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On the Scattering of  Waves by a Disk 
By ALBBRT E. I-IEINS, Ann Arbor, Mich., !d.S.A, 1) 

and RICI-IARD C. MAcCAMY, Pittsburgh, Pa., U.S.A. ~) 

1. I n t r o d u c t i o n  

This paper is concerned with the scattering of sound waves b y  a circular 
disk of so-called ' so f t '  material. The appropriate  boundary  value problem is 
the determination of a function U(r, O, z) satisfying the equation 

1 1 k2 (1.1) Er+TE+T~Uoo+E~+ u = 0  

with the condition 

U(r,O,O) f o r r < l .  (1.2) 

In  addit ion U(r, O, z) is to be made up of an incident field Uo(r, O, z), which 
is prescribed, and a te rm Us(r, O, z) satisfying a radiation condition at infinity. 

An explicit solution of this problem is possible by  means of spheroidal 
harmonics Ell 3) bu t  the resulting formulae are exceedingly complicated. An 
alternative method  is to formulate the problem as an integral equation. Using 
GREEN'S formula one can derive the so-called 'He lmhol tz  representa t ion '  for 
the solution namely,  

1 27r 

U(r, O, z) = Uo (r, O, z) + 4 ~r /(O, ~) ~ O d~3 d o (1.3) 
0 0 

with R 2 = r 2 + 0 2 -- 2 r cos (0 -- ~b) + z z and where / (0 ,  ~b) denotes the discon- 
t inui ty  of U~ on the disk, z = 0, r < 1. F rom (1.2) and (1.3) one obtains the 
integral equation, 

1 2Jr 

O=Uo(r,O,O)+ 4~ / ( o , O ) ~ o d o d O ,  z = 0 ,  r < l .  (1.4) 
0 0 

Unfor tunate ly  a solution of (1.4) is not  known and one is led to the question 
of approximations.  
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When k is set equal to zero the above problem becomes that of an elec- 
trified disk in electrostatics, simple solutions of which have long been known. 
I t  was observed by COl'SON [2] that in the case k = 0 the equation (1.4) itself 
can be solved explicitly. CoPsoN's procedure calls for the expansion of all 
quantities in a Fourier series of the angle 0 and then carrying out the angular 
integrations in (1.4) to obtain simpler integral equations which can be solved. 
For the case of axially symmetric problems, that is, when U does not depend 
on 0 the method of CoPsoN was extend by JoNEs [3] 4) to equation (1.4) for 
arbitrary k. In this case an explicit solution is no longer possible but rather 
JONES was able to derive from (1.4) a regular Fredholm integral equation of 
second kind which is well adapted to an iteration scheme for small k. 

It  is rather an involved procedure to carry out the angular integration in 
(1.4) for k + 0. I t  proved necessary to use some rather complicated relations 
involving Bessel functions. Curiously enough, these complications vanished at 
the end and the resulting equation involved only elementary functions. The 
authors were led to believe that there should be also a simpler method for 
deriving this equation and this, in fact, proves to be true. The central feature 
of the problem appears to be the fact that  an axially-symmetric solution of 
(1.1) is determined uniquely by its values on the axis of symmetry, r = 0. Such 
a determination was observed by HENRICI [4] and further investigated by the 
authors in [5]. In this paper we show that an integral equation analogous to 
that of Jones may be derived without the intermediate step of rewriting the 
r integration in (1.4). Further, the analysis is simple enough to be easily 
carried over to the case of non-symmetry about r = 0. 

In section 2 we indicate how the general situation without symmetry can 
be reduced to a series of problems similar to the axially symmetric case. In 
section 3 the necessary material from [4] is presented. In the next two sections 
we outline our method of solution and in the last section we carry out some 
simple calculations for the case in which Uo(r, 0, z) represents a plane wave of 
arbitrary angle of incidence. We include an approximate formula for the 
discontinuity of the z derivative of U on the disk, as a function of angle of 
incidence, when the wave number k is small. 

