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Abstract. The oscillating eccentric rotor has been widely studied to model resonance capture phenomena occurring 
in dual-spin spacecraft and rotating machinery. This phenomenon arises during spin-up as a resonance condition is 
encountered. We consider the related problem of rotor despin. Specifically, we determine nonlinear feedback control 
laws that not only despin the rotor but also bring its translational motion to rest. These globally asymptotically 
stabilizing control laws are derived using partial feedback linearization and integrator backstepping schemes. For 
the case in which the oscillating eccentric rotor is excited by a translational sinusoidal forcing function, the control 
law is shown to attenuate the amplitude of the translational oscillation. 

Key words: Passage through resonance, cascade system, integrator backstepping. 

1. Introduction 

We are ultimately interested i.T~ controlling dual-spin spacecraft; however, in this paper, we 
analyze a model that embodies similar dynamical behavior: the oscillating eccentric rotor. 
The control problem involving dual-spin spacecraft is concerned with reducing nutation that 
becomes excited during spin-up. The interaction between spin and nutation has been modelled 
in [ 12] by means of the oscillating eccentric rotor where translation represents nutation. The 
interaction between rotation and translation in the oscillating eccentric rotor is analogous to 
the interaction between spin and nutation in dual-spin spacecraft. 

The oscillating eccentric rotor consists of an unbalanced rotor attached to an elastic support. 
This system has been used as a simplified model to study the resonance capture phenomenon 
in dual-spin spacecraft during spin-up under small constant torque [4, 7, 12, 15]. The capture 
phenomenon represents the failure of a rotating mechanical system to be spun up by a torque- 
limited motor to a desired terminal state due to its resonant interaction with another part of 
the system [3, 12]. In [3, 12], the dynamics of the oscillating eccentric rotor were analyzed 
using perturbation theory, while in [7] control laws for rotor spin-up under limited torque were 
obtained and extended to dual-spin spacecraft. 

In this paper, we consider the oscillating eccentric rotor but, rather than spinning up the 
rotor, we seek feedback control laws that globally asymptotically stabilize the entire system, 
both rotation and translation, to the rest state using only a torque actuator. Aside from potential 
application to dual-spin spacecraft, such control laws for the oscillating eccentric rotor are 
of independent interest. For example, the controlled oscillating eccentric rotor serves as a 
rotational actuator for suppressing translational vibration [2]. 

The synthesis technique used to obtain globally asymptotically stabilizing control laws 
involves partial feedback linearization [1, 10, 11] and integrator backstepping for cascade 
systems [1, 6, 8, 13]. In particular, we apply partial feedback linearization to transform 
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F i g .  1. Oscillating eccentric rotor. 

the dynamical equations of the oscillating eccentric rotor into a system in cascade form. 
Then we derive stabilizing control laws for the system in cascade form using integrator 
backstepping. Control laws for the original system are then obtained by applying the reverse 
transformation. 

2. Dynamic Model of the Oscillating Eccentric Rotor 

The oscillating eccentric rotor shown in Figure 1 consists of an unbalanced point mass of 
mass m attached to a rotary disk of inertia I which is riding on a cart constrained to move 
horizontally. The moving cart is attached to a wall by a spring with spring constant k. Let 
M denote the total mass of the disk and the cart, and let e denote the distance between the 
center of the disk and the unbalanced mass. For simplicity, we assume that the motion is 
confined to the horizontal plane so that there are no gravitational effects. Let xc denote the 
translational position of the center of the disk from its equilibrium position, and let 0 denote 
the counter-clockwise rotational angle of the unbalanced mass where 0 = 0 corresponds to a 
90-degree rotation from the spring axis as shown in Figure 1. Let N denote the control torque 
applied to the disk and let F denote a translational disturbance force applied to the moving 
cart. Note that I = 0 is allowed, that is, the disk may be massless. 

The equations of motion for the system are given by [3, 7, 12, 15] 

(M + m)Y:~ + me(O cos 0 - 0 2 sin 0) + kx~ = F, 

(I + me2)O + m2~ecos 0 = N. 

