertinent velocity and angular velocity expressions, identifying coefficients
of the corresponding generalized speeds. Then, a summation of terms over all
particles and bodies in S produces expressions for the generalized active force F,
(r =1, ..., n)and the generalized inertia force F,* (r = 1, ..., n). The dynamical
differential equations are then contained in F, + F = 0 (r = 1, ..., n), which
may be arranged as in Equation (3).

If for all configurations of the system the motions of all bodies are resisted by
inertia, then the mass matrix M is nonsingular and the equations of motion can also
be expressed in explicit form as

u=F(q,u,rt) “4)

where F is a n x 1 matrix of generalized applied and inertia force terms. In this
paper, we will focus on systems for which the mass matrix is nonsingular, since
this is the case for the majority of systems of engineering interest. We refer readers
to Chapter 6 in [12] for a detailed treatment of the singular case.

2.2. CONSTRAINT EQUATIONS

System S may be subject to constraints, including constraints that act only during a
time segment within the time interval of interest. Suppose there are [ configuration
constraints given as

®(q) =0. (5)
In certain formulations, to be reviewed in the next section, configuration con-
straints are treated as motion constraints by differentiating them with respect to

time:

B, = 0. (6)
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The configuration q can be found by integrating the kinematical differential
equations (2). However, round-off or initialization errors in the motion constraints
may lead to violations of the configuration constraints in Equation (5). More sig-
nificantly, in the case of configuration constraints that are differentiated to form
Equation (6) and then embedded in the dynamical differential equations, drift in-
troduced by integration will also lead to violations of the configuration constraints.
These violations can accumulate and slow down the integration over long simula-
tions. Since the errors at the motion (velocity) level will remain relatively constant
during integration [1], the violation to the configuration constraints will only grow
linearly with time. To mitigate these drift errors, the configuration constraints may
be imposed within the solver by, say, performing Newton iterations on Equation (5)
at each time step (see, for example, Section IV in [13]). Alternatively, stabilization
techniques may be used to overcome the problem of drift [11].

Let there be an additional m — [/ motion constraints, where / < m < n. Suppose
further that the motion constraints are linear in the u,, so that after the application
of Equation (2), the differentiated configuration constraints can be combined with
the motion constraints, yielding

Bu+C =0, (N

where the elements of the m x n matrix B and the m x 1 matrix C are functions of
q- (r =1,...,n) and possibly time ¢.

Some of the index reduction formulations require that the constraints (7) be
differentiated to the acceleration level

Bu+ Bu+ C =0, (8

so that they can be solved together with the dynamical differential equations.
Care should be taken when imposing acceleration level constraints instead of their
motion-level or configuration level counterparts since in this case the drift phe-
nomenon is critical. The initialization and numerical errors that occur at the acceler-
ation level will lead to motion-level violations that grow linearly and configuration-
level violations that grow quadratically in time. Therefore, it is always good practice
to use stabilization with these formulations.

Equations (4) together with configuration and motion constraints form a system
of n first-order differential and m algebraic equations to be solved for the n gener-
alized speeds u,. Note that the n first-order kinematical differential Equations (2)
are typically solved alongside Equations (4) and (7) to determine the generalized
coordinates q, .

Although we have identified more equations than unknowns, the system is in fact
not overdetermined, since associated with the constraint equations are constraint
forces that restrict the motion of S. There will be m constraint force components,
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n P
dt = dt
DAEs, constraint appending DAEs, projecting constraints
P
. dt o /| at
ODEs, off-line constraint embedding ODE, on-line constraint embedding

Figure 1. Four designs for a simulator based on (I) The Method of Lagrange Multipliers,
(II) Projection Matrices, (III) Off-line Constraint Embedding, and (IV) On-line Constraint
Embedding (introduced in this paper). Parameter n stands for the number of generalized speeds,

. . A
m stands for the number of algebraic constraints and p = n — m. Stacked and shaded boxes
indicate the manner in which each approach may be adapted to treat systems with changing
constraints.

one for each degree of freedom that is restricted. Let us call the constraint force
components & (s = 1, ..., m).

There are three general approaches to the analysis of constrained dynamical
systems as discussed in Section 1. The first employs the method of Lagrange mul-
tipliers, the second a numerical projection matrix R, and the third is constraint
embedding. The next section discusses these formulations along with their imple-
mentation in simulators to handle systems with changing constraints.

3. Approaches to the Formulation and Simulation of Systems Subject to
Changing Constraints

Figure 1 shows schematically four possible designs for an interactive simulator
capable of handling systems subject to changing constraints.? This section will be
organized around Figure 1. The information contained in each schematic repre-
sentation is twofold. First, the labelled boxes indicate the number of dynamical
differential equations and algebraic constraint equations and make the distinction

2 There exist other alternatives that will not be considered in this paper. One of them is based on
computing the constraint forces explicitly as the solution of a linear complementarity problem and
applying them to the unconstrained system of equations [14, 15]. Satisfaction of the constraints then
follows by the action of the constraint forces, through the dynamical analysis.
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between the use of the constraints to eliminate dependent coordinates and their use
to augment the analysis. Secondly, the arrangement of shaded boxes depicts how
each simulator is cast to handle changing constraints.

Design Iis based on the method of Lagrange multipliers. After the unconstrained
system of equations is developed, the method of Lagrange multipliers is used to
append the constraint equations, by introducing m multipliers A; (s = 1,...,m)
and adding the term BTA to Equation (3) leading to

M(g)a = f(q,u, 1)+ B(@)'A )

where A is a m x 1 column matrix of undetermined multipliers. The multipliers
A are linear combinations of the constraint force components [16]. If no motion
constraints are imposed, Equation (9) may be solved together with Equation (5)
as a DAE of index-3. Although index-3 solvers are available [17], the algebraic
constraint equations are usually differentiated once or twice to reduce their index
and thus prepare the equations for the more readily available index-2 or index-1 DAE
solvers. Solving Equation (9) together with Equation (7) produces a DAE of index-2
or solving with Equation (8) produces an index-1 DAE. Both index-1 and index-2
formulations require stabilization to the constraint manifold since information is
lost when differentiating the constraint equations. Baumgarte stabilization [18] and
the Augmented Lagrangian formulation [19] are among the numerous stabilization
methods available for index-1 formulations. A stabilized formulation also exists
for index-2 DAEs [20].

