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On the Scattering of Waves by a Disk

By AvLBeRT E. HEINs, Ann Arbor, Mich., U.S.AY)
and Ricuarp C. MacCamy, Pittsburgh, Pa., U.S.A.2)

1. Introduction

This paper is concerned with the scattering of sound waves by a circular
disk of so-called “soft’ material. The appropriate boundary value problem is
the determination of a function U(r, 0, z) satisfying the equation

: 1 1
U+ o Uit g Upg+ U+ BB U =0 (L1)

7

with the condition

Ulr, 0,0) forr<1. (1.2)

In addition Uy, 8, 2) is to be made up of an incident field Uy(r, 0, 2}, which
is prescribed, and a term Us{z, 6, z) satisfying a radiation condition at infinity.

An explicit solution of this problem is possible by means of spheroidal
harmonics [1]3) but the resulting formulae are exceedingly complicated. An
alternative method is to formulate the problem as an integral equation. Using
GrEEN’s formula one can derive the so-called ‘Helmholtz representation’ for

the solution namely,
i2x

Umaa:Uv0z+——//m,

(1.3)

with R2 = #2 4 o2 — 27 cos(f — ¢) + 2* and where f(p, ¢) denotes the discon-
tinuity of U, on the disk, z = 0, » < 1. From (1.2) and (1.3) one obtains the
integral equation,

0= Ty, 6, 0) + //m,

Unfortunately a solution of (1.4) is not known and one is led to the question
of approximations.

z=10,r<<1. (L4
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When £ is set equal to zero the above problem becomes that of an elec-
trified disk in electrostatics, simple solutions of which have long been known.
It was observed by Copson [2] that in the case £ = 0 the equation (1.4) itself
can be solved explicitly. CopsoN’s procedure calls for the expansion of all
quantities in a Fourier series of the angle 8 and then carrying out the angular
integrations in (1.4) to obtain simpler integral equations which can be solved.
For the case of axially symmetric problems, that is, when U does not depend
on O the method of CorsoN was extend by JoNEs [3]%) to equation (1.4) for
arbitrary k. In this case an explicit solution is no longer possible but rather
JoxEs was able to derive from (1.4) a regular Fredholm integral equation of
second kind which is well adapted to an iteration scheme for small .

It is rather an involved procedure to carry out the angular integration in
(1.4) for £ += 0. It proved necessary to use some rather complicated relations
involving Bessel functions. Curiously enough, these complications vanished at
the end and the resulting equation involved only elementary functions. The
authors were led to believe that there should be also a simpler method for
deriving this equation and this, in fact, proves to be true. The central feature
of the problem appears to be the fact that an axially-symmetric solution of
(1.1) is determined uniquely by its values on the axis of symmetry, » = 0. Such
a determination was observed by HENRICI [4] and further investigated by the
authors in [5]. In this paper we show that an integral equation analogous to
that of Jones may be derived without the intermediate step of rewriting the
¢ integration in (1.4). Further, the analysis is simple enough to be easily
carried over to the case of non-symmetry about » = 0.

In section 2 we indicate how the general situation without symmetry can
be reduced to a series of problems similar to the axially symmetric case. In
section 3 the necessary material from [4] is presented. In the next two sections
we outline our method of solution and in the last section we carry out some
simple calculations for the case in which Uy(r, 0, 2) represents a plane wave of
arbitrary angle of incidence. We include an approximate formula for the
discontinuity of the z derivative of U on the disk, as a function of angle of
incidence, when the wave number % is small.

