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Abstract. The dynamics of a panel forced by transverse loads and undergoing limit cycle oscillations and chaos is investigated.
The nonlinear von Karman plate theory is used to obtain a model for healthy and damaged panels. Damage is modeled by a
loss of stiffness in a portion of the plate. The presence of low levels of damage is identified by using an external nonlinear
excitation and analyzing the attractor of the resulting dynamics in state space. Most of the current studies of such problems
are based on linear theories and linear structures. In contrast, the results presented are obtained by using and enhancing non-
linear and chaotic dynamics, and have the advantage of an increased accuracy in detecting damage and monitoring structural
health.
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1. Introduction

The identification of stiffness loss in a plate is needed in several applications of structural health mon-
itoring. In such applications, the use of non-destructive evaluation is exploited for detecting structural
changes which indicate damage [24, 77]. In general, the ability to quantify and measure structural in-
tegrity is an important advantage as it increases safety while reducing operation costs and lengthening
the lifetime of aging assets.

Identifying loss of stiffness is one of the most common means to detect damage. In turn, detecting the
loss of stiffness is accomplished by monitoring a feature of the system. Vibration responses (frequency
response functions, mode shapes and natural frequencies), electromagnetic properties, ultrasound, are
examples of such features. The most common monitoring techniques are focused on detecting the
presence of damage without any concern for its precise location, level or extent. In such approaches, the
feature for a healthy and a damaged system are compared, and the identified differences usually are not
quantified, but they are used as a red/green indicator. More advanced techniques use location-dependent
features and focus on the identification of the location and/or the extent of damage. Such techniques
require distributed sensors, more comprehensive information about the system, and a quantifiable feature
whose measure may be correlated with the extent and location of damage. Nevertheless, such techniques
are the most advantageous because they allow for the estimation of the remaining life of the system,
and are the basis for the elimination of time-scheduled inspections, and a transition from time-based to
condition-based maintenance.

�An earlier version of this paper was presented at the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics
and Materials Conference, Palm Springs, California, April 2004.
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Monitoring structural integrity is particularly important in aerospace applications [14, 29, 56] where
detecting the onset and propagation/evolution of damage during normal operation of the monitored
system is highly desired. Among the most important technical difficulties faced by current methods are
detecting incipient damage (of small level) and taking adequate measurements during normal operating
conditions. These issues have limited the available techniques to mostly offline detection of large
damage.

Most current techniques for damage detection are vibration-based, i.e. they are focused on determining
changes in the frequencies and modes of vibration [14, 24, 36, 49, 60]. Other similar techniques use
wavelet analyses [3–5, 62], Ritz vectors [11, 77], stochastic approaches [57, 64], subspace updating
[1, 26, 32, 50, 51, 72, 78, 79], or evolutionary algorithms [80]. All these methods have been developed for
monitoring linear structures. However, only a few methods are currently available for detecting damage
in nonlinear structures. Most of the nonlinear methods are based on system identification [2, 25, 34, 38–
40, 61], while a few use neural networks [6, 37, 76], or Lyapunov exponents [12, 52, 67, 73]. These
nonlinear methods have important limitations, e.g., some have difficulty tackling high-dimensional
systems, others do not predict the damage location or level, or do not detect simultaneous damages.

However, our results discussed in the present paper show that the use of nonlinearities holds a great
potential. We have observed that the changes in the shape of attractors of the dynamics are large for
nonlinear systems and may be used for damage detection. For example, results have been obtained for
a pinned–pinned panel with structural nonlinearity depicted in Figures 1 and 2. These results, shown
in Figures 3 and 4, demonstrate that the nonlinear response of the panel excited harmonically changes
dramatically when the panel stiffness changes. A mere 4% change in stiffness leads to qualitative (large)
changes in the attractor shape as shown in Figure 3. Moreover, the attractors change with both the location
and extent of damage. For example, a small loss of stiffness (10%) along a small extent (5% of panel
length) can clearly be distinguished in Figure 4 from larger damage levels (50% loss) and larger damage
extents (20% length). In contrast, linear methods cannot detect the damage, as shown in Figure 4.