For the treatment of systems with changing constraints using the simulator archi-
tecture of Design I, the core n equations, Equation (9), remain the same throughout
the simulation (except for the constraint Jacobian B(gq), which reflects only the
active constraints). The m active algebraic constraint equations are applied to the
integration and may change during simulation. The simulator designs described
in [7, 21] fit Design L. In [7, 22], Haug et al. demonstrated the management of
constraints within the method of Lagrange multipliers and the use of DAE solvers.

Design Il makes use of numerical projection methods. The n unconstrained

equations, Equation (9), are projected onto the p 2 1 — m dimensional constraint
manifold by pre-multiplying with a p x n projection matrix R, which is produced
numerically during solution from the constraint Jacobian B via SVD [23], QR
decomposition [24], or Gauss triangularization [25]. The projection matrix R sat-
isfies the equation RT BT = 0, and the projected dynamical differential equations
are given by

R'Mu = R'f. (10)
These numerically projected equations require simultaneous solution of the con-

straint equations, so that together with the constraint equations, the problem may
be formulated as an index-2 DAE of p + m = n equations. Twice differentiating
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the configuration constraints produces an ODE, although its solution again requires
stabilization.

For the treatment of systems with changing constraints, the simulator architec-
ture of Design Il features p dynamical equations produced by numerical projection.
The m algebraic constraint equations are solved simultaneously, and the dynamical
equations must be projected using a new projection matrix each time the constraints
change. Adaptation of the projection method to handle changing constraints is rel-
atively easy since whenever a change in constraints occurs, only the projection
matrix R is affected due to the change in constraint Jacobian B; however, R is
already generated on the fly numerically.

In Design Il and Design 1V, the configuration constraints are differentiated and
grouped with the motion (nonholonomic) constraints to produce constraint equa-
tions that are linear in the motion coordinates, as in Equation (7). These constraints
are then used to undertake a local coordinate transformation to eliminate dependent
motion variables from the equations [2]. This process projects the dynamical differ-
ential equations onto the p-dimensional constraint manifold, in which the solution
of Equation (4) is constrained to lie. Here the projection is carried out using sym-
bolic operations (realizing a dot product) in contrast to numerical operations and is
called embedding the constraints. For a geometrical interpretation of the projection
operation carried out in Kane’s method, see [26, 27].

To embed the constraints in Kane’s method, one expresses the m dependent
generalized speeds in terms of the remaining p independent generalized speeds by
carrying out linear operations on the constraint Equation (7). One may begin by
re-ordering and partitioning the generalized speeds in Equation (7) to produce

Upii uj
B, : =B : | +C. (11)

U Up
where u, (r = 1,..., p) are the independent generalized speeds and u, (r =
p+1,...,n) are the dependent generalized speeds. Further, one must choose the

By and B; matrices so that Equation (11) may be solved uniquely for the dependent
generalized speeds and the results written in terms of D = B 'Byand E = B/ Ic
as:

Uptl Ui
=D| : |+E, (12)
Up up,
where the elements of D and E are functions of ¢; (i = 1, ..., n) and possibly

time 7.
Now that the motion constraints have been expressed in an explicit linear form,
the derivation of the constrained dynamical differential equations may proceed
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according to one of two methods. In the first, Equation (12) may be used to eliminate
the dependent generalized speeds from the analysis and Kane’s method applied as
usual. Alternatively, the constrained dynamical equations can be obtained by a re-
combination of terms from the unconstrained dynamical equations. Specifically,

the constrained generaliz~ed active force F, (r = 1, ..., p) and the constrained
generalized inertia force F* (r = 1, ..., p) may be formed from the unconstrained
generalized active force F, (r = 1, ..., n) and unconstrained generalized inertia
force F¥ (r =1, ..., n) as follows:
Fr:Fr'i_ZDerv (”:1,---7]?) (13)
s=p+1
Fr=F+ Y DyF G=1...p (14)
s=p+1

where D was defined in Equation (12). To eliminate the dependent generalized
speeds and dependent generalized speed derivatives from the resulting expressions,
one may substitute from the motion constraints (Equation (12)) and differentiated
motion constraints [3, 10]. See also Equations (4.4.3) and (4.11.4) in [2].

The equations of motion in the independent generalized speeds are then simply
formed as:

F,4+F=0 (r=1,...,p) (15)
which are only p ordinary differential equations in the p unknowns, u, (r =
1, ..., p). Finally, Equation (15) may be used to produce explicit equations for i,
in the form

ii=F(q, 0,1 (16)

where @1 is a p x 1 matrix of the independent generalized speeds.

The resulting dynamic differential equations are a set of ordinary differential
equations, and yield to solution under a standard ODE solver. Advantages associated
with embedding constraints include the reduction in the number of equations to
be integrated and robustness due to the disappearance of the instability problem
associated with the integration of differentiated constraints in DAE solvers.