2. P r e l i m i n a r y  R e m a r k s  

Solutions of (1.1) which are of class C/m in a region are known to be analytic 
functions of z and x = r cos 0, y = r sin 0. The particular function U satisfying 
(1.2) will accordingly be analytic except on the ring r = 1, z = 0, so that the 
apparent singularity at r = 0 does not in reality appear. In this connection we 
shall have frequent use of the following lemma: 

4) JoNEs s t ud i ed  the  p rob l em wi th  the  cond i t ion  0 U / O z  = O, z = 0 b u t  the  changes  to the  p resen t  
p r o b l e m  are no t  diff icult .  
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L e m m a  1. Let G(x, y, z) be an analytic [unction [or x 2 + y~ < R 2. Then  with 
x = r cos 0, y = r sin 0 ,  

G 2 [A~(r, z) cosn 0 + B~(r, z) s i n n  0] , 
n=0  

whe~'e 

A~(r, z) = r ~ a,(r, z) , B~(r, z) = r '~ b~(r, z) , 

a~ and b~ being continuous at r = O. 

Tha t  G can be expanded in  a Fourier  series is immediate.  Fur ther  since G 
is analytic,  

co co G=m~..~2as,,,,xSymz"=~ 2 ~aa~,rS+mcosSOsin'~Oz". 
j=O m=O n=O j=O m=O n=O 

Now the Fourier  series for G can be obta ined by  expanding  cos~ 0 and  sin ~ 0 
in mult iple  angles. However cosSO sinmO will cont r ibute  to cosn 0 or s i n n  0 
only if j + m >= n. I t  follows tha t  the coefficients of cosn 0 and  s i n n  0 involve 
only terms in  r ~ or higher powers of r. 

On the basis of 1emma 1 we can write for the funct ion U, 

U(r, O, z) -- ~ [U"(r, z) cosn 0 + V"(r, z) s inn  0]; 
n=0  

Uo(r, O, z) = ~ [U~(r, z) cosn 0 + V~'(r, z) s inn  0]; 

U n ~  ynun, V n= ~nv n, 

Uo= r Uo, v0 = r,,v; 
(2.1) 

We write also, 

l (e ,  = c . @  cosn + s . @  s inn  . 
n = O  

(2.2) 

Since the funct ion U is to be a solution of (1.1) the functions U n and V ~ are 
solutions of the equations,  

1 
Wrr-~- ~- 

f r o m  which it follows tha t  the functions u ~ and v n are solutions of 

2 n + l  
Wrr + - - r  wr + wzz + k~ w = 0 . (2.4): 

If the series (2.1) and  (2.2) are subs t i tu ted  in the Helmholtz  formula (1.4) one 
finds easily tha t  t h e  terms corresponding to the various Fourier  coefficients 
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separate. In  fact if we introduce the operators 

1 2~ 

M,(r,  Z; g) = ~ -  g(o) 0 cosn r - ~  d$ d o , 
0 0 

1 2 =  

N,(r,  z; g) = ~ g(9) 0 s i n n  r ~ - -  de d ~ ,  
o o 

with R 2 = r ~ + 9 ~ -- 2 r 0 cosr + z 2, formula (1.3) becomes, 

u,,(r, z) = Ug(r, z) + M~(r, ~; ~,) , Vn(~, ~) = V~(~, ~) + M~(~, ~; s,) . (2.5) 

We now proceed to derive one of the two key formulae in our work. We 

prove 
1 

" dg, n # 0 (I) ,~! ~.(o,  ~) = ~! . ' ; (o,  ~) + ( - ) ~  o ( ~ ) ~  : ~ ' 

0 

where ~z = 05 + z 2. The same relat ion exists between v', v~ and  s~. In  order 
to verify (I) we star t  with the observat ion tha t  U ~ = r ~ u" implies, 

n!  u ' , ( o ,  z)  - o,~ u ~ '  
0 $'n r = 0 " 

Thus we are required to compute first the successive derivatives with respect 
to r of M,(r ,  z; c,). I n  order to carry out  these differentiations we write, 

gikR 
R -- F ( B + z  ~), f l=  r 2 + 0  2 - 2 r q c o s r  

We have then 

f l ~ = 2 r - - 2 9 c o s r  f l ~ = 2  and  0r m - - 0  f o r m ~ 3 .  