2. Preliminary Remarks

Solutions of (1.1) which are of class C(® in a region are known to be analytic
functions of z and x = #» cos 0, v = 7 sin 6. The particular function U satisfying
(1.2) will accordingly be analytic except on the ring » =1, z =0, so that the
apparent singularity at » = 0 does not in reality appear. In this connection we
shall have frequent use of the following lemma:

4) Jonesstudied the problem with the condition dU[0z = 0, z = 0 but the changes to the present
problem are not difficult.
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Lemma 1. Let G(x, y, 2) be an analytic function for x% + y2 < R2. Then with
x=7vcosf,y=rsinf,

o

G = D [A,(r, z) cosn 0 + B,(r, z) sinn 0],

n=0
where
A7, 2)=ra,r,z), B,r 2 =r0blz,

a, and b, being continuous at v = 0.
That G can be expanded in a Fourier series is immediate. Further since &
is analytic,

o0 o0 00 [ ol e s N ¢ o]

G= ZZZajmnxjymzn:ZEZ Aj 1T COSTO SIN™O 27

i=0m=0n=0 =0 m=0 n=

Now the Fourier series for G can be obtained by expanding cos/§ and sin™ 8
in multiple angles. However cos/ sin™@ will contribute to cosn 0 or sinzn §
only if § + m = n. It follows that the coefficients of cos# 6 and sinz 0 involve
only terms in #* or higher powers of 7.

On the basis of lemma 1 we can write for the function U,

Ulr, 8, 2) = 2 [Ur,z)cosn 0 +Vo(r, 2)sinn 6], Ur=pur, Vi=y2y", l
o (2.1)
(7, 0, 2) 2 (U7, 2y cosn O + Vii(r, z) sinn 0]; U= r*ug, V= v J

n=

We write also,

= 20% (o) cosn d + s,(0) sinn ¢ . (2.2)

n="=0

Since the function U is to be a solution of (1.1} the functions U” and V* are
solutions of the equations,

1 / 2
W,,+7W,+sz+(k2~%>W:O (2.3),

“from which it follows that the functions #* and v are solutions of

297+ 1

Wy + v

w, +w,, +kw=0. (2.4),

If the series (2.1) and (2.2) are substituted in the Helmholtz formula (1.4) one
finds easily that the terms corresponding to the various Fourier coefficients
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separate. In fact if we introduce the operators

1 2n
M7, z,¢) = 4n//g
1 2% .
. gikR
N7, z; 8 = //g gs1nn¢72——d¢dg,

with R? = #% 4 g% — 27 p cos¢ + 22, formula (1.3) becomes,
Urly, 2) = Uy, 2) + M{r, z;¢,) , Vo(r,2) = V§({r, 2) + M7, z;5,) . (2.5)

We now proceed to derive one of the two key formulae in our work. We

prove
1

on N n+1 pikp
n! w0, 2) = n! up(0, 2) + (—) Ea / c, (o) 2 Me_ do, n#0, (I
0

where u? = p* 4 2. The same relation exists between ", vj and s,. In order
to verify (I) we start with the observation that U* = 7* %" implies,

on Un’ ouUn

n! (0, 2) = o |yoo? nlug(0, 2) = -

07_" 7=0 :
Thus we are required to compute first the successive derivatives with respect
to v of M (r, z; ¢,). In order to carry out these differentiations we write,

£2:3:4

L =TF@B+), B=r+0*—27gcosd.

We have then

B,—2r—20cosh, B, =2 and TP —0 form=3.
Then we assert,
[n/2]

=Y G Fe grtipgl =1, (2.6)
i=0

or eikR

o

We prove (2.6) by the method of induction. It is clearly true for n = 1. Let us
assnme now that it is true for any #» > 1. Then

on+1 ikR [n/2] [n/2]

e 20 Fr—j+1 = zj+1ﬂ1 +ZC Fri fr—2i- 1ﬁ7T1(%_27)

ToyntL

since 0% 8/0r3 = 0. Each term in the second sum has the same form as a term
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in the first sum except the last one. This one is
CE”M]Z] Fn—[nlz] ﬁ:n—z[nlz]—l ﬁ£7/2]+1 (% ) [%/2])

Now if » is even, (#/2] = [(» 4+ 1)/2] and n — 2 [»/2] =0 so that (2.6) holds for
n+ 1. Ifnisodd, n — 2 [»/2] =1 and [(n + 1)/2] = [#/2] + 1 so that the last

term becomes _
C?n/2] Fn+1—-[(n+1)/2] ﬁ:b+1~2[(n+1)/2] B££n+1)/2] ,

which is the last term of (2.6) for » + 1. We note that the coefficient of cj
remains unchanged and hence always has the value unity.
Inserting (2.6) into (2.5), we have

omUr,z) 0" URlr, z)

orn orn

1 2=
1

["/2]
+4ﬂ //[c” ) o cosn ¢ Fo=i) (27 — 2 g cosgp)*2/ 27 d¢ do]
jh

or

nt w0, 2) = n! ug(0, 2)
1 2xn

+ 41n 2 c 2("—1)// () 0”2t cos™2i § cos n ¢ =2/ dd dp .