For treating systems subject to changing constraints, simulator Design III fea-
tures switching among a set of ODEs, each produced by embedding the pertinent
constraints. Since the constraints are embedded, there are only p dynamical equa-
tions to solve for the system in each of its constraint conditions where p may vary
by condition. However, in Design III, all of the constraints must be known prior
to the time of simulation. Such an approach is often suitable for the simulation of
mechanisms, as described in [8].
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The simulator architecture depicted in Design IV is the scheme proposed in this
paper. As in Design III, the constraints are embedded, yielding only p dynamical
differential equations for the system in each of its constraint conditions. However,
unlike Design I11, the constraints are embedded on-line (during simulation) through
symbolic manipulation of the dynamical equations. Thus, the equations resident in
the integrator are not simply swapped in and out; they are subject to reformulation
on the fly. The incorporation of on-line formulation into the simulator design allows
updates to the geometric model that occur during simulation to be reflected in the
behavior of the dynamic model.

The process outlined above for obtaining equations of motion is aided by the
use of symbolic manipulation software. One such symbolic package is Autolev [28,
29] and another is SymSim, a toolbox for MATLAB created by the authors and
described in Section 5.5 below.

The recombination of terms prescribed in Equations (13) and (14) is carried out
during simulation using computerized symbolic algebra to produce the equations
in minimal form for the system in each of its constraint conditions, just before
they are needed by the numerical solver. Before demonstrating the process, we
first introduce some notation for hybrid dynamical systems, and then describe its
incorporation with two additional simulator components: a collision detector and
an impact resolution algorithm.

In the following, we review the language of hybrid dynamical systems and
apply it to the formulation of a simulator to handle the interacting continuous-time
and discrete-time dynamics. The intention is to capture both the “memory” in the
continuous system dynamics and the “memory” in the discrete dynamics and their
interaction to create a system whose behavior accurately reflects the behavior of its
target system.

4. Hybrid System Modelling

To prepare for the construction of a simulator that can advance the solution of
a constrained dynamical system through changes in the constraints, we borrow
nomenclature and modeling tools from the field of hybrid dynamical systems. Re-
view papers in the field of hybrid dynamical systems include [30, 31]. The purpose
of this section is to present a model that can sequentially and interactively patch
together various dynamical subsystems with appropriate initial and final states.

Hybrid dynamical systems are systems that exhibit interacting discrete state and
continuous state dynamics. The term interacting indicates that changes in discrete
states influence the evolution of the continuous dynamics and changes in continuous
states influence evolution in the discrete dynamics. Such interaction precludes an
analysis that treats the continuous and discrete models separately.

We shall concentrate here on hybrid dynamical systems in which the discrete
and continuous dynamics interact only at discrete points in time known as events.
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This enables a description in terms of a single discrete state subsystem, a collec-
tion of continuous state subsystems, and a description of the possible interactions
between the two subsystem classes. We will also restrict the discussion to systems
in which the continuous state dynamics can be modelled in the form of ODEs or
DAE:s, defined on open subsets of the time interval of interest. That is, we employ
a continuous time formulation, realizing that these continuous dynamics will be
solved numerically. To describe the discrete subsystem, we employ a finite state
machine. Together, the collection of continuous and discrete subsystems expressed
in this form may be represented in a hybrid automaton [30, 32]. A hybrid automa-
ton, then, can be considered a finite state machine in which the discrete states have
been replaced by so-called “modes”, each of which indicates a particular continu-
ous dynamics. Each mode is a description of a dynamical system that applies for a
period of time whose extent is governed by the discrete dynamics.

While the continuous state may change at each instant, the state of the discrete
subsystem changes only at the events. At these events, the discrete subsystem
exerts its influence over the continuous dynamics in one or both of two ways: (a) by
causing a swifch in the active differential equations describing the continuous state
evolution, and/or (b) by causing a jump or discontinuity in the continuous states.

The hybrid dynamics are abstracted into a collection S = | J;, Sk, of modes
Sy, where n,, is the number of modes and where the state x®) within each mode Sj
evolves according to the differential equation

® = 0 (x0 g® ), a7

where 8%)(z) is an exogenous input for the k-th mode. The superscripts (k) index
not only the functions I but also the state x and input 0 to allow different state and
input variable definitions and possibly different state and input dimensions between
modes. Note that for the simulation of mechanical systems, whose state equations
are generally second order, the state x will comprise the generalized coordinates g,
(r =1,...,n)and the generalized speeds u, (r =1, ..., p).

Also associated with each mode Sy is a set of pending transitions J; to other
modes, where j € J® is the index of the new mode following the event and J*)
is the set of modes reachable from the k-th mode. The timing of the events is
determined by a switching condition:

fRE0 ) =0, i=1,....20 jes®, (18)

where ngk) is the number of transitions from mode k to mode j.

The time * that, together with the state x¥(¢*) and specified motion O(k)(t*),
produces a zero of switching condition f ](kl) is called a switching instant; it triggers

the associated transition. Once a transition is triggered, an associated reset map d)ﬁkl)
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Figure 2. An example hybrid automaton with three modes and five transitions.

is executed to map the final state values x*) in the current mode to the initial state
values x/) in the next mode

XD =00 1), i=1,....20 jes®. (19)
A special reset map sets the initial conditions for the initial mode §; (the initial
mode is arbitrarily labelled with k = 1)

xD(0) = x{". (20)

Evaluation of the hybrid system can be viewed as a sequence of subproblems,
each characterized by a continuous evolution in a mode terminated by an event
(i.e., zero crossing of a switching condition), and then evaluation of the reset maps
to initialize the new mode.

It is convenient to represent the interacting continuous and discrete dynamics of
the hybrid system using an automaton as in Figure 2. This simple hybrid automaton
has 3 modes with two transitions from mode 1 to 2, one transition from mode 2 to
3, one transition from mode 3 to 1 and a self transition in mode 3.