Then we assert, 

eil~ R [n12] o n y ,  ,~ F(,,-i) fl~-2i fl,,,i c0,~ = 1 (2.6) Orn R - -  cj �9 
] = o  

We prove (2, 6) by  the method of induct ion.  I t  is clearly true for n = 1. Let us 
assume now tha t  it  is true for any  n > 1. Then 

~ikR DI21 0n+l 
Or~+l R -- ~ cj fl~, cj 

i=o i=o 

since O a fi/Or a = 0. Each term in the second sum has the same form as a te rm 
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in the first sum except the last one. This one is 

%1~]" F . -  [,,/~] ~.,-2[,~/~]-, ,-'~["/2] + , . ,  (~ _ 2 [n/2]) . 

Now if n is even, In/2] = [(n + 1)/2] and n -- 2 [n/2J = 0  so tha t  (2.6) holds for 
n + 1. If  n is odd, n -- 2 In~2] = 1 and [(n + 1)/21 = In/2] + 1 so tha t  the last 
te rm becomes 

C[nl2ln Fn+l-[(n+l)/2l t ~n+l-2[(n+l)121 --rrB[(n+l)/2] ' 

which is tile last term of (2.6) for n + 1. We note tha t  the coefficient of 
remains unchanged and hence always has the value unity.  

Insert ing (2.6) into (2.5), we have 

O~ U~(r, z) O~ U'~(r, z) 
Or n Or n 

1 2~z 

-1---i~=o C]oj/[cn(Q) 4~  .= 

o r  

n! u'(o, z) = s! u;(O, z) 

1 [,./3] n 1 2,~ 
+ ~ i=0X Ci (--1)n 2 ( n - J ) f / c n ( Q )  Qn-2j+l cosn-2j ~ COS ~t ~ F n-2j d~ dQ. 

"= 0 0 

But  
1 

cos ~ r  2~_ I c o s e C +  a l c o s ( ~ - 2 ) r  

so tha t  the only term which will survive integration with respect to r is the 
term/" = 0. We have then 

1 

~l u~(0, z) = n! u~(0, z) + (-1)~4 / c~(Q) p + l  F,, dQ , s # 0 
0 

and 
1 

1 /co(Q) q FO dQ uo(o, z) = UoO(O, z) + ~ 
0 

But  F is a function of fl + z 2 and so the result (I) follows. 
We remark tha t  the apparent  difficulty in (I) for z = 0 is only illusory. 

For  by  lemma 1 
On eiki~ 

C'(0) = Q" cn(Q) so tha t  cn(Q) Q n + l  I)(Z') n ~Z 

remains bounded for z = 0. This remark  is impor tan t  for our later results. 
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3. Axially Symmetr ic  Solutions 

For n = 0 and k = 0 equation (2.4) becomes the equation for axially 
symmetr ic  potential  functions. I t  is well known tha t  such fiinctions are uniquely 
determined by  their values on the axis of symmetry ,  provided those functions 
are analytic. In  fact in terms of those functions the solution can be writ ten 
down explicitly in the form, 

=/~ (o, ~ + i ~) 
U(f,  Z) d~.  (3.1) 

_~J 1/7 ~ -  ~ 

These facts can be extended to the general equation (2.4)n, as discussed by  
HENRICI [4]. Again a solution is determined by  its values on r = 0, provided 
these functions are analytic. Further ,  the solution can again be written down 
in the form, 

f 

w ( r , z ) - -  ] ' ( n +  1) - ' 1 2 

- - f  

x w (O, z + i ~) d~ . 

Equat ion  (3.2) shows tha t  actually a complete knowledge of w(0, ~) is not  
necessary, but  rather  tha t  only w(0, z + i ~) + w (0, z -- i Q) need be known. 

We obtain our second fundamenta l  relation by  setting z - 0 in (3.2), thus 
obtaining 

w(r, O) -- Y (n  + 1) ' 1 2 Y(1/2) ( ~ ) - n ' l / 2 ~ ] i n / ( r - ~ 2 ) n l 2 - 1 l a f n - l / 2 ( k ) / f ~ 2 ~ )  ([I) 
0 

• E~(o, i e) + ~(o, - i  o)~ ae. 