Introducing the dimensionless variables [7] 

i M + m  
X d  = f + me 2 xc, 

,x 
£ =  

m e  

+  a)(M + m) 

~ ( M + m )  ~ k t , _ _  F d ~ k I M + m F , =  . 
u - k ( I + m e  2) N, r =  M + m  I + m e  2 

equations (1) and (2) are equivalent to the dimensionless equations 

xa + xa = c(t) 2 sinO - Ocos O) + Fa, 

(1) 

(2) 

(3) 



/~ --~ 2t -- ¢:~d COS O, 
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(4) 

where the dot and double dot now denote first and second derivatives with respect to 7-. By 
defining x = (Xl, x2, x3, x4) T = (xa, :~a, 0, ~))T, (3) and (4) can be written in first-order form 
as 

:~ = f ( x )  + g(x)u + d(x)Fd, 

where 

f ( x )  ~x 

g(x) 

I x2 

( - x l  + ex~ sinx3)/(1 - e 2 cos 2 x3) 

X4 

ecos x3(xl - ex~ sinx3)/(1 - e2 cos 2 x3) 

0 

1 - e  cos x3 d(x) " 
1 - ¢2 cos  2 x3 0 ~ -- 

1 

(5 )  

1 -- ¢2 COS 2 X3 

0 

1 

0 

--~ COS X 3 

Note that the denominator 1 - e 2 cos 2 x3 is never zero, since, by definition, e < 1. It is easy 
to check that if Fa = 0 and u = 0, then every equilibrium state f ( x )  = 0 of (5) is of the form 
xl = x2 = x4 = 0 with arbitrary x3, which corresponds to zero translational position and 
velocity, zero angular velocity, and arbitrary rotation angle x3 = 0 of the unbalanced mass. In 
this paper we are interested in the equilibrium state corresponding to x3 = 0. In particular, we 
are interested in deriving globally asymptotically stabilizing control laws for the equilibrium 
state x = 0. 

3. Cascade System Control Synthesis 

We now consider a single-input general nonlinear affine control system of the form 

= f ( x )  + g(x)it, (6) 

where x E I~ n, u E E and we assume f (0 )  = 0. In the case Fd = 0, the oscillating eccentric 
rotor model (5) is a special case of (6) with n = 4. Our goal is to find a feedback control 
u = u(x) that globally asymptotically stabilizes (6) to x = 0. This is accomplished by means 
of a two-step procedure. First we transform (6) to a the simpler form 

: (7) 

= (8)  

using partial feedback linearization [1, 10, 11], where ¢(( ,  ~) is C 1, ( E ~n-1 and ~, v C/L 
Having transformed (6) into the form (7) and (8), we then seek control laws to stabilize (7) 
and (8). Control laws for the original system (6) can then be obtained by using the reverse 
transformation. 

As shown in [13], the cascade form of (7) and (8) is convenient for stabilization. Specifi- 
cally, if (7) can be stabilized by viewing ~ as the control input, then the combined system (7), 
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(8) can be stabilized by means of a suitable function v = v((, ~). This procedure, which is 
known as integrator backstepping [6, 8], is based on the following result obtained by Sontag 
and Sussmann [13] and Kokotovic and Sussmann [9]. 

THEOREM 3.1. Suppose there exists a C 1 function 

= k(~) (9) 

with k(O) = 0 such that the origin ~ = 0 of the system 

~ = ¢(¢, k(~)) (10) 

is globally asymptotically stable. Furthermore, let Vo ( ~ ) be a Lyapunov function for (10), and 
define¢:liU-I × ~ ....+ ~n-1 by 

1 
¢(ff,~) A [¢(~,~) - ¢(~, k(())]. (11) 

Then the feedback control law 

Ok(C) OVo(~) 
v(~, ~) = k(~) - ~ + ~ ¢(~, ~) 0~ ¢(~'  ~) (12) 

globally asymptotically stabilizes the origin ~ = O, ~ = 0 of (7), (8). Moreover, a Lyapunov 
function for the closed loop system is 

1 
V(ff,~) = Vo(~) + ~ [~ - k(~)] 2 (13) 

I 
with time derivative 

OVo( ) 
V'(ff'~) - 0ff ¢(~ ,k(f f ) )  - [ ~  - k(ff))] 2. (14) 

Note that, according to l 'Hfpital's rule, ¢(ff, ~) = 0¢(~, k(~))/O~, when ~ = k(~). 