But

cos*¢ = 2171_1 cosa ¢+ ay cos{m — 2) ¢+ - -+
so that the only term which will survive integration with respect to ¢ is the
term 7 = 0. We have then

1
w0, 2) = ul (0, 2) + = /c"(g) o Frdg, m 0
0

and
1

U0, 2) = U0, 2) + / (g) 0 F° dp .

[

But F is a function of § + 22 and so the result () follows.
We remark that the apparent difficulty in (I) for z = 0 is only illusory.
For by lemma 1
on etk
0" T u

remains bounded for z = 0. This remark is important for our later results.

C{g) = ¢" c*(0) sothat ¢*(g) o***
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3. Axially Symmetric Solutions

For # =0 and &= 0 equation (2.4) becomes the equation for axially
symmetric potential functions. It is well known that such functions are uniquely
determined by their values on the axis of symmetry, provided those functions
are analytic. In fact in terms of those functions the solution can be written
down explicitly in the form,

T w (0,740
u\r, z2) = —22 = 2 do. 3.1
.2) / e 61

These facts can be extended to the general equation (2.4),, as discussed by
HewnricI [4]. Again a solution is determined by its values on 7 = 0, provided
these functions are analytic. Further, the solution can again be written down
in the form,

Pt 1) (ky-netz 1 [ .y ER
w(r, 2} = _T%l (*27) e (r® — @)1t ]n—1/2 (k l/"z - ‘92) (3.2)

bt 4

xw (0,247 0)do.

Equation (3.2) shows that actually a complete knowledge of w(0, ¢) is not
necessary, but rather that only w(0, z + 79) + w (0, z — 7 ¢) need be known.

We obtain our second fundamental relation by setting z = 0 in (3.2), thus
obtaining

wlr, 0) = %ﬂ (5)" 7 s [ o2 — e g (kY — ) (1)

0

x [w(0,7 0) + w(0, —7¢ p)] do .

Formula (IT)is aVolterra integral equation for the quantity w(0,79) + w(0,—ig).
Its exact solution is not of concern to us as we shall encounter only the case
in which the left hand side is zero, and then w(0, ¢ ) + w(0, — 7 o) will be
identically zero.

4. Solution for Small Wave Number

In this section we shall derive integral equations of second kind analogous
to those of JoNEs [3]. These are particularly well suited to approximations for
small 2. We first derive the equations formally and then show that they do
indeed yield solutions of the problems. We content ourselves with the deter-
mination of the cosine terms, that is, the functions U"(z, 2), the extension to
sine terms being clear.
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We begin with the formula (I) and write 22 = — «. Upon integrating (I)
% times with respect to «, we obtain

mf.../n[Un(o, iYz) — U0, 1y/7)] de

+ A+ Ao+ A el = (_Esi/ K.,(8)

4.1
FAEVE—a (1)

VB«

where the A’s are constants and K, (8) = ¢” ¢*(0), 0> = p. This expression was
derived under the assumption that o was real and negative. We observe,
however, that all of the quantities which occur in (4.1) are analytic functions
of the complex variable «, as long as « is not real and positive. If we choose
the branch of V8 — « which is positive for arg o = 0, & < B, the integral on the
right side of (4.1} is analytic in the complex a-plane cut along the real axis
from 0 to 1. Thus #*(0, ¢ V) will suffer a discontinuity on approach to the real
axis, 0 < a < 1 from above or below. Indeed from (4.1) we have for arg o = 0,

nt / . /Tl[un(o, 1Y) + w0, i)1-) — w0, 1Y) — (0, iY2)] de

+2 3 A, am=Tr{; K,) .
m=0

Here #7(0, ¢ Vr_“) denotes the value which #*(0, 4 l/;:) assumes, when arg 7 = 0,
after a clockwise circuit of the origin and 7%(«; g) denotes the operator,