The main advantages of nonlinear vibration-based damage detection are: (i) nonlinearities are a
pervasive presence in many systems affected by damage, (ii) linear techniques are not accurate when
applied to nonlinear systems because often the presence or level of damage cannot be distinguished (by
linear methods) from the nonlinear healthy system dynamics, (iii) nonlinear-based methods can provide
greater sensitivity and performance.

Figure 1. Thermo-shielding panel subjected to internal thermal loads and interacting with an external (supersonic) flow (i.e., an
aeroelastic system).
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Figure 2. Two-dimensional panel subject to transverse loading.

Figure 3. Nonlinear systems are sensitive to parametric variations, and small parameter variations lead to dramatic changes in
attractor shapes.

Nonlinear phenomena are important not only in large, but also in small, amplitude vibrations when
the strength of nonlinearity is high. An example of such a nonlinearity is a crack in a plate or a loose joint
which may lead to changes in linear characteristics such as mode shapes [55], stiffness and damping,
and can also induce nonlinear dynamics by introducing Coulomb friction and allowing the opening
and closing of a gap (piece-wise linear dynamics with possible impacts [30, 69, 70]). Linear methods
have difficulties because they are independent of the amplitude of vibration, and thus, the stiffening or
softening of a healthy system due to nonlinearities may be erroneously assumed to be caused by damage.
As an example, the co-existence of multiple attractors (for the same undamaged structure under the same
excitation and) for the dynamics of a point on a panel with structural nonlinearity excited by unsteady
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Figure 4. The attractors of nonlinear systems are sensitive to damage presence, extent, and location, while linear models fail to
model the dynamics.

flow [22] may be erroneously interpreted by linear methods as being due to damage. Additionally,
nonlinear systems are more sensitive to parametric changes than linear systems (especially in the
neighborhood of bifurcations [27, 63]). Nonlinear and chaotic vibrations have been observed in many
physical contexts including airplane wings [15–17, 31, 59], panels forced by flow-induced loads [8–10,
21, 22, 44, 53, 54], rotors [28], pipes [46–48], heat exchangers [13, 33, 47, 66], micro-systems [41, 68]
such as micro-plates, and thermo-shielding panels [22].

2. Modeling

As an example of the methodology, consider damage detection in a thermo-shielding panel mounted on
a rigid substructure and subjected to unsteady aerodynamic forces as depicted in Figure 1. A simplified
model for the panel is shown in Figure 2. The deformation of the panel occurs primarily in the transverse
direction (Z axis), and that deformation is of the order of the panel thickness. Although this deformation
is small, structural nonlinearity is present (and it is strong) due to the coupling between stretching and
bending of the panel. Energy dissipation of the aeroelastic system is also considered in the model by
accounting for internal and external damping. Finally, the damaged regions of the panel are modeled as
exhibiting a local reduction in the bending stiffness of the panel.

2.1. STRUCTURAL MODEL

The panel shown in Figure 2 is modeled as a one dimensional, homogeneous, isotropic, and elastic
thin plate with pinned–pinned end points. The thickness h is considered much smaller than the length
l. Also, the width b is considered much larger than the length l. These assumptions hold for many
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cases of practical interest (such as a thermo-shielding panel). Nevertheless, the proposed approach
for the accurate identification of loss of stiffness may be applied equally well to other cases, where
these assumptions do not hold. For a linear elastic isotropic material, the stress–strain relation may be
expressed as:

σxx = E

l − ν2
εxx , (1)

where E is Young’s modulus and ν is Poisson’s ratio. To model the structural nonlinearity caused by
the in-plane stretching of the panel due to bending, the von Karman’s strain–displacement relation is
used as follows:

εxx = ∂U

∂ X
+ 1

2

(
∂W

∂ X

)2

− Z
∂2W

∂ X2
, (2)

where U is the displacement of the panel along the X -axis, and W is the displacement of the panel along
the Z -axis. Thus, the moment acting on the cross section of the panel (of unit width) may be expressed as:

M =
∫ h/2

−h/2
σxx Zd Z = − D

∂2W

∂ X2
(clockwise) , (3)

where D is a coefficient characterizing the bending stiffness of the panel, D = Eh3/12(1 − ν2).
Damping in this system has two sources: (a) external aerodynamic damping, which is due to the

interaction between the panel and the flow, and (b) internal damping, which is due to the viscosity of
material of the panel. The aerodynamic damping causes energy loss as a non-conservative force Fe

proportional to velocity of the panel. For certain flow velocities, the aerodynamic damping may be
negative, which leads to flutter. A more elaborate aerodynamic model has been used to account for the
interaction between the panel and the flow [22, 23]. For simplicity, in the present analysis we consider
that the flow is stationary, and the aerodynamic damping is simply proportional to the local velocity of
the panel. Also, the external damping is approximated as linear viscous damping of the form:

Fe = Ce
∂W

∂t
,

where Ce is an external damping parameter. The material damping is considered to be a viscous damping
stress proportional to the strain rate, as follows:

σ d
xx = ζ

∂εxx

∂t
,

where ζ is a material damping constant. Similar to Equation (3), the moment Md corresponding to the
damping stress and acting clockwise may be expressed as:

Md =
∫ h/2

−h/2
σ d

xx Zd Z = − Ci
∂3W

∂ X2∂t
, (4)

where Ci is defined as the internal damping parameter, and may be expressed as Ci = ζh3/12. Combining
Equations (3) and (4), the total moment M̄ acting clockwise on the cross section of the unit width panel
is obtained as:

M̄ = M + Md = − D
∂2W

∂ X2
− Ci

∂3W

∂ X2∂t
. (5)
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Figure 5. Forces acting on an infinitesimal element of the panel including distributed transverse, axial, and bending forces.

Figure 5 shows the equilibrium of forces acting on an infinitesimal element of the panel (of unit
width). This equilibrium of forces may be expressed as

∑
FZ = 0, and may be used to obtain:

dT

d X
= − CeẆ − ρhẄ + P(X, t). (6)

Also, the equilibrium of moments
(∑

MY = 0
)

may be used to obtain:

N
dW

d X
− d M̄

d X
+ T = 0. (7)

Differentiating Equation (7) with respect to X and substituting into Equations (5) and (6), the governing
equation for the panel dynamics may be expressed as:

DW ′′′′ + ρhẄ + CiẆ
′′′′ + CeẆ − N W ′′ − P(X, t) = 0, (8)

where W ′ and Ẇ represent the spatial and time derivatives of W , while ρ is the mass density, and
P(X, t) is the transverse distributed loading. N is the in-plane tension load, which is assumed to be
uniform along the entire length of the panel. N may be expressed as:

N = Eh

[
η0 + 1

l

∫ l

0

1

2
W ′2(ξ )dξ

]
, (9)

where the first term (η0) is the initial axial strain, and the second term is the stretching due to bending.
Substituting Equation (9) into Equation (8), one obtains:

DW ′′′′ + ρhẄ + CiẆ
′′′′ + CeẆ − Ehη0W ′′ − Eh

2l

[ ∫ l

0
W ′2(ξ )dξ

]
W ′′ − P(X, t) = 0. (10)

The boundary conditions corresponding to the pinned–pinned panel are:

W (X = 0, t) = 0, M̄(X = 0, t) = 0, W (X = l, t) = 0, M̄(X = l, t) = 0. (11)

Next, Equation (10) is nondimensionalized by introducing the nondimensional variables x , w, and τ

defined as x = X/ l, w = W/h, and τ = t/
√

ρhl4/D. One obtains

w′′′′ + ẅ + CIẇ
′′′′ + CEẇ − Rxw

′′ − S

[ ∫ 1

0
w′2(ξ )dξ

]
w′′ − F(x, τ ) = 0, (12)
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where w′ = ∂w/∂x , and ẇ = ∂w/∂τ . The nondimensional coefficients in Equation (12) may be
summarized as follows: internal damping CI = Ci/

√
ρhl4 D, external damping CE = Cel2/

√
ρh D,

in-plane pre-load Rx = Ehη0l2/D, coefficient characterizing the stretching induced by bending
S = Eh3/(2D) = 6(1 − ν2), and external excitation force F(x, τ ) = l4/(h D)P(x, τ ). The nondimen-
sional boundary conditions may be expressed as:

w(x = 0, τ ) = 0, w′′(x = 0, τ ) + CIẇ
′′(x = 0, τ ) = 0,

w(x = 1, τ ) = 0, w′′(x = 1, τ ) + CIẇ
′′(x = 1, τ ) = 0.

2.2. DAMAGE MODEL

In many damage scenarios, yielding occurs in a small region of the panel, or a crack is initiated and
propagates in the material. Such types of damage lead to a reduction of the local bending stiffness
coefficient D̄. The bending stiffness and Young’s modulus for a damaged panel are denoted by D̄
and Ē . Similar to Equation (10), the governing equation for the damaged region of the panel may be
expressed as:

D̄W ′′′′ + ρhẄ + CiẆ
′′′′ + CeẆ − Ēhη0W ′′ − Ēh

2l

[ ∫ l

0
W ′2(ξ )dξ

]
W ′′ − P(X, t) = 0. (13)

The same nondimensional variables x , w, and τ defined for the undamaged panel are used to nondi-
mensionalize Equation (13). One obtains:

Sr · w′′′′ + ẅ + CIẇ
′′′′ + CEẇ − Sr · Rxw

′′ − Sr · S

[ ∫ 1

0
w′2(ξ )dξ

]
w′′ − F(x, τ ) = 0, (14)

where Sr is referred to as a stiffness reduction factor, Sr = D̄/D, and characterizes the damage level
in the panel. No damage is present when Sr equals unity, and small values of Sr indicate large
damage.

3. Nonlinear Feedback Excitation

Most current techniques for damage detection are based on observing the dynamics under ambient
loads, or harmonic excitation. The main advantage of using a simple harmonic external excitation is
that the excitation is easy to generate and measure. However, such an excitation is not best suited for
interrogating a nonlinear system for the purpose of identifying small changes in its parameters. Fur-
thermore, current vibration-based methods are designed for linear systems and minimize as much as
possible the influence of nonlinearities in the dynamics during measurements. The aim of the method
proposed herein is to exploit and enhance (where necessary) nonlinearities. The main advantage of
using such an approach is a much enhanced sensitivity. To enhance nonlinearity, we propose an ac-
tive approach where the system is actively interrogated by applying a nonlinear feedback excitation.
As opposed to the usual external excitation, the nonlinear feedback excitation only requires the ac-
tive/online measurement of the dynamics and a feedback loop. The specific form of the nonlinear feed-
back is dependent on each particular application. The excitation may include quadratic, cubic or other
nonlinearities.
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As opposed to the usual response to a harmonic excitation, the dynamics of the monitored sys-
tem is chaotic during the interrogation phase. For linear or nonlinear systems undergoing limit cycle
oscillations, the attractors are curves in the state space whose shape may be used as an indicator of
damage [30]. However, the sensitivity of the shape of these curves is limited [23] because their shape
is not very complex. Increasing the geometric complexity of the attractor of the dynamics is shown
here to be a venue to increase sensitivity. Specifically, the nonlinear feedback excitation may be used
to induce chaotic dynamics, which (usually) has attractors that are expanded spatially [18–20]. The
increased sensitivity to parametric variation is demonstrated in Figure 7 where bifurcation diagrams
are shown for varying damage level Sr, varying damage extent (i.e. the fraction of panel where loss
of stiffness occurs – denoted by Er), and varying damage location (along the panel). A clear dis-
tinction in the dynamics may be observed for various levels, extents and locations of damage. The
changes revealed in the bifurcation diagrams are also reflected in the shape of the attractor of the
dynamics.

The active interrogation of the system leads to changes in its dynamics so that the attractor (in state
space or in embedded coordinates) is a complex geometric shape. This shape is used as a feature in a
damage detection approach, i.e. given a (measured) attractor, damage is detected by comparing the shape
of this attractor with its undamaged shape. This shape is complex, and its characterization is designed
to provide the damage level as well as location. This approach is different from other attractor-based
methods such as chaotic excitation. Chaotic excitation has been used for damage detection with success
[35, 58, 67, 71, 75], but the attractor variance, and Lyapunov exponents which were used as features
could not predict the damage location, and their sensitivity was moderate. The proposed approach is
radically different. For example, when a chaotic excitation is applied to a linear system, superposition
still holds and each frequency component of the chaotic signal is filtered through the transfer function of
the structure as any other type of external (non-feedback) excitation would be. However, in the nonlinear
feedback approach, superposition does not hold. The excitation and the system are merged in a new
system whose dynamics is very sensitive to changes in its parameters.

In order to make the dynamics of the panel sensitive to the level, the extent, and the location of the
damage in the panel, a harmonic excitation with a nonlinear feedback force component is applied at
the middle point of the panel. Thus, the transverse distributed loading F(x, τ ) in Equation (12) can be
expressed as F(τ )δ(x − 1/2), where F(τ ) is response function of the input force, and δ is the Dirac
delta function.

The structural nonlinear term in Equation (12), S[
∫ 1

0 w′2(ξ )dξ ]w′′, plays an important role in the
complex dynamics of the panel. However, in cases such as a panel constrained by pinned-roller boundary
conditions, the nonlinear effect is weak. When the structural nonlinearity and the in-plane pre-load are
small, the panel dynamics subjected to a harmonic excitation force leads to harmonic oscillation. To
enhance the sensitivity of these vibrations to parametric variations, a nonlinear feedback force is used
in combination with the harmonic force. As a result, the input force may be expressed as:

F(τ ) = F0 sin ωτ + λw

(
1

2

)2

w′′
(

1

2

)
+ γw′′

(
1

2

)
, (15)

where w(1/2) and w′′(1/2) are the displacement and the curvature at the middle point of the panel, and
λ and γ are control parameters. The form of the nonlinear feedback force is drawn from the form of
two terms in Equation (12), S[

∫ 1
0 w′2(ξ )dξ ]w′′ and Rxw

′′, corresponding to structural nonlinearity and
axial pre-load. They are designed to increase the nonlinearity and enhance the instability in the linear
panel.



Enhanced Nonlinear Dynamics for Accurate Identification of Stiffness Loss 205

Figure 6. Attractors sampled in time for a healthy panel and three damaged panels with low or high levels of damage and various
extents of damage (v = ẇ).

4. Results

To investigate the changes in the shape of attractors for various parametric values, we consider two
approaches. First, we investigate the local distribution of points in an attractor. Second, we quantify
the location of bifurcations and the onset of certain types of dynamic behavior by means of bifurcation
diagrams.

Figure 6 shows the attractors of the dynamics sampled in time and obtained for a healthy panel
and damaged panels with low and high levels of damage and various damage extents. The low level
of damage is a 10% loss of stiffness (i.e. Sr = 0.9), while the high level of damage is a 50% loss of
stiffness (i.e. Sr = 0.5). Three values are considered for the extent of the damage: small extent (1.25%
of panel length), moderate extent (5% of panel length), and large extent (14% of panel length). The
first key result demonstrated in Figure 6 is that the attractor of the dynamics changes significantly when
the extent of damage changes. Figure 6 also shows the attractors obtained for panels with a high level
of damage and various damage extents. The attractor undergoes geometric changes when parametric
variations occur, such as is the case in the presence of damage. Also, Figure 7 shows that the geometric
changes in the attractor shape occur for all parameters of interest, i.e. the level, location, and extent of
damage.

Histograms may be used to characterize the shape and distribution of points in an attractor. The
histograms shown in Figure 8 demonstrate that changes in attractors may be quantified for a (constant
and low) level of damage and a varying extent of damage. The change in the attractor shape is dramatic
when the damage varies from small to large extent. The moderate extent of damage affects the dynamics
greatly, and leads to a collapse of the attractor onto a limit cycle, as shown in Figure 6. More subtle
changes occur for the case of high damage. Similar to the case of low damage, the attractor changes
shape greatly when the extent of damage is varied while the level of damage is constant and high, as
shown in Figure 9. Moreover, a comparison of the histograms shown in Figures 8 and 9 reveals that
the changes in the histograms are distinct for various damage levels when compared to various damage
extents. Thus, both the level and the extent of damage may be detected.

An alternate approach to detecting the level and extent of damage is to detect the onset of bifurcation
for varying parameters of the nonlinear feedback excitation. Bifurcation diagrams are known to reflect
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Figure 7. Bifurcation diagram for varying damage level, extent and location, showing the dramatic changes in the dynamic
attractor for varying damage characteristics.

Figure 8. Histogram of the point distribution in an attractor for the dynamics of a system with low damage and various extents.
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Figure 9. Histogram of the point distribution in an attractor for the dynamics of a system with high damage and various extents.

Figure 10. Bifurcation diagram for varying linear factor γ in the nonlinear feedback excitation, showing the dramatic changes
in the dynamic attractor for varying nonlinear feedback characteristics.

accurately qualitative and quantitative changes which may occur in the dynamics of nonlinear systems
[7, 27, 42, 43, 45, 63, 65, 74]. In the context of damage detection, we construct bifurcation diagrams
by varying the control parameters λ and γ . Such diagrams are possible to measure because they require
only the modification of the controller and not of the structure. In most physical systems, it is usually
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difficult to change structural parameters (for testing purposes). In the present approach, such changes
are not necessary because the variation in the global dynamics is accomplished by the variation of the
nonlinear feedback characteristics. To demonstrate this approach, Figure 10 shows the local amplitude
maxima at the quarter point location (x = 1/4) for various values of γ and for three separate cases:
no damage, low level, and high level of damage. One may clearly identify dramatic changes in the
bifurcation diagram for the three structures. For example, the onset of limit cycle oscillations occurs at
clearly distinct values of γ (of 45, 50 and over 100).

5. Conclusions

A novel approach to actively interrogate a linear or nonlinear structure for the purpose of detecting
parametric changes has been presented. The parametric changes identified are indicative of the presence,
location and level of damage in the system. The main advantage of the proposed method is its high
sensitivity to parametric variations, which makes it particularly well suited for detecting incipient
damage.

Numerical examples have been presented for a panel with pinned–pinned end points forced by
transverse loads and undergoing limit cycle oscillations and chaos. The nonlinear von Karman plate
theory has been used to obtain a model for the panel, while damage has been modeled by a loss of stiffness
in a portion of the plate. The sensitivity of this nonlinear system to parametric changes (enhanced by
nonlinear feedback excitation) has been shown to be an effective tool in detecting structural changes
and identifying stiffness loss in a thermo-shielding panel.

Most of the current studies of damage detection are based on linear theories and linear structures.
In contrast, the results presented here are obtained using nonlinear and chaotic dynamics, and have the
advantage of an increased accuracy in detecting damage and monitoring structural health. The sensitivity
obtained by enhancing nonlinear dynamics and exploiting the features of chaotic dynamics is much
higher than the sensitivity of linear analyses.
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