4. Stabil izing Control  Laws  for the Oscil lating Eccentric  Rotor  

In this section, we synthesize control laws for the oscillating eccentric rotor that globally 
despin the rotor and bring the translational motion of the cart to rest in the case Fa = O. 
That is, we design control laws that globally asymptotically stabilize (6) to the equilibrium 
state x = 0, where f (x)  and g(x) are defined in Section 2. This is accomplished by first 
using partial feedback linearization to transform (6) into a system having cascade form. Then 
we iteratively apply Theorem 3.1 to synthesize control laws for the system in cascade form. 
Control laws for the original systems are then obtained from the reverse transformation. 

Since the linearization of (6) about the origin is controllable, one can easily design linear 
control laws that locally asymptotically stabilize (6) to the origin. Linear control laws, however, 
are guaranteed to asymptotically stabilize (6) only for initial conditions sufficiently near the 
origin. Since we are interested in the despin problem for which none of the states are initially 
small, we seek nonlinear control laws that stabilize (6) for arbitrary initial conditions. 
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4.1. PARTIAL FEEDBACK LINEARIZATION 

To obtain globally asymptotically stabilizing control laws, we first check feedback lin- 
earizability of (6) [14]. It is straightforward to verify that [g(x), ad}g(x)] ff A2(x) 

span{g(x), adyg(x), ad}9(x)}, where standard expressions for Lie brackets have been used 
[5, 14]. Hence, A2(x) is not involutive [5]. Consequently, (6) is not feedback linearizable 
[14]. 

Next we consider partial feedback linearization [1, 10]. Since AI(x ) = /~l(z) and 
dimAl(X) = 2, where Al(X) & span{9(x), adfg(x)}, and Y~I (x) is the smallest involutive 
distribution which contains A1 (x) [1], it follows that the dimension of the largest linearizable 
subsystem is two [11]. To transform (6) into a cascade form with linear part having maximal 
dimension, we apply the following procedure. Since Ax (x) is involutive, it follows from the 
Frobenius theorem [5, 14] that solutions to the partial differential equation.s 

Lozi(x ) = 0, Lads0Zi(0), i = 1,2, (15) 

exist, where 

1 
j [ xt 

awg(x) = 1 - v2 cos 2 x3 

c cos  x 3 

--~X4 sin x3 

- 1  

0 

One set of solutions to these equations is 

z l ( x )  = x t  + c s inx3 ,  

(16) 

Z2(X ) = X 2 -~- CX4COSX 3. (18) 

The new state variables in the linearized part of the transformed system can be obtained by 
letting Yl (X) be such that 

Lgy l(x) = O, LadfgYl (x) # O, (19) 

and such that the vectors 

( OYl "~ T ( OqZl "~ T ( OZ2 ~ T (20) 

] ' \ o z l  ' \ O x )  ' 

are linearly independent [11]. The simplest solution to these constraints is Yl (z) = x3. 
Letting 

y2(x) = r.fyl (x) = x4, (21) 

one can rewrite equation (6) in terms of the new variables (Zl, z2, Yl, Y2) as 

zl = z2, (22) 

z2 = - z l  + e sinya, (23) 

~)1 = Y2, (24) 

92 = v, (25) 

(17) 
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where 

1 
1 (~Xl  COSX3 --  ~2x24cosx3 sinx3) + 1 c2cosZx3 u (26) 

V = 1 --~2COS 2x3 

is the transformed control input. Note that (22), (23) are of  the form (7) with ~ = yl,  
= z = (Zl, z2) T and 

¢(ff,~) = ¢(Z, yl)  ---- [ 
Z2 

--Zl -+" ~ sinyl  

Solving for u in terms of  v yields 

o (27) 

u = (1 - e 2 cos 2 x3)v - exl  cos x3 + e2x24 cos x3 sin x3. (28) 

Having transformed (6) into the form (22)-(25), we now seek a control law v that stabilizes 
(22)-(25) to the origin Yl = Y2 = Zl = z2 = 0, which corresponds to x = 0 in (6). 

4.2. INTEGRATOR BACKSTEPPING 

In this subsection we synthesize a control law v for (22)-(25) by iteratively applying The- 
orem 3.1. First, in Step 1, we view Yl as the control input to (23) and seek a control law 
Yl = kl(z)  that stabilizes (22) and (23). Then, in Step 2, we use Theorem 3.1 with Y2 as the 
control input for (24) to obtain a control law Y2 = k2(z, Yl ) that stabilizes (22)-(24). Finally, 
in Step 3, we use Theorem 3.1 again to derive a control law v that stabilizes (22)-(25). 