5. Simulator Architecture

A simulator equipped to handle multibody systems with changing constraint condi-
tions requires three major components: a forward dynamics solver (an ODE or DAE
solver), a collision detector, and a means for resolving impacts as indicated in the
flow chart in Figure 3. The forward dynamics solver advances the solution of I'* in
continuous time between events. The collision detector checks for contact between
bodies by evaluating a collection of switching conditions f ](kl) (Additional switch-
ing conditions are used to detect interaction forces that become tensile between
unilaterally constrained bodies, to trigger loss of contact). The impact resolver,
triggered into action by the collision detector, computes reset maps ¢ jl) to initialize
the forward dynamics solver.
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Figure 3. Standard simulation flow chart.

Alongside these three major simulator components, there exist three models for
the system: a dynamic model, a geometric model, and a contact model. Roughly,
the numerical integrator will maintain the dynamic model, the collision detector
handles the geometric model, and the impact resolver calls upon the contact model.
The impact resolver however, also consults the geometric model and possibly the
dynamic model to compute the appropriate impulse response between bodies.

The use of a collision detector and impact resolver as in Figure 3 ensures that
interacting bodies respond to each other’s presence. Note that the impact resolver
is called only intermittently whereas the collision detector and forward dynamics
solver run continually, either alongside or subsequent to each other in computational
time.

Let us now consider each of the elements of the flow chart in greater detail.

5.1. FORWARD DYNAMICS SOLVER

The forward dynamics solver operates on the equations of motion, a set of differ-
ential equations in the configuration and motion variables and inertia parameters.
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The multibody model can contain embedded or appended configuration or mo-
tion constraint equations written in terms of certain geometric parameters that are
not necessarily part of the geometric model. In addition to new initial conditions
from the impact resolver, the forward dynamics solver may respond to forces and
moments applied during simulation, perhaps through the action of a human user
interacting through a haptic interface.

5.2. COLLISION DETECTOR

A collision detector is an algorithm that operates on a continually updated geometric
model to determine points in time at which objects make contact with one another.
At initial contact, the collision detector triggers the impact resolution algorithm
that computes the interaction forces or impulses that act, in simulation, to prevent
interpenetration of the two colliding objects. A set of surface patches and their
interconnection can be used to describe the geometry of each body in the simulation
environment. The whole collection of surface patches along with its connected graph
is called the geometric model.

There exists an extensive literature on the collision detection problem. For a
detailed overview of existing methods for different geometric representations, we
refer the reader to survey papers [33, 34]. In previous work [35], we have also
contributed a collision detector that treats objects whose boundaries are repre-
sented using parametric surface patches. In [35] we presented a method for finding
and tracking the closest points between two parametric surfaces based on a con-
trol problem formulation and the design of a stabilizing controller. The algorithm
simultaneously accounts for the surface shape and motion while asymptotically
achieving (and maintaining) the closest points. Features of this approach include
its guaranteed stability and seamless integration with the forward dynamics solver.

5.3. IMPACT RESOLVER

Impact resolution considers the problem of finding the separation velocities of two
contacting bodies given the approach velocities and an appropriate contact model.
Using Kane’s method, the problem is formulated by expressing generalized impulse
and momentum in terms of independent generalized speeds and then calculating
the change in the generalized speeds under the assumptions dictated by a contact
model. Independent of the contact model used, the impact resolution problem makes
two assumptions: the configuration of the system does not change due to impact
and the forces other than the action—reaction forces at the contact point can be
ignored.

There exist several contact models in the literature [36, 37]. The contact model
proposed by Smith [37] consists of assumptions that can be embodied in three
equations about the impulse and relative momentum during impact. The first equa-
tion is provided by assuming that the components of the approach and separa-
tion velocities in the contact normal direction are related by a factor €, called the
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coefficient of restitution. Two more equations can be formulated assuming that the
tangential contact forces obey Coulomb’s law of friction.

With these assumptions, the resolution model fully determines the response of
the system to an impact. If the coefficient € is non-zero, then the two bodies are
guaranteed to rebound. Depending on whether the tangential forces are inside the
friction cone or not, the two bodies will rebound in the direction of the contact
normal at the contact point if inside the friction cone and in a direction determined
by considering certain impulses if outside the friction cone. On the other hand, if
€ = 0, the two bodies will remain in contact. For a more detailed discussion of the
contact and friction models, we refer the reader to [37] and references therein.

5.4. SIMULATOR FLOW OF OPERATION

We are interested in combining a forward dynamics solver, a collision detector, and
an impact resolver to render the dynamics of a hybrid system using only an ODE
solver, and in such a way that changes in the geometric model that occur on-line
may be reflected in the simulated behavior. Thus our job is to perform on-line sym-
bolic embedding of constraints. To lay out our architecture, we now elaborate on
the flowchart in Figure 3, describing the incorporation of symbolic routines respon-
sible for embedding constraints. Before presenting the elaborated flowchart, further
perspective on our simulator can be developed by comparing Designs III and IV in
Figure 1 in light of the example hybrid automaton shown in Figure 2. In fact, the
hybrid automaton and the associated nomenclature in Section 4 is more suitably
reflected in Design III. Each mode contains a particular pre-compiled (constraint
embedded) dynamical model that will be passed to the integrator for simulation
during the epoch in which it is active. In effect, the simulator switches among the
pre-compiled models, as depicted in Figure 1, Design III. In this paper, however, we
propose the use of on-line symbolic manipulation to produce the dynamical models
in each of the automaton modes during run-time. One might think of each mode con-
taining the same core equations F,, + F* = 0(r = 1, ..., n), which, when the mode
is actually visited, are then modified to produce the appropriate F, + F* = 0 (r =
1, ..., p)thatreflect the presence of the constraints identified with that mode. Using
this on-line approach to formulating the constrained equations, it becomes possible
to handle constraints whose full expression are not known at the simulation start.