Formula  (II) is aVolterra  integral equation for the quant i ty  w(O, ir + w(O, -- i~). 
I t s  exact solution is not  of concern to us as we shall encounter  only the case 
in which the left hand  side is zero, and then w(O, i e) + w(O, - i ~) will be 
identically zero. 

4. Solution for Small  Wave Number 

In  this section we shall derive integral equations of second kind analogous 
to those of JoNEs [31. These are part icularly well suited to approximations for 
small k. We first derive the equations formally and then show tha t  they  do 
indeed yield solutions of the problems. We content ourselves with the deter- 
mination of the cosine terms, tha t  is, the functions U'(r, z), the extension to 
sine terms being clear. 
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We begin  wi th  the  formula  (I) and  wri te  z = = - e. Upon  in tegra t ing  (I) 

n t imes  wi th  respect  to  ~, we obta in  

o o (4.1) 
1 

+ & + & ~ + . . .  &_~ ~-~ - ( ~ "K~(~) ) 7  ~ eS,  
0 

where the  A's  are cons tants  and  K=(8) = 9 ~ cn(e), e ~ = 8. This expression was 
der ived  under  the  assumpt ion  t ha t  e was real  and  negat ive .  W e  observe,  
however,  t ha t  all of the  quant i t ies  which occur in (4.1) are ana ly t ic  funct ions  
of the  complex  var iab le  ~, as long as = is not  r e a l  and  posi t ive.  I f  we choose 

the  b ranch  of V8 - ~ which is posi t ive for a rg  ~ = 0, c~ < 8, the  in tegra l  on the  
r ight  side of (4.1) is  ana ly t i c  in the  complex  e -p lane  cut  a long the  real  axis  

from 0 to 1. Thus  u~(O, i V~) will suffer a d i scon t inu i ty  on approach  to the  real  
axis, 0 < 0r < 1 from above  or below. Indeed  from (4.1) we have  for arg e = 0, 

Here  u~(O, i/~2_) denotes  the  value  which u~(O, i ~ )  assumes, when arg ~ = 0, 
af ter  a clockwise circui t  of the  origin and T ' (~ ;  g) denotes  the  opera tor ,  

T'~(e; g) --  ( -1 )  n 
4 

( - - 1 )  n 

(x 

i f  g(8) 
0 

i 

c f g(~) 
0 

1 } 
sinhk~_~Tfl__#o: -- fl d8 + f Va =- ge'~ea~ d~ 

1 / 
sinhkv~___fil/o: - -  f l  d8 + f ooskgd___ZV~- ~ a8 . 

(4.3) 

Our nex t  observa t ion  is based  on formula  (II). Since U = 0 uo z = 0, r < 1 
we have  also un(r, 0) = 0 on r < 1. App ly ing  (II) to the  funct ions u n we have  
accordingly,  

~n(0, i r )+  u~(0,- , ~)= 0, 0 < ~ < 1 ,  

(4.2) 

since these quant i t i es  will  be solut ions of a homogeneous  Vol ter ra  equat ion,  
bu t  this  means  t h a t  for arg r = 0 

un(O, i / ; )  + ,,~(0, i V ~ )  = 0 ,  

so t ha t  the  first  i t e r a t ed  in tegra l  on the  left  side of (4.2) is zero. The i t e r a t ed  
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integrals of u] are known functions, so that  except for the values of the con- 
stants A m the left side of (4.2) may  be considered as known. For simplicity we 
write, 

r T 1 

f +  ff-) . . .  . 
0 0 

Now let us denote the two integrals on the right side of (4.3) by  T~(0r g) and 
T~(cr g) respectively so that  (4.2) becomes 

Hn(~) + Z Am o~ m= i T;(o~; Kn) + T#(~; Kn) . (4.4) 
m = 0  

Essentially the equation (4.4) for n = 0 was obtained by  JoNEs E3]. He made 
the observation that  if one finds the inverse of the operator T~(~; Mn) and 
applies it to (4.4) the product (T~) -1 T~ is an operator which is simple. I t  is 
not essential that  one works out the exact details of this process but  for com- 
pleteness we outline the details. If  we write/3 = 1 - a and z = 1 -- y, equation 
(4.4) becomes 