Step 1. Consider the problem of  stabilizing (22), (23) with Yl as the control input. To do 
this, let 

Yl = k l ( z )  & - c 0 t a n  -1 z2, (29) 

where 0 < co < 2, and consider the Lyapunov candidate 

po + (30) Vo ( z ) = -£  

where P0 > 0. Then it follows that 

Vo(z) = -epoz2 sin(co tan -1 z2), (31) 

which is nonpositive. Next, consider the set £ = {z e ~2 . ~'0(z) = 0}. It is easy to see 
that £ = {z E ~2 : z2 = 0}. Consider zz(t) = 0 for t _> tl .  From (23) and (29), we have 
zl (t) = ~2(t) = 0, t > tl .  Hence,  the largest invariant set in £ is {0}. It thus follows from 
the LaSalle-Krasovskii  theorem [14] that the states of  the closed-loop system (22), (23) with 
Yl defined in (29) approach the origin as t ~ cx~. Finally, since Vo(z) ---+ oc as [[z H ~ c~, it 
follows that the control law (29) globally asymptotically stabilizes (22), (23). 

Step 2. We now use Theorem 3.1 to obtain a control law for (22)-(24) with Y2 as the control 
input. That is, we seek a feedback control law Y2 = k2(z, Yl ) such that (22)-(24) are globally 
asymptotically stable. From Step 1 and Theorem 3.1 we have k(~) = kl(z)  = - c 0 t a n  -1 z2. 
A direct calculation shows that (10) is now 

¢(~, k(~)) = ¢(z,  k l (z ) )  = - Z l  - e sin(co tan -1 z2) ' (32) 
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while g;((, () defined by (11) is ¢ ( ( ,  ~) = ¢(z,  Yl) and 

I o ] 
¢(z,  Yl) = e[sinyl + sin(co tan -1 z2)l/(Yl + co tan -1 z2) " (33) 

With the Lyapunov candidate 

PO (Z 2 jr. Z 2 ) +  Pl. (Yl + cotan -1 z2) 2, (34) Vl(Z, yl) = "~ 

where Pl > 0, Theorem 3.1 yields the control law Y2 = k2(z, Yl), where 

Zl - e sin Yl 
k2(z, ya) g -c l (Yl  + cotan -1 za) + co 

1 +z~ 

_ epoz2 [sin Yl q- sin(co tan-1 Z2)], (35) 
Pa (Yl q- c0 tan -1 z2) 

and c1 > 0. The time derivative of V1 (z, Yl ) along the closed-loop trajectory (22)-(24) with 
the control law Y2 defined by (35) is 

l) 1 (Z, Yl) = -ePOZ2 sin(c0 tan -1 z2) - plCl (Yl + co tan -1 z2) 2. (36) 

It is straightforward to check that the largest invariant set in {(z, yl) : l)l(Z, yl) = 0} is 
{z = 0, Yl = 0}. Hence, the control Y2 in (35) globally asymptotically stabilizes (22)-(24) to 
z = 0 ,  yl - -0.  

Step 3. Now we apply Theorem 3.1 to obtain a stabilizing control law for the entire system 
(22)-(25). Note that (22)-(24) and (25) are again in the cascade form of (7) and (8) with 

= Yz, ( = (Zl, z2, Yl )T and 

= 

Z2 

--Z 1 + ~ sin Yl 

Y2 

Furthermore, in Step 2 we have already established a C 1 function Y2 = k2(z, yl) with 
k2(0,0) = 0 that globally asymptotically stabilizes (22)-(24) and a Lyapunov function 
1/'1 (z, Yl ) defined in (34). Hence we apply Theorem 3.1 again to obtain the stabilizing control 
law 

v(z, y) = -c2(y~ - k2(z, Yl)) -+- K1 (z2)z2 + K2(z, Yl)(-Zl + e sinyl) 

+ K3(z, Yl)Y2 - Pl  (Yl + co tan -1 z2), (37) 
P2 

for (22)-(25), where y = (Yl, Y2) T, C2 )> 0, k2(z, Yl) is defined in (35), and K1 (Z2), K2(z, Yl ), 
/(3 (z, Yl ) are defined by 

Kl(z:) co 
1 + z 2 ' (38) 