Using on-line constraint embedding, the following steps must occur with each
switching condition zero-crossing: integration must be stopped; the reset maps
invoked and, if a new mode is triggered reflecting the imposition of new constraints,
then independent generalized speeds must be chosen and the dependent generalized
speeds expressed in terms of the independent generalized speeds; the constrained
dynamical equations formulated; and finally, integration re-started.

To reflect all the operations involved in real-time constraint embedding, we
present in Figure 4 an elaborated version of the flowchart of Figure 3. Consider
traversing a path through the flowchart starting at the top. First, the unconstrained
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Figure 4. Simulation flow chart for Design IV. Double frames indicate symbolic operations
undertaken by SymSim.

dynamical differential equations F, + F* =0 (r = 1, ..., n) are formulated and
the initial conditions are set (Equation (20)). Then, interactive simulation is ready
to begin. A real-time clock is used to trigger the sampling of data from sensors and
the issuing of commands through a digital-to-analog converter to actuators. The
integration step must be traversed once each sample time to update the behavior of
virtual dynamical objects.

Before the equations are ready for integration, any active constraints must be
embedded. The active constraint equations, expressed as dependencies among the
generalized speeds in the form of Equation (7) are collected. The generalized speeds
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are partitioned into sets of independent and dependent variables and the matrix D
whose elements are Dy, is produced as in Equation (12). Finally the constrained
generalized active force F, and constrained generalized inertia force F,* are formed
using Dy, in Equations (13) and (14) and the constrained equations of motion are
formed, F, + F* = 0 (r = 1,..., p). Formation of the constrained dynamical
equations are all accomplished using symbolic algebra routines executed during
run-time.

Simulation then proceeds within a particular mode by executing the main in-
tegration loop using % until any one of the switching condition f ;ﬁ) associated
with mode k crosses zero. A switching condition zero-crossing initiates an excur-
sion from the main simulation loop: First, the associated reset map ¢§’i (if any) is
invoked. If j = k or there is no change in mode, then the process returns to the main
simulation loop. If, however, a new mode is reached, then new constrained equa-
tions of motion are formulated symbolically. Figure 4, then, presents a simulation
paradigm in which the equations to be integrated are ODEs in a set of independent
variables, no matter what constraints might hold at a particular time. This enables
the use of a standard ODE solver operating on dynamical equations in minimal
form. As a result, the main simulation loop is fast and enjoys inherent stability. Of
course, if simulation is to take place in real-time, all loops must be traversable in a
single time-step.

Using on-line symbolic manipulation and constraint embedding, an additional
feature can be added to the simulator architecture depicted in Figure 4. Represen-
tation singularities, which exist in the configuration space of certain mechanisms,
can be avoided with the incorporation of a check on the condition number of the
constraint Jacobian within the main simulation loop. Such singularities can be side-
stepped by triggering a re-selection of the independent generalized speeds using
symbolic routines. For additional details, see [9, 26].

To evaluate switching conditions that trigger the deletion of constraints, expres-
sions for interaction forces between bodies are needed. That is, expressions for the
constraint forces are needed, which were eliminated from the analysis by constraint
embedding. Expressions for the constraint forces can easily be produced, however,
using the method of auxiliary generalized speeds [2, 38], and such expressions
will be uncoupled from the dynamical analysis. They are algebraic functions of
the generalized coordinates, generalized speeds, and system parameters. The con-
straint forces can then be evaluated in the switching function for the purpose of, say,
deleting a constraint when the interaction force becomes tensile, thereby realizing
a unilateral constraint.

5.5. SYMBOLIC MANIPULATION IN MATLAB

SymSim is a toolbox for MATLAB that is modeled after Autolev, a symbolic ma-
nipulator specialized for dynamic system analysis [29]. SymSim provides tailored
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data objects to describe components and geometric entities such as bodies, points,
forces and moments and their relationships with each other. For the implementation
of the code, a new variable type called timevars and a symbolic time differentiation
routine dt are defined in MATLAB. Other core elements of the code are the defi-
nitions of vector variables and vector operations, most importantly the overloading
of dot and cross product functions to operate on these vectors. For simplification
of symbolic expressions and symbolic operations on scalars, matrices, and vectors,
SymSim makes use of the well developed MATLAB Symbolic Math Toolbox and
the Maple Kernel. The main motivation for re-creating Autolev inside MATLAB
was to leverage MATLAB’s scripting language and to couple the symbolic and
readily available numerical routines together in a single environment.

In our present MATLAB implementation, the analysis of a system begins with
the symbolic generation of expressions for the terms F, and F* (r = 1,...,n)
in the unconstrained equations of motion. The unconstrained system is specified
in an input script file, which is read from disk and details the particles and bod-
ies, their inertia properties, the generalized coordinates and speeds, the direction
cosine matrices that relate basis frames, other geometric and kinematical expres-
sions, and applied forces and torques. After the constraint equation pertaining to
the initial mode has been specified, the initial constrained equations are formulated
symbolically as a re-combination of terms from the unconstrained equations, and
these are stored in memory as a symbolic variable. These dynamical differential
equations are combined with the kinematical differential equations and together
they are transformed into a string variable and used to produce an inline function.
That function is then executed as an expression by the ODE solver with all param-
eters specified by their values given in the script file. The ODE solver integrates
the equations of motion until it detects an event and temporarily halts integration.
The corresponding active constraints are used to reformulate the new constrained
equations of motion and a new inline function is generated.