—1n 3 sin o — GHVE==
Ta; ) = 7 [i/gw) el 55+/ i ,BJ

_ (441)71 {i}/g(ﬂ) smll;k ]/_ocl; — B ip +/ cosk [/,8— « dﬁ]

Our next observation is based on formula (IT). Since U = Quoz =0, <1
we have also #*(r, 0) = 0 on 7 < 1. Applying (II) to the functions #* we have
accordingly,

(4.3)

%20, 47) + w0, —27)=0, 0<r<C1,

since these quantities will be solutions of a homogeneous Volterra equation,
but this means that for arg 7 =0

u"(O, z‘/‘;) + M"(O, z‘/;) =0,

so that the first iterated integral on the left side of (4.2) is zero. The iterated

(4.2)
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integrals of uj are known functions, so that except for the values of the con-
stants 4,, the left side of (4.2) may be considered as known. For simplicity we
write,

n;/,.,/lug(oj iY7) + w0, i) dv -eedv,y = How) .
0 4]

Now let us denote the two integrals on the right side of (4.3) by 7}*(«; g) and
T}e; g) respectively so that (4.2) becomes

n—1

(@) + 2 Apom =i THw K,) + Ties K,) - (+.4)
m=0

Essentially the equation (4.4) for » = 0 was obtained by JonEs [3]. He made
the observation that if one finds the inverse of the operator T3*(«; M,) and
applies it to (4.4) the product (7;)~! T} is an operator which is simple. It is
not essential that one works out the exact details of this process but for com-
pleteness we outline the details. If we write § = 1 — ¢ and « = 1 — v, equation
(4.4) becomes

n—1
m=0

1

i/K”(l— smhk]/a—yd —l—/K cosk]/y—o'do_}-
Vy —o

0

Now we recognize that the last integral may be inverted with the aid of the
Laplace transform to give us

(0 [ i [ E—y) [sinhk0F+VE) | bk —13) ] |
’ lK"(l (ATl B e A ]d/l

1 d | coshk Vo—y ‘ nel }
_ b @ [coshkVo—y g lpm A 1=yl
e Of Vo7 V{ 1= +m2:0; a1 =7)

Upon writing ¢ = y2, y = %, we obtain

+1

% sinhZ(x 4+ y)
y KL — 9% + %—_[x K1~ 2 ) g

Y

2 d coshk |/y? — 2 " v
=(-1)=.— | ——==—"—x H* (1 — &2 E A, (1 — 2 dx ,
(-1 T dy()/‘ Vy® — 42 {x ( x)+m=0 m ( %) x} dx




Vol. XI, 1960 On the Scattering of Waves by a Disk . 257

The essential fact to observe about (4.5) is that it is a Fredholm integral
equation of second kind with a regular kernel which is small when % is small.
The method of successive approximations will certainly apply and yield the
solution as a power series in /& for k sufficiently small. We remark that in the
actual mechanical process of computing the successive terms one need not
make the transformation to (4.5). Since the operator 7; involves

sinhk /o — f
Vo—p
it will produce terms of one higher degree in % than 7,. Clearly an iteration
process may be based directly on (4.4). That is, if we assume

]
Kn = 2 Knm k™
m=0
then it is easily seen that the X, will be determined by recursion in the form,

/ Eonll) 4 PRy Ko

or inverting this simple integral equation®)

1 a :
nm(oc) = _; : ;Z&_ / F(Kn,m—l e Kn,l)) dﬂ -
0

In the developments so far there has been no apparent difference between
the various values of #. The complication which arises is, of course, contained
in the determination of the constants A,,. For this we use the remark made
in connection with formula (I} that the quantities ¢*(p) must vanish like " when

¢ > 0. Recalling that -
M,(B) = = (Y 6)

this means we must have K, (f) vanishing as 7 when g - 0, that is,

KB =0 at B=0,m=01, .. n—1. (4.6)
Thus we attack (4.4) as follows. Define functions P*(«), Q"™ (a) as solutions of

Hr(o) = TMa; PY), am=T"a«;Q*™), m=0,1,...,n—1. (4.7)
Then choose constants Ay, A, ..., A,_; so that,

am n—1
dom P"(a)+w§/1m0"’”(a) =0 at «a=0, m=0,1,...,n—1. (4.8)

5} This is easily done with Laplace transforms.

ZAMP XI/17
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It would follow then that
w1
K, (@) = Pro) + 3} A, Qm()
m=0

would be a solution of (4.4) satisfying the condition (4.6).

The equations (4.8) constitute a system of linear equations for the A,’s
which will have a solution unless the determinant should happen to be zero.
If this were so then the homogeneous system corresponding to (4.8) would
have a nontrivial solution A3, ..., A%. Following the general verification
procedure which we present shortly, one would find that if

n—1
enle) = 07 ) A5 Q"m(e?)
m=0
then
Ulr, 0, 2) = M, (7, z; ¢%) cosn 6

is a solution of equation (1.1), satisfying a radiation condition and vanishing
on z= 0,7 < 1. The uniqueness theorem for the problem of section (1) then
states that ﬁ(y, 0, z) = 0 hence cX(g) is identically zero and finally all the
constants A% must be zero. The contradiction shows that the determinant of
system (4. 8) cannot vanish.

We turn now to the verification of the formal solution which we have
derived. First we observe that the equations (4.7) do indeed have solutions at
least for sufficiently small k. Now consider the function,

n—1
K (o) = Pra) + 3 A,, Q" (o)
n=0
with the constants A, chosen so as to satisfy equations (4.8). We put
¢,{0) = 07" K, (0?) and consider the function,
Ulr, 0, z) = [Ur, 2) + M,(r, z; ¢,)] cosn 8.

Ulr, 6, z) will then be a solution of (1.1). Hence it will be an analytic function
and lemma 1 applies to yield,

Uir, z) + M,(r, z; ¢,) = " w™r, 2) ,

w"(7, z) being a solution of equation (2.4). But now «}, #*, and ¢, will be con-
nected by the formula (I). Thus we find corresponding to (4.2)

n! u"(O, zV;c) + M”(O, ”/Mi) = n! ug(O, L‘/;C) + ug(O, l‘/;)

b TH K,

OC”'

4.9)
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Note that the » derivatives of 7%(«; K,) may be formed even at « = 0 because
we have constructed K,(«) to vanish like o as & - 0. Now P*(«) and Q"™(x)
are solutions of the integral equations (4.7) with H"(«) representing the »-fold
iterated integral of — [u}(0, ¢ Vear) + (0, 1 Vor)]. Thus differentiating (4.7)
n-times and comparing with (4.9) we deduce,

w0, 1Y) + w0, ifar) = 0. (4.10)

We have only to enter the result (4.10) in formula (II) to conclude that
u™(r,0) =0 for » < 1. Thus U(r, 0, 2) is the (unique) #n-th Fourier cosine
coefficient of the solution to the problem of section 1.

We have thus exhibited a method for calculating approximately any finite
number of terms in the expansion of the function U(r, 8, 2) of section 1. The
degree to which an actual solution is approximated will depend of course on
the ease with which the incident field, Uy(r, 0, z), may be approximated by a
finite number of terms of its Fourier series.

It would perhaps be well to insert here a few remarks concerning the small 2
approximation. Let us suppose that the function H7(a) has the form

Hro) = 2 H km .
m=0
Then we write

N
Hiw) = 3 Hy ke
m=0

What the iteration procedure for small % yields then are functions Pfj(a), Q%" ()
such that

HY — Trlo; P2y = OBV Y, am — Trl; Q1) = O(AYY) . (4.11)

We choose constants A% so that equations (4.8) are satisfied for the approxi-
mating functions P and Q3™ Then set

oy (o) = o™ Pyle®) + 3, A5 0% ()
m=0
and consider
UN(r, 8, 2) = [U2r, 2) + M, (7, z; cY)] cosn 6 .

Again UY will be a solution of (1.1) so we can write,
U, 2) + Myfr, 23 6) = iy, 2) |
Then following our previous procedure we deduce that

(0, i o) + (0, i Yo ) = 0(RN+Y)
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which again by formula (II) yields

UN(r, 8,0y = 0" 1) for r<< 1.
Thus solution of equation (4.7) to terms in %V yields the Fourier coefficients
of the function U(#, 0, 2) of section (1) to the same degree of approximation.

5. Diffraction by a Hard Disk

The problem considered by JonEs [3] was the diffraction of a sound wave
by a hard disk, that is, the condition (1.2) is now replaced by the vanishing
of the z-derivative on the disk. In this section we indicate briefly how our
methods need to be medified to handle that case. We shall maintain the same
notation as in the previous sections, with U(r, §, 2) to satisfy

Ufr,0,00)=0 for r<<1, (5.1)

instead of (1.2). Replacing (1.3) we have

1 2n

Ulr, 0, 2) = Uy(r, 8, 2) + 4;-02//1‘@«;3

where f(o, ¢) this time represents the discontinuity of U itself on the disk.
If we require that the solution be continuous it follows that

(5.2)

flo,.d) -0 as p—>1. (5.3)

The functions U, U, and f can be decomposed into Fourier coefficients as
we have done in section 3. In place of (5.2) we get by an integration over z

12n

/[Ur@t Uplr, 0, 0] dt + o= //f _ngdwg,

where ¢ is an arbitrary constant. The results of section 3 now carry over with
minor modification. For example, when » = 0

1 2x

fz[U(O,G,t)—UO(O,{},é)ché+c= 4n//]‘9

where u? = g2 + 22. If we write

27

U, 0, £) a6 /Uo (0, 6,7 49 — u3(t) and /f(g, ¢ d = ¢, .
[

J
0
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This last equation becomes

tk
/[u“ 1) — ul(t) dt—}—c—ﬁ/co ! (5.4)

We now continue equation (5.4) into the domain of complex variables and
we find that if z >4y (0 <y < 1) we get

iy y <3 1 T
1 [ ~kVy=g ikl =y
/ (@) — ud{t)] di + ¢ = / colo) 0 zi]]yT_——gtz dg + f colo) —g;: 0 d@]

Y
[ | 0

while if z > — 2y (0 <y <1} we get

Ziy 1 .
~ 1 k‘/y —o* gikl/g —-y*
/[MO(t)ﬂug(t) atj +c= /— ¢olo ”/yz ~d9+ o )ﬁgdg].
0 : v =

Upon adding these two equations and making some trivial changes of variables,
we get

¥

J/”[MO(i £) — u(—i t) — uQ(i ) + ud(—it)]idt - 2¢

¢ 1 Y cosh Y3 (3.5)
i sinh % |[/y%—p? cosk Jo? —y
= | [ fsimbAiyize® d9+/ 0(9)9@].
[0 ]/y2 . 92 Q — y2

Now the boundary condition (5.1) implies, according to the representation (3.2),
that #%(i {) — u%(— 4 ) is a constant ¢,. Hence equation (5.4) assumes the form

¥
6y +25+/[u8(—it) — B )i
0

1

» hE VR = P BYe =37
[ LSRRV Ve d9+f cosk Vel —y Qco()de}

P y? — o? Veo? — 32

The constants ¢ and ¢, are evaluated from the requirements that c,(g) - 0,
¢ > 1 and ¢,(g) is finite at g = 0. The equations involving the higher angular
harmonics may be derived in much the same manner and indeed involve only
further integration with respect to the variable 22 = (— y2) but we shall not
pursue this matter further.

6. Incident Plane Wave

We include here some numerical results for the case of an incident plane
wave for Dirichlet boundary conditions on the disk. There is clearly no loss
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of generality in assuming that the plane wave is incident upon the disk from
the side z << 0 and that its propagation normal lies in the x — z plane. Let y
denote the angle which this normal makes with the positive z axis. The incident
field in rectangular coordinates is then

6ik (xsiny+zcosy)

and in cylindrical coordinates it has the form e?*#sinveosd+zcoss)  Tepce

1 2n

Ulr, 0, 2) — ¢t rsinyeostercosy) + 4 //f 0,0 Q 9" do .

On the axis » = 0, this represeritation assumes the form

12n

. ~ ku
U, 6, 2) = e*eer 4 L //]‘(Q, 0y " pdb do .
00
Or, upon integrating over 0 and §’, we get
— 1 ! etRu
w(0,7) = e+ o fenig) g dg.
0

If we continue z into the domain of complex variables and use the fact that

u®0,2y) +ul(—iy) =0, 0<y<1,
we get

1
2
cosh (& y cosy) + ; cosk Ifi2 —

1
; ™ — f2
Jﬁ_z/ sinhk |/y® — 22 7 FO) dt =0 .
§ Vy -2

Upon rewriting equation (6.1) in the form which we described in section 4, we
obtain

1 _ .
oo) + 7;; / GO(B) [smhﬁk—'(_ﬁa—’r ) i 51nhlgla£ﬁd— a)] ap

(6.2)

4 a4 PR cosh (& /o® — o%)
-—_- 70_6/ o do cosq(k‘/l — o? cosy) A—.IFT:__ET_

Here G%c = V1 —92y) and ¢ = V1 — 42 Upon applying the Neumann
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iteration procedure we find for small %

R

of ) — 7[ 21k 2 sin?y ., 0% 4
(o) Y 92 + [ + g% cos?y > 77:2]
ety L T e 8
ik [ 3n 9 3z n"’]
2
-FM[CWQ)@Q —40*—1)+ ?Zy(l+@2—295

1 1
+ﬁ"1—'292+94)— 32 (6 — 2 p? 4 2 cos?y)

16
+ 2|} 00
In the limit £, = % (normal incidence) this result coincides with the one which

Bouwgawmp [1] obtained.
For the first harmonic, we obtain the equation

e sinh%, y coshk, y 1
—44 ksiny [y no T k27] + A3 l
1 (6.3)
2 __ 2 __ #2
cosk 1/15 y2 2ol () di i / smhk ]/y t 2o ar, l
l/tz — g2 — 2
while for the second harmonic, we get
1
/ cosk2]/t —23/ £ () dt + / smhkz]/yZ;t 2 () dt ]
; Ve V=t (6.4)
yZcoshk, v 3ysinhk, v 3 coshk,y l

Here the A’s are constants of integration. We observe that for all three cases
which we consider here, that is, the zeroth, the first and the second harmonics,
we are always solving the same type of integral equation, the only change
being in the form of the non-homogeneous term. Equations (6.2) and (6.3) are
solved in the same manner which we solved (6.2) save for the fact that we have
to evaluate the constants of integration. These are evaluated by the require-
ment that c}(f) and c%(¢) are finite at £ = 0. We omit the details and merely give
the results. We have

o) = — DLELIL {1 4 B (207 — ) cost y — (1 -+ g]] + OB,
n]/l—gz
3oy — SRS iy

375]/1—92
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The terms are calenlated to different orders of % so that it may be possible to
calculate the scattering cross section to terms correct to the order & if need be.

The work on this paper was sponsored by the Office of Ordnance Research,
US Army and the US Air Force Office of Scientific Research.
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Zusammenfassung

Es wird gezeigt, dass das Problem, die Beugung einer ebenen Welle an einer
kreisformigen Offnung oder Scheibe zu bestimmen, auf die Lésung von reguliren
Fredholmschen Integralgleichungen zweiter Art zuriickgefiihrt werden kann. Die
Losungen dieser Integralgleichungen liefern uns fiir die Scheibe im Falle der Neu-
mannschen Bedingung die radiale Variation der Unstetigkeiten der Wellenfunktion
und im Dirichletschen Falle die Unstetigkeiten ihrer normalen Ableitung. Ist das
Produkt von Offnungsradius und Wellenzahl klein, so kénnen die Integralglei-
chungen geldst werden. Fiir die Ableitung der Integralgleichungen verwenden wir
einerseits die Poissonsche Darstellung fiir die Wellenfunktion und andererseits die
Fortsetzung der Helmholtzschen Darstellung in die komplexe Ebene.
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