K2( z, yl ) ~-~ cos(c0 tan -1 Z2) ] epo sing1 + sin(co tan - I  z2) + coz2 
Pl(Yl + cotan -1 z2) 1 + z~ 

cOCl z 1 -- e sin Yl 
l + z 2 2coz2 ( l + z ~ )  2 

+ epoc_____~O z2[sinyl + sin(co tan -1 z2)] 
PI (1 + z2)(yl-k- Cotan-1 z2) 2 ,(39) 
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and 

~co cos Yl ~PO z2 cos Yl 
K3(z, yl) & -Cl 

1 + z22 Pl Yl + cotan -1 z2 

epo z2[sinyl + sin(c0tan -1 Z2)] 
+ (4o) 

Pl (Yl + cotan -1 z2) 2 ' 

The Lyapunov function that guarantees global asymptotic stability of the closed-loop system 
(22)-(25) with v defined in (37) is 

PO (z 2 + z 2) + ~ (Yl + cota n-1 z2) 2 q- ~ [Y2 -- k2(z, Yl)] 2, (41) V2(z, y) = T 

where P2 > 0. Note that V2(z, y) is proper and positive definite. The time derivative of V2(z, y) 
is 

V2(z,y) -- -epoz2 sin(cotan -1 z2) 

- plCl (Yl + co tan -1 z2) 2 - p2c2[y2 - k2(z, Yl)]2, (42) 

which is negative semi-definite. It can be shown that along the closed-loop trajectories the 
largest invariant set in {(z, y) : V2(z, y) --- 0} is {z = y = 0}. Since V2(z, y) is proper, it 
follows that v given by (37) globally asymptotically stabilizes the system (22)-(25). Note that 
k2(z, yl ), K2(z, Yl) and K3(z , Yl) are continuous for all their arguments. 

Finally, the feedback control law u that globally asymptotically stabilizes the original sys- 
tem (6) to the origin is obtained by substituting (37) into (28). 

REMARK 1. In Step 1, we chose kl(Z) in (29) in terms of the inverse tangent function. 
Other choices of kl (z) may be made in accordance with Theorem 3.1. It can be shown that 
if kl (z) is a C 1 bounded function with kl (0) = 0 and Z2kl (z) < 0, z E ~2, then Ya : kl (Z) 
globally asymptotically stabilizes (22), (23). 

REMARK 2. The six parameters P0, Pl, P2, co, cl and c2 which appear in the control law are 
allowed to vary over specified ranges P0 > 0, Pl > 0, P2 > 0, 0 < Co < 2, cl > 0 and c2 > 0. 
All six parameters appear explicitly in the control law and time derivative of the Lyapunov 
function and thus affect the convergence rate, the transient response and the required control 
effort. 

In the next section we choose values for these parameters and perform numerical simula- 
tions. 

5. Simulation Results 

For simulation we consider the dimensionless equations (5) and assume e = 0.1. We first 
consider the stabilization problem in which there is no external force applied to the cart, that 
is, Fd = 0. In particular, we numerically show that the feedback control law u in (28) with v 
defined in (37) stabilizes (6) to the origin. Two sets of control parameters are chosen for the 
control law, specifically, 
Controller 1:P0 = Pl = P2 = co = Cl = C2 = 1; 
Controller 2:P0 = 10,pl = 0.1,CO = 1.9,p2 = cl = c2 = 1. 
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Fig. 2. Time history of cart translation zz of  the uncontrolled and controlled motions with z ( 0 )  = ( 1 , 0 ,  0 ,  0 )  T .  
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Fig. 3. Time history of  eccentric mass rotation x3 of the uncontrolled and controlled motions with 
z ( 0 )  = ( 1 , 0 ,  0,  0 )  T .  

In the first example, we consider the case in which the cart has an initial displacement 
while the disk has zero initial angular velocity, that is, z(0) = (1,0, 0~ 0) T. Figures 2 and 3 
illustrate the cart translation Xl (7-) and eccentric mass rotation x3 (7-) of  the uncontrolled and 
controlled motions. Note that the rotor is free to spin for the uncontrolled system. Figure 4 
shows the control torque u for Controllers 1 and 2 with respect to time. From Figures 2 and 
3 it can be seen that the translational motion of the uncontrolled system is oscillatory with 
fixed amplitude and frequency while the rotor angle is increasing. For the controlled system, 
both Controllers 1 and 2 drive the translational and rotational oscillations to rest. Note that 
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Fig. 4. Control torque u for Controller 1 and 2 with x(0) ---- (1, 0, 0, 0) T. 