Many of the operations in our present implementation are quite slow, involving
nested function calls made from within an interpreted environment. The computa-
tional load during run-time can be quite high during transition between modes. A
planned future implementation in C/C++ would relieve much of the computational
burden during run-time. A hybrid dynamical simulation package in C/C++ would
consist of two major components. The first component is a symbolic package that
generates the F, and F terms in response to an input script file, as in our current
implementation. The terms F, and F* would be made available by the symbolic
package in the form of stand-alone routines in C/C++4-, which may be complied
into an object file that is called by the second component, a numerical ODE inte-
grator. Compilation would take place before simulation run-time. Exploiting the
linear structure of the constrained equations of motion, as indicated in Equations
(13) and (14), an ODE integrator would perform a linear combination of the object
file’s output during run-time according to the D matrix derived from the active con-
straints, Equation (12). Solution of Equation (15) for the independent generalized
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speed derivatives, as in Equation (16), could be performed numerically if an implicit
integrator is not available.

6. Examples
6.1. EXAMPLE 1

Figure 5 shows a planar system comprising a uniform disk B of radius r, mass
m, and central moment of inertia J in contact with a ramp A inclined at an angle
¢ with the horizontal. The ramp has two different friction zones. The change in
friction coefficient takes place at a position L meters away from the fixed point O.
The lower part of the ramp has a coefficient of friction ©; whereas the upper part
of the ramp has no friction. Let N designate a Newtonian reference frame and let
the unit vectors a;, a,, and az be directed as shown.

To characterize the configurations in which B maintains contact with A, we may
use the displacement g; between a fixed point O and the center B, of B and the
angle g, between the ramp edge and a line fixed in B that is initially parallel to
the ramp edge. To characterize the motion of B in N, define generalized speeds as
Uy 2 g1 and u; 2 rgs.

If B slides on A, then both u; and u, are independent variables. However, if
B rolls on A, a motion constraint may be written u; + u#; = 0. When the rolling
constraint is enforced, the equations may be written in terms of a single generalized
speed (but still two generalized coordinates). The corresponding definition of the
D matrix is D = [—1], which will be used for on-line constraint embedding.

In preparation for the formulation of equations of motion for the disk in both
the sliding and the rolling modes, we first formulate the unconstrained (sliding)
equations. The forces acting on B, including the gravity force acting on the mass

\\ H=u,

FTrrriiir * b

Figure 5. A rolling or sliding disk.
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center B, and the contact forces acting at the point of contact with A, may be
resolved into a resultant R® = —mgn, — F rag + Na, applied at B, and a torque
T? = —r Fra;, where F is the friction force, A is the normal force of contact, g is
the local gravitational constant, and n; is a unit vector directed vertically upward.

The unconstrained equations of motion may be obtained by carrying out the
steps outlined in Section 2.2 above to yield, for F, + F* =0 (r = 1,2):

—mg sin(¢) — Fy —mit; =0 21
—Fr— i =0

which may be easily solved for i and 1,.

The equations of motion for the disk in the rolling phase, with the rolling con-
straint embedded, may be formulated through a re-combination of terms according
to Equations (13) and (14). Since there are one constraint and two generalized co-
ordinates, wehave p =n—m =2 —1 = 1,and D = [—1], so Equations (13) and
(14) yield

Fi=F - F

Ff=F—F; 22
which produce
. J\.
—mg sin(¢) — (m + —2)u1 =0. (23)
r

These operations will actually be undertaken by a symbolic manipulator on-line,
during simulation.

We are now ready to compose these two sets of equations into a hybrid automa-
ton. Figure 6 shows a hybrid automaton with two modes: mode 1 for the sliding
disk and mode 2 for the rolling disk. The switching conditions fz(l) that triggers
a transition from sliding to rolling is the condition u; = —u, (satisfaction of the
rolling constraint). A tolerance is placed on the equality condition to ensure robust
performance in a numerical simulation. Rolling begins with the initial conditions
equal to the final conditions of the sliding mode (i.e., there is no reset map).

2
fl(,l) :

S| = pu mgsin g

Figure 6. Automaton for the rolling or sliding disk.
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Table I. Parameters used in rolling or sliding disk example.

90 g0 420
Parameter ¢ (rad) pu; M (kg) J (kgmz) L (m) r (m) gqio(m) (rad) (m/s) (rad/s)

Value z 0.2 1 3 2 1 14 o 7 -4

Rolling mode terminates if one of the two conditions are met. The first condition

1(?3 is met when the magnitude of the friction force Fy exceeds the friction cone,

defined by N, where A is the normal force given by mg sin¢. The second

condition fl(’zz) is satisfied when the contact point enters in the zero-friction zone on

the ramp or ¢; = L. To produce an algebraic expression for the normal force N/

needed to evaluate the tangential friction for the switching condition, an auxiliary
generalized speed was used to bring NV into evidence.

We have run a simulation of this system in MATLAB using a fixed step Runge-
Kutta routine (RK4) alongside the symbolic equation formulation routines from our
SymSim toolbox. The parameter values and initial conditions are given in Table .
Figure 7 shows the evolution of g, the sum u; + u,, and the evolution of a scalar
k that indicates the active mode (k = 1 for sliding; & = 2 for rolling). The initial

Sliding
/ Mode
T T T T T T T
2 -
{ Rolling Sliding Rolling
e - Mode Mode Mode -
l - 1 1 1 1 1 1 1 z]
0 1 2 3 4 5 6 7 &
time [sec]
5 T T T T T T T
g o}
_l’_
3 -5 ]
~10 I 1 1 Il 1 I 1
1 2 3 4 5 6 7 8
time [sec]

30 T T T T T T T

q
\i

time [sec]

Figure 7. Time trajectories of the mode number k, u; + u> and g; versus time.
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conditions produce uphill sliding with u, > 0 until #+ = 0.37 s, when a transition
to rolling is triggered by satisfaction of the rolling constraint. At + = 1.72s the
contact point rolls into the zero friction region and the disk begins sliding again.
While sliding, u, remains constant and the center of the disk reverses its direction
of motion under the action of gravity until the contact point moves back into the
non-zero friction region. At t = 6.13 s the rolling constraint is satisfied again and
the system transitions to the rolling mode a second time.