H(I -- )p) + Z Am (I -- }J)m 
m = O  

(--1)n i K~(1- -a )  s inhkl/a--~,  d a +  Kn(1 - -a )  cosk l /~-~a  

2 o 7 . - ;  o " 

Now we recognize that  the last integral may  be inverted with the aid of the 
Laplace transform to give us 

1 

i "Kn(1-- 7) [sinhk(V~+ Va) + 
0 

sinh k (~ ~ Z ~/~)-- 1/~) ] d71 

: 1 . ~ co~hk W - v d~, H q l  - ~,) + ~ A r ~ ( 1  - ~,)~ �9 

0 

Upon writing a = y2, Y = x2, we obtain 

+ 1  

i f sinhk(x + y) dx y K , ( 1 - y 2 ) + ~ -  x K , ( 1 - x  ~) ( x + y )  
- I  

~ } 
+ V ' A m ( l _ x  2) x dx ,  

m = 0  

Y 
_- ( _ ~ ) .  2 .  ay  

0 
Vy ~ -- x~ [ 

(4 .s)  
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The essential fact to observe about  (4.5) is tha t  it is a Fredholm integral 
equat ion of second kind with a regular kernel which is small when k is small. 
The method  of successive approximations will certainly apply and yield the 
solution as a power series in k for k sufficiently small. We remark tha t  in the 
actual  mechanical  process of comput ing  the successive terms one need not  
make the t ransformation to (4.5:). Since the operator T 1 involves 

sinh k ~ fi 

V~ - 

it will produce terms of one higher degree in k than T 2. Clearly an iteration 
process m a y  be based directly on (4.4). Tha t  is, if we assume 

K n -- ~ K~,,  k m 
m = O  

then it is easily seen tha t  the Knm will be determined b y  recursion in the form, 

1 

_/' ~-- - -  ~K~(fl) d fl = F(K,, m-l"'" K,,o) 

or inverting this simple integral equation 5) 

1 d J ' F ( K . . , n _ I  "" K ~ . o ) d f i  K , m ( o : ) =  ~ " d ~  " " 
0 

In  the developments so far there has been no apparent  difference between 
the various values of n. The complication which arises is, of course, contained 
in the determination of the constants A m . For  this we use the remark made 
in connection with formula (I) tha t  the quantities cn(~) must  vanish like O" when 

+ 0. Recalling tha t  

this means we must  have K,(fl) vanishing as fl~ when fi + 0, tha t  is, 

d n 

dfl m K~(fi) = 0 at /5 = 0 ,  m = 0, 1 . . . . .  n -- 1 .  (4.6) 

Thus we a t tack  (4.4) as follows. Define functions P~(a), Q,m(~) as solutions of 

H"(oO = T~(a; P ' )  , o~ m = T'(o~; Qnm) , rrt  = 0 ,  ] . . . . .  n -- 1 .  (4.7) 

Then choose constants  Ao, A~ . . . . .  A~_~ so that ,  

[ ] d ~  Pn(~)  + Z A m  Q"~(~) = 0  a t  ~ =  0 , ~ =  0 , 1 ,  . . .  , ~ - 1 .  (4.8) 
d ~  m = o 

5) This is easily done with Laplace transforms. 

ZAMP XI/17 
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I t  would follow then tha t  
n - 1  

~:~(~) = P~(~.) + ~ ' A . ,  Q~m(~) 
m=O 

would be a solution of (4.4) satisfying the condition (4.6). 
The equations (4.8) constitute a system of linear equations for the Am's 

which wili have a solution unless the determinant  should happen to be zero. 
If  this were so then the homogeneous system corresponding to (4.8) would 
have a nontrivial  solution A ~ . . . . .  A ~ Following the general verification 
procedure which we present shortly, one would find tha t  if 

n--1  
--r~ 0 cO(e) = ~ Z A m Qnm(~) , 

r162 
then 

U(r, O, z) = M,(r,  z; c ~ cosn 0 

is a solution of equation (1.1), satisfying a radiation condition and vanishing 
on z = 0, r < 1. The uniqueness theorem for the problem of section (1) then 

states tha t  ~7(r, 0, z ) =  0 hence c~ is identically zero and finally all the 
constants A ~ must  be zero. The contradiction shows tha t  the determinant  of 
system (4.8) cannot vanish. 