0,8 

0,6 

0.4 

0.2 

.~ o . 

-0.2 " . 

~0.4 

"0"61 ~ ~ 

0 80 5 10 

-..." 

Dotted line: Uncontrolled motion 

Solid line: Controller 2 

? 
. , ' . .  

.," • i 

'.,: 

1~5 2~0 

' , .  : ,; i 
',. ,: 

",.' 
i .' ".j 

3tO 3~5 4~0 4~5 25 50 
TIME 

Fig. 5. Time history of cart translation xt of the uncontrolled and controlled motions with x(0) = (0, 0, 0, 1) T. 

Controller 2 drives the motion to rest faster than Controller 1. Since this was found to be the 
case for all initial conditions tested, Controller 1 will not be considered further. 

Next we consider the case in which the cart is at rest while the desk has angular velocity 
equal to the resonance frequency of  the translational motion, that is, x(0)  = (0, 0, 0, 1) T. 
Figures 5, 6 and 7 show the cart translation X 1 (q'), eccentric mass rotation x3(r),  and angular 
velocity X4(T) of  the uncontrolled and controlled motions. It can be seen in Figure 7 that the 
angular velocity x4(7-) remains close to 1 for the uncontrolled motion, which shows that the 
eccentric mass lies within the resonance capture zone. However, as shown in Figures 5, 6 and 
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7, the states of the controlled motion approach the origin very rapidly, while the control torque 
u (not shown) decrease rapidly with the maximum torque -- 3.2 needed at r = 0. 

Next, we consider the case in which there are external disturbances applied to the cart and 
show that the control law, although designed without regard to disturbances, attenuates the 
forced translational oscillation. We thus consider (5) with sinusoidal forcing function 

Fd = AF sin WFT", (43) 
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WF = 1 at amplitude AF = 0.1 with x(0) = (0, 0, -7r/2, 0) T. 

where A F ,  a~F are the amplitude and frequency of  the external forcing. We also assume that 
the unbalanced mass is initially aligned with the spring and that both the cart and the disk 
are at rest, that is, z (0)  = (0, 0 - 7r/2, 0) 7". Figures 8 and 9 show the translation z l ( ~ )  and 
rotations z3(7-) of  the uncontrolled and controlled motions for resonant forcing oaf = 1 at 
amplitude A F  ---- 0.1. It can be seen from Figures 8 and 9 that the controller attenuates the 
amplitude of  the translational oscillation by preventing the linear amplitude growth of  the 
uncontrolled motion. Figure 10 shows the time history of  the control torque. 
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Fig. 10. Control torque u for resonant forcing WF = 1 at amplitude AF = 0.1 with x(0) = (0, 0, -7r/2, 0) T. 
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Fig. 11. Amplitude-dependeI~t frequency response of the translational oscillation of the uncontrolled and controlled 
motions under sinusoidal forcing with amplitudes AF = 0.1 and A F  = 1. 

Finally, Figure 11 shows the amplitude-dependent frequency response of  the translational 
oscillation of  the uncontrolled and controlled motions under sinusoidal forcing with amplitudes 
AF = 0.1 and AF = 1. Controller 2 is used for the controlled motion. The vertical axis of  
Figure 11 is the ratio of  the steady-state amplitude of  the translational oscillation to the 
forcing amplitude. The forcing frequency ranges from 0.1 to 10 rad/sec. It is observed that 
the controller is most effective near and above resonance and is more effective for smaller 
disturbance amplitude except for frequencies near twice the resonance. 
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6. Conclusions 

We have derived a globally asymptotically stabilizing control law for the oscillating eccentric 
rotor that uses torque control to simultaneously bring both translational and rotational motions 
to rest. Six independent parameters in the control law allow adjustment of the closed-loop 
response. In addition, numerical simulations show that the control law, although designed 
without regard to disturbances, can attenuate sinusoidal disturbances over a broad frequency 
range. 

In a recent paper [2], we explored an application of this work, a rotational actuator for 
suppressing translational motion. Two control laws were compared: (i) the control based on 
integrator backstepping given herein and (ii) an active implementation of a passive control 
law. The passive control law emulates a vibration absorber that damps out both rotational 
and translational energy. Note that a simple rotational rate damper cannot globally asymptot- 
ically stabilize the translational motion. The two approaches have different advantages and 
disadvantages that are currently being investigated; interested readers should consult [2]. 
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