In our MATLAB simulation, online symbolic embedding takes 0.1 s and con-
straint deletion takes 0.03 s on a 3 GHz Pentium IV Processor with 1 GB RAM.
The RK4 routine was run with a 0.01 s step size and a relative tolerance of 1077,
where each step consumed 0.003 s of real-time in sliding and 0.0025 s in rolling
mode. We have also implemented a fourth order BDF formula for simulation of
the disk/ramp systems as a set of DAEs. Again, for 0.01 s fixed step size and al-
lowing five iterations, each step consumed about 0.004 s in sliding and 0.0045 s in
rolling mode. Although the ODE steps are faster than the DAE solver steps, leaving
more time for symbolic constraint embedding and deletion that must accompany
the ODE simulation, the symbolic operations are still an order of magnitude too
slow for real-time operation in our current implementation. Note however, that the
symbolic operations are run using interpreted function calls to our toolbox and
MAPLE, whereas the numerical routines are compiled code. A new implementa-
tion of a symbolic toolbox, written in C/C++ would certainly have a profound
effect on the current run-times.

6.2. EXAMPLE 2

Example 2, shown in Figure 8, considers a planar system much like the disk B
and ramp A of Example 1, except here the ramp is extended by a fence F whose
shape is subject to change. This example is inspired by a robotic parts feeding
application where parts are sorted by a flexible fence based on real-time computer
vision. Another application is a programmable constraint (realized by a robotic
materials-handling device [39]) whose shape is not known ahead of time but is
programmed online to achieve certain goals [40].

To simplify the example, assume the fence F is an arc of length L ; and initially
unknown radius R, joined to ramp A at point P, which is a distance L from O.
Let point C, lying on the perpendicular to A at P, be the center of F. Let the
configuration of B in N be characterized by a set of four generalized coordinates,
with g1, ¢» defined as the horizontal and vertical displacements of By relative to
point O, and g3 defined as the angle between the ramp edge and a line fixed in
B that is initially horizontal, and g4 defined as the path length along the ramp (or
ramp and fence) that locates the point S along the path that is closest to B. The
point S on A is tracked by a feedback stabilized extremal point tracking algorithm
discussed in Section 5.2 and the minimum distance between the disk and the ramp
is denoted by d.
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Figure 8. Schematic representation for Example 2. A parts feeder with an adjustable fence.

The automaton for this example, represented in Figure 9, contains three modes:
mode 1 for the free disk, mode 2 for the disk constrained to the ramp and mode
3 for the disk constrained to a fence of a certain shape. Since the geometry of the
fence is not defined until some time after the simulation is started, the automaton
is required to be constructed on the fly and cannot be enumerated beforehand as in
Example 1.

The switching conditions f3(2) and f2(3) that trigger transitions between the ramp
and the fence are given by the equation g4 = L. The switching condition f2(1>
activates a transition from free mode to a ramp-constrained mode when the disk
comes in contact with the ramp. We assume the coefficient of restitution is equal to
zero so that the reset map d)él) sets the velocity of the disk perpendicular to the ramp
to zero upon impact. The disk can leave a constraint (the ramp or the fence) when
the normal force N between the disk and the surface becomes tensile (N > 0),

[,UZ) =L+ 1L

Figure 9. Automaton for the disk-ramp-fence system. The constraint-embedded equations of
motion governing the motion of the disk on the fence must be formulated on the fly since the
shape of the fence is not known prior to simulation start.
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i.e. one of the switching condition f1(3) or 1(21) is satisfied. Finally, the disk can also

break free if it reaches the end of the fence, fl(?z) : q4 = L + Ly. All undefined
switching conditions are set to satisfy state continuity.

To embed the constraint equations to obtain the constrained equations of mo-
tion, one formulates the configuration constraints defined by the geometry and
differentiates them to arrive at motion constraints as explained in Section 2.2. The
motion of B in N is defined by generalized speeds: u; = gi, (i =1,...,4). Due
to configuration constraints imposed in the ramp and fence modes, the generalized
speeds may not all be independent. For example, the motion constraints, obtained
by differentiating the configuration constraints due to contact with the ramp, are
given as u; = uy cos(¢p) and uy = uy sin(¢).

Figure 10 shows 24 snapshots of a simulation at 0.4 s time intervals. The sim-
ulation starts at ¢+ = Os, just after the disk comes in contact with the ramp, with
the constraint embedded that ensures disk B maintains contact with ramp A. The
shape of the fence is not defined until # = 7.0 s when the sensory feedback becomes
available to the robot to program the shape required to achieve the specified task.
This circular arc geometry defines a new set of motion (differentiated configura-
tion) constraints: u; = —@ Uy COS(% —¢)and u, = (RI;’) Uy sin(‘“;L — ).
Constraint embedding for the new mode is triggered as soon as the sensory in-
formation becomes available at + = 7.0s. During the time interval ¢+ = 7.0 to
t = 7.4 s, symbolic constraint embedding for the fence takes place in parallel with
numerical integration of the disk-ramp equations of motion. In Figure 11 numeri-
cal and symbolic processes running in parallel are shown stacked in the same time

—77 t=173

Figure 10. Simulation of a disk constrained to a ramp and a fence whose shape is not predeter-
mined. The top figure shows 19 snapshots taken after the disk comes in contact with the ramp
at At = 0.4s intervals. The bottom figure shows five snapshots taken after the shape of the
fence is determined at time t = 7.3 s.
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Figure 11. Time chart for Example 2. Symbolic constraint embedding takes place in parallel
with numerical integration and is triggered according to a threshold selected such that the
embedding is complete before the constrained equations are needed. The time it takes for our
toolbox to symbolically embed constraints is 0.4 s.

interval. Naturally, either a parallel processor or multi-threaded program is required
to implement the processes depicted in Figure 11. At = 7.7 s, the disk comes in
contact with the fence and the simulator starts to numerically integrate the new
set of disk-fence equations of motion for which the constraint equations ensuring
contact with fence F have been embedded. Finally, at + = 9.0 s, the disk reaches
the end of the fence and breaks free.