We turn  now to the verification of the formal solution which we have 
derived. First  we observe tha t  the equations (4.7) do indeed have solutions at  
least for sufficiently small k. Now consider the function, 

Kn(~ ) = pn(~) _~_ Z A m Qnm(~) 

with the constants A m chosen so as to satisfy equations (4.8). We put  
c,,(~o) = 8 -n Kn(~ 2) and consider the function, 

U(r, O, z) = [U~(r, z) + M~(r, z; cn) ] cosn 0 .  

U(r, O, z) will then be a solution of (1.1). Hence it will be an analytic function 
and lemma 1 applies to yield, 

Uo (r, z) + Mn(r, z; cn) = r n un(r, z) , 

un(r, z) being a solution of equation (2.4). But  now u~, uL and c~ will be con- 
nected by  the formula (I). Thus we find corresponding to (4.2) 

o~ (4.9) 
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Note that  the n derivatives of T~(c~; K~) may be formed even at ~ = 0 because 
we have constructed K~(~) to vanish like c~ ~ as c~ --> 0. Now Pn(e) and @m(oc) 
are solutions of the integral equations (4.7) with H~(e) representing the n-fold 

iterated integral of -- [u;(0, i 1/~) + u~(0, i ~/~-)J. Thus differentiating (4.7) 
n-times and comparing with (4.9) we deduce, 

u'(0, i ~ )  + u~(0, i ~ - )  = 0.  (4.10) 

We have only to enter the result (4.10) in formula (II) to conclude that 
u"(r, 0) = 0 for r < 1. Thus U(r, O, z) is the (unique) n-th Fourier cosine 
coefficient of the solution to the problem of section 1. 

We have thus exhibited a method for calculating approximately any finite 
number of terms in the expansion of the function U(r, O, z) of section 1. The 
degree to which an actual solution is approximated will depend of course on 
the ease with which the incident field, Uo(r, O, z), may be approximated by a 
finite number of terms of its Fourier series. 

I t  would perhaps be well to insert here a few remarks concerning the small k 
approximation. Let us suppose that  the function H'(~.) has the form 

Then we write 
N 

~ t=0  

What the iteration procedure for small k yields then are functions P~(~), Q~v~(~) 
such that 

H~ - Tn(e; e~) = 0(kN+l); ~m _ Tn(~; 9]vm) = 0(/~37+1) . (4.11) 

We choose constants A~ so that equations (4.8) are satisfied for the approxi- 
mating functions P~ and Q]v TM. Then set 

n 

c~(e) = e-n P~(o 2) + ~V'A~ Q~'(z) 
m = 0  

and consider 
UX(r, O, z) = EUd(r, z) + M~(r, z; c~')] cosn 0.  

Again U x will be a solution of (1.1) so we can write, 

Uo(r, z) + M,,(r, z; c2 T) = r n u~v(r, z) . 

Then following our previous procedure we deduce that 

~ ( 0 ,  i / ; )  + u~(0, i / ; - )  = 0(k N+I) 
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which again by  formula (II) yields 

UN(r, O, O) = O(k N+I) for r < 1 .  

Thus solution of equation (4.7) to terms in k x yields the Fom'ier coefficients 
of the function U(r, O, z) of section (1) to the same degree of approximation.  

5. Di f fract ion by  a Hard  D i s k  

The problem considered by  JoNEs I3] was the diffraction of a sound wave 
by  a hard  disk, tha t  is, the condition (1.2) is now replaced b y  the vanishing 
of the z-derivative on the disk. In  this section we indicate briefly how our 
methods need to be modified to handle tha t  case. We shall maintain the same 
notat ion as in the previous sections, with U(r, O, z) to satisfy 

U',(r,O,O)=O for r < l ,  (5.1) 

instead of (1.2). Replacing (1.3) we have 

U(r, O, 2) = go(r, O, z) + -4~ " o= /(g, 4) - W -  e d4 do, 
0 0 

(5.2) 

where ](~, 4) this t ime represents the discontinuity of U itself on the disk. 
If  we require tha t  the solution be continuous it follows tha t  

l(e, 4) -> o as e --" 1.  (5.3) 

The functions U, U o and f can be decomposed into Fourier  coefficients as 
we have done in section 3. In  place of (5.2) we get by  an integration over z 

z 1 2~ 

; 111 [U(r, O, t) - Uo(r , O, t)] dt + c = -#~ /(e, 4) ---R- e d4 de ,  
o o 

where c is an a rb i t ra ry  constant.  The results of section 3 now car ry  over with 
minor modification. For  example, when r = 0 

z 1 2 =  

[ u ( o ,  0, ~) - go(O, 0, ~)1 dt + c = ~ d  /(o, 4) ~, 
0 0 0 

e d4 do,  

where #2 = ~3 + z ~. If  we write 

2r 2z~ 

f ~ ( o ,  0, t) do = .o:t),  t G ( o ,  0, t) a0 = uo(t) 
o d 

and 

2r 

f /(9, ~) dr = Co. 
0 
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This last equation becomes 

z 1 eik/~ 

[u~ - u~ dt + c = ~ ~ - -  

0 0 

We now continue equation (5.4) into the domain of complex variables and 
we find that  if z - > i y  ( 0 < y <  1) w e g e t  

piY 2-1 "Co(e) e -e-kt/~---- de + c0(e) e~kV~Y'~ e de , /(uo(t) - ~o(t)j d~ + c = 
6 y 

while if z - > - i y  ( 0 < y <  1) wege t  

1 __ Co(e ) O ekgY*-~ eikg~ / Eu~ - u~ dtl + c = d e +  cO(e) e de �9 
y 

Upon adding these two equations and making some trivial changes of variables, 
we get 

y 

/ [u0(/t) - u0(_i  t) - u0(i t) + uO(- i  t)~ i dt + 2 c 
o (5.5) 

= o Co(e) de + Co(O) q de . 

Now the boundary condition (5.1) implies, according to the representation (3.2), 
that  u~ t) - -  u~ - i t) is a constant c 1. Hence equation (5.4) assumes the form 

y 

ely + 2c + f [uo(-it) - uO(it)l idt 
0 1 ] 

f co~k V~- :7~  co(e) de e Co(e) de + V ~ -  y~ e �9 
Y 

The constants c and c 1 are evaluated from the requirements that  c0(e) + 0, 
o + 1 and co(e) is finite at e = 0. The equations involving the higher angular 
harmonics may  be derived in much the same manner and indeed involve only 
further integration with respect to the variable z ~ = ( -  y2) but  we shall not 
pursue this mat ter  further. 

6. Inc ident  P lane  Wave  

We include here some numerical results for the case of an incident plane 
wave for Dirichlet boundary conditions on the disk. There is clearly no loss 
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of generality in assuming tha t  the plane wave is incident upon the disk from 
the side z < 0 and tha t  its propagat ion normal  lies in the x -- z plane. Let  7 
denote the angle which this normal  makes with the positive z axis. The incident 
field in rectangular coordinates is then 

6i k (xsin y + z cos y) 

and in cylindrical coordinates it has the form e ik(rsinyc~176176 Hence 

1 2~ 

U(r, O, z) = r  . . . .  ~) + ~ /(q, 0') -R q dO' dq . 

0 o 

On the axis r = 0, this representation assumes the form 

1 2~ i ~/ e ik~ 
u(o ,  O, z) = d ~ . . . .  " +  4 d~ ./ /(q, o') 

o o 

q dO'de. 

Or, upon integrat ing over 0 and 0', we get 

1 gikl* 
1 cO(q ) q dq.  u o ( O , z ) =  d k . . . .  ~/ + ~ /* -  

o 

If  we continue z into the domain of complex variables and use the fact tha t  

uO(O, ~ v) + u~ - i 7) = o ,  o < ~, < 1 ,  

we get 
1 

1 f COSk [/t ~ - -  y2 cosh(kyco~) + 2- ~--;~ t~o(t)at  
y 

i f sinhk l/y ~ -- t 2 

0 

t cO(t) d r =  O. 

(6.1) 

Upon rewriting equation (6.1) in the 
obtain 

1 
i j~GO(f l  ) [ . s i n h k  !fi + c) s i n h k  (fi - -  a) 

o 
o- 

: _ 4. j' dqcos.(k/1- ecosT) 

o 

form which we described in section 4, we 

(6.2) 

Here G~ ~ i -  y2 cO(y) and a = l / 1 -  y~. Upon applying the Neumann 
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iteration procedure we find for small k 

4 { 2 i k  k2[sin~y ~2 co(q)- ~l/~-~~176 1 - - - ~  + + cos2~, 

i k 3 [ c~ 7 0 2 8 ] 
L 3;z  q- 9 ~  3 ~  :z a 

02 4 ]  
2 

c~ (1 4- r - 2 Q*) + k 4 [ c~ (8 e r --  4 0 5 - 1) + - 1 ~  
[ 72 

1 q 1 (6 - 2 ~2 + 2 4  �9 - 2 Q e + e 4 ) -  3 a  2 +2cos27)  

+ ~ + 0(k~). 

In the limit k, = k (normal incidence) this result coincides with the one which 
BOUWKAMP [11 obtained. 

For the first harmonic, we obtain the equation 

[ sinhkzy coshkzy] +A~ ] 
- 4 i k s i n y  y k~ k~ 

= /  j~ sinhk l/y2-- t2 t2 cl(t) dt |/' (6.3) cosk~t ~ -  y2 t 2 c l (t) dt + i 

while for the second harmonic, we get 

1 1 
f cosk V~-- y2 f sinhk I/y 2 -  t 2 t 2 c 2(t) dt 

y2 coshkz y 
= 4 k~ k~ 2 2 3 y sinhk~ y 3coshkzy +A1A2 y e 

k~ + k~ 

(6.4) 

Here the A's are constants of integration. We observe that for all three cases 
which we consider here, that is, the zeroth, the first and the second harmonics, 
we are always solving the same type of integral equation, the only change 
being in the form of the non-homogeneous term. Equations (6.2) and (6.3) are 
solved in the same manner which we solved (6.2) save for the fact that we have 
to evaluate the constants of integration. These are evaluated by the require- 
ment that cl(t) and c2(t) are finite at t = 0. We omit the details and merely give 
the results. We have 

8 i k Q s i n ~  { k2 } 
c'(e) ~ = _ ~  1 + 6 -  ~(2 e ~ - 1) cos~ 7 - (1 + e~)~ + 0(k4), 

c2(e ) _  8k 2e 2sin2y +0(ka ) .  
3 ~ V~ - 0~ 
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The terms are calculated to different orders of k so that it may be possible to 
calculate the scattering cross section to terms correct to the order k ~ if need be. 

The work on this paper was sponsored by the Office of Ordnance Research, 
US Army and the US Air Force Office of Scientific Research. 
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Zusammen]assung 

Es wird gezeigt, dass das Problem, die Beugung einer ebenen ~Welle an einer 
kreisf6rmigeI~ Offnung oder Scheibe zu bestimmen, auf die L6sung ro l l  regul~ren 
Fredholmschen Integralgleichungen zweiter Ar t  zuriickgefiihrt werden kann. Die 
L6sungen dieser Integralgleichungen liefern uns fiir die Scheibe im Falle der Neu- 
mannschen Bedingullg die radiMe Variat ion der Unstetigkeiten der Wellenfunktion 
und im Dirichletschen Falle die Unste~igkeiten ihrer normalen Ableitung. Ist das 
Produkt von 0Ifnungsradius und Wellenzahl klein, so kdnnen die Integralglei- 
chungen gel6st werden. Fiir die Ableitung der Integralgleichungen verwenden wit 
einerseits die Poissonsche Darstellung fiir die WMlenfunktion und andererseits die 
Fortsetzung der Helmholtzschen Darstellung in die komplexe Ebene. 
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