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Abstract. This paper presents a new method for the integration of the equations of motion of constrained multibody 
systems in descriptor form. The method is based on the penalty-Augmented Lagrangian formulation and uses mass- 
orthogonal projections for the solution to satisfy the kinematic constraint conditions. The number of equations being 
solved is equal to the number of states, and does not depend on the number of constraint conditions. Therefore, the 
method is particularly suitable for systems with redundant constraints, singular configurations or topology changes. 
The major advantage of the new method relies on the fact that for a low computational cost, the constraints in 
positions, velocities and accelerations are satisfied to machine precision during the numerical integration. This 
process is efficiently done by means of a mass-orthogonal projection without the need for coordinate partitioning or 
reduction to a minimum set of coordinates. The projection scheme allows for a more accurate and robust integration 
of the equations of motion since constraint violations constitute one of the primary sources of numerical errors 
and instabilities during the integration process. The proposed projection is also applied to the classical Lagrangian 
approach, thus eliminating the need for further stabilization as well as the selection of parameters in Baumgarte's 
method. 
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1. Introduction 

The kinematics and dynamics of multibody systems constitute an important part of what 
is referred to as CAD (Computer Aided Design) and MCAE (Mechanical Computer Aid- 
ed Engineering). The systems included under the definition of  multibodies comprise heavy 
machinery, spacecraft, automobile suspensions and steering systems, graphic arts and textile 
machinery, robots, packaging machinery, machine tools, etc. In recent years operating speeds 
have increased, and consequently there has been an increase in accelerations and inertia forces. 
These large forces inevitably lead to the appearance of dynamic problems that one must be 
able to accurately predict, thus requiring more sophisticated simulation tools. 

Computer simulations performed by CAD and MCAE tools allow designers to predict the 
kinematic and dynamic behavior of different types of multibody systems in great detail, during 
all the design stages: from the first design c~oncepts to the final prototypes. The kinematic and 
dynamic analysis of  multibody systems are processes which are most appropriately performed 
using interactive simulations. The analyst is interested in visualizing a whole set of successive 
responses of the multibody system, a simulation of its behavior and operation over all the 
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workspace and over a certain period of time. In certain cases it may be necessary to obtain a 
real-time response, and even introduce the analyst, or hardware, as additional elements in the 
simulation process, thus leading to man-in-the-loop or hardware-in-the-loop situations which 
introduce external forces or control over specific degrees of freedom. Obviously the class and 
size of problems that may be solved in real-time will increase as the computer hardware and 
numerical algorithms improve in the ensuing years. 

The first issue to consider in the simulation process is that of modeling the system, that is, 
the selection of a set of parameters or coordinates that will allow to unequivocally define at 
all times the position, velocity and acceleration of the system. The most important types of 
coordinates currently used to define the motion of multibody systems are: relative coordinates, 
reference point or Cartesian coordinates, and natural or fuU Cartesian coordinates. Another 
consideration is the choice of the dynamic formulation, obtained from the application of the 
principles of mechanics, that will lead to the final form of the equations of motion. Dynamic 
principles such as Lagrange's equations, Newton's laws, canonical equations of Hamilton, 
virtual power, Hamilton's principle, Gibbs-Apell equations, etc. constitute the basis for the 
formulations of multibody dynamics. The choice of the dynamic formulation very much 
determines the subsequent choice of numerical integration schemes. 

The widely used method of Lagrange's multipliers leads to a representation of the equations 
of motion in its descriptor form constituting a set of index-three differential algebraic equations 
(DAE), that is not solvable by state of the art numerical software. The addition of stabilization 
techniques, such as the method of Baumgarte [1], reduces the index and makes the solution 
tractable by means of standard ODE solvers, however, this method does not provide full 
constraint satisfaction, and no ways are available for choosing the values of the coefficients 
used by the method. A staggered stabilization based on a penalty approach has been presented 
[2] which integrates two different sets of equations one for the coordinates and another for the 
Lagrange multipliers. The use of penalty and augmented Lagrangian methods [3] in addition to 
transforming the set of equations into a stabilized set of index one that is solvable by standard 
ODE methods, assure Lyapunov stability of the simulation process [4]. These methods also 
have the advantages of being robust under singular configurations, topology changes and with 
redundant constraints [5], however, they do not provide full constraint satisfaction either, and 
as a consequence accuracy may degrade in long simulations. 

The principles of mechanics may also be used to direcdy reduce the index of the equations. 
For example, the canonical equations of Hamilton lead to an index-two representation with the 
position coordinates and canonical momenta as unknown variables [5]. Other formulations, 
such as coordinate partitioning [6], Kane's method [7, 8] and virtual power with projection 
matrices [9] transform the equations of motion to a minimum set of coordinates or state- 
space form that is directly solvable by ODE methods. State-space representations may also 
be obtained by means of velocity transformations initially introduced by Jerkovsky [10] and 
subsequently extended by other authors [ 11-15]. These representations are more suitable for 
ODE integration than the descriptor counterparts, and as a consequence, they yield a better 
control of accuracy at the expense of solving the velocity and position problem at each time 
step. However, they do not handle topology changes and singular configurations well. In 
addition, they cannot support stiff integrators and consequently may not be a good choice 
when the system has built-in numerical stiffness. 

The numerical mathematics community has sought solutions to the numerical integration 
and index reduction problem, which has led to a proliferation of methods too vast to summarize 
herein. Recent advances include stabilized index reduction methods and accurate ways of 
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projecting the DAE into the underlying ODE for more stable and accurate solutions. Key 
developments are the work of Brenan et at. [16] and Griepentrog et al. [17] who summarize 
the state of the art in this area. More specifically, in regard to the index-three DAE arising 
in the modeling of nonlinear dynamics, a method has been proposed for stabilized index- 
one formulation [18, 19], and shown that is equivalent to the space-state generalized inverse 
form. These methods lead to numerically tractable index-three DAE but require a sizable 
computational effort because the number of unknowns of the problem increases by three 
times the number of constraint equations. A recent work [20] studies the stability, efficiency 
and accuracy of a new index reduction method based on dummy differentiation. Again the 
major drawback seems to be the cost of increasing the number of unknowns by three times 
the number of constraint equations. 

In this paper we combine the augmented Lagrangian formulation with a mass-orthogonal 
projection technique to the constraint manifold, which yields a new method that has all the 
advantages of the former and yields no constraint errors. The major advantage of the method 
relies on the fact that for a low computational cost, the constraints in positions, velocities and 
accelerations are satisfied to machine precision during the integration process which becomes 
much more accurate than the regular augmented Lagrangian formulation. As explained below, 
this process is done without the need for coordinate partitioning or reduction to a minimum 
set of coordinates and only requires the solution of a set of equations equal to the number of 
states of the system. 

2. Preliminaries on the Equations for Multibody Dynamics in Descriptor Form 

2.1. FORMULATION IN LAGRANGIAN COORDINATES 

Let us consider a multibody system whose configuration is characterized by n generalized 
coordinates q that are interrelated through the m holonomic kinematic constraint condi- 
tions: 

4i(q, t) = 0. (1) 

The use of the principle of virtual power directly leads to the following equations [22] 

5ilT(M{