6.3. EXAMPLE 3

Figure 12 shows a double pendulum of massless rigid rods R; and R, of lengths /;
and [, with particles P; and P, of mass m; and m, attached. Let n; and n, be two

@\‘ 7 s €1 H2. €2
<\
O, -

Vp —>

Figure 12. A double pendulum with a moving conveyor belt.
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Figure 13. Automaton for the double pendulum example.

orthonormal vectors in the plane, where n; is pointing vertically upward. Gravity
g is acting in the —n, direction. Let generalized coordinates g; and g, measure
the angular displacements of R, and R, from the vertical. A horizontal conveyor
belt C moving at a constant speed v, is placed under the pendulum. The conveyor
belt carries rectangular parts composed of different materials which are arranged a
distance d below the pendulum pivot O, where /1 < d < [} + ;. Particle P, may
strike a part with a contact model characterized by a coefficient of restitution € that
takes on values between 0 and 1 and a coefficient of friction .

An automaton depicting the various modes of the double pendulum interacting
with the parts is shown in Figure 13. There are three modes: IV representing the
unconstrained pendulum with two degrees of freeom, I'? representing a slider-
crank with one degree of freedom, where particle P, is constrained to slide along
a part, and IT'®| in which P; is stuck on a part and the system has zero degrees of
freedom.

Mode 2 is reachable from mode 1 only when € = 0 and upon striking, the
tangential friction force lies outside the friction cone. Mode 2 is reachable from
mode 3 when the moving part has dragged P, until the pendulum is extended or p
undergoes a sudden change. Mode 2 transitions back to mode 1 when the normal
force becomes tensile: fl(2 : F,, > 0.Mode 3 is reachable from mode 1 whene = 0
and the friction force F; lies inside the friction cone.
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There are two transitions out and back into mode 1 that invoke reset maps. The

first of these, named fl(yll), is called when a collision occurs with € > 0 and the

friction force lies outside the friction cone, F; > wuF,. The second, named fl(_lz) ,
is called when a collision occurs with € > 0 and the friction force lies inside the
friction cone, F; < uF,.

To compute the reset map associated with the collisions of point P, on C, we use
the impulse-momentum balance equations developed by Kane [2] and the contact
law proposed by Smith in [37]. These formulations account for the configuration of
the double-pendulum at the instant of impact in the computation of the generalized
impulse and generalized momentum, and incorporate the usual assumptions of
constant configuration during impact and negligible action of forces other than
the action—reaction pair at the point of impact. The contact law proposed by Smith
requires values for the coefficient of restitution € (an estimate of the normal velocity
ratio), the coefficient of static friction us and the coefficient of dynamic friction
4. Smith’s contact law computes the tangential impulse as the product of w, the
magnitude of the normal impulse, and an average of the tangential components of
the approach and separation velocities (see Equation (15) in [37]). This contact law
guarantees that the kinetic energy will not increase.

We have implemented a simulation of this system in MATLAB using symbolic
routines from our SymSim toolbox. The parameter values and initial conditions
used in the simulations are given in Table II. Figure 14 depicts the evolution of
the vertical position P of point P, and the evolution of its velocity v? in the
tangential n, direction. Initially the double pendulum is free to move under the
effect of gravity and P, goes through two vertical rebounds on the moving part at
instants ¢+ = 0.07 and 0.25s, respectively. At t = 0.41s, P, strikes the conveyor
belt and starts sliding on the belt since for this zone of the belt ¢ = 0. Sliding
motion takes place until # = 0.88 s when the pendulum sticks and the simulation
stops.

In our MATLAB simulation, we used a 3 GHz Pentium IV Processor with 1 GB
RAM. Online symbolic embedding took 0.3 s and constraint deletion took 0.08 s.
We also utilized a fourth order 0.01 s fixed step Runge-Kutta routine with relative
tolerance of 10~7 for numerical integration. With this routine each step takes about
0.008 s in the slider crank and 0.009 s in the free mode.

Table II. Parameters used in double pendulum example.

q10 420 vp
Parameter [} (m) > (m) M; (kg) M>(kg) d(m) gqio (rad) gqoo (rad) (rad/s) (rad/s) (m/s)

Value 1 1 1 1 12 -z -z 3 -03 25

Parameter s, d, e s, i, e
Value 0.4978 0.4 0.9 0.2489 0.2 0
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Figure 14. Vertical position and tangential velocity of the point P, versus time.

7. Conclusions

In this paper, we presented a simulator designed to handle multibody systems
with changing constraints, wherein the equations of motion for each of its con-
straint configurations are formulated in minimal ODE form with constraints em-
bedded before they are passed to an ODE solver. Unlike other simulator designs, the
constraint-embedded equations are formulated symbolically on-the-fly according
to a re-combination of terms of the unconstrained equations. Constraint embedding
undertaken on-the-fly enables the simulation of systems with an ODE solver for
which constraints are not known prior to simulation start or for which the enumer-
ation of all constraint conditions would be unwieldy because of their complexity
or number. The advantages of this design also include robustness, since issues of
drift associated with DAE solvers are sidestepped by symbolic embedding. We also
applied nomenclature developed for hybrid dynamical systems to describe the sys-
tem with changing constraints and to distinguish the roles of the forward dynamics
solver, a collision detector, and an impact resolver. Finally, we have prototyped
the simulator in MATLAB and demonstrated the design in three representative
examples. Future work includes implementation of these ideas in C/C++ and in-
vestigation of the effect of increased model complexity on computational load and
processing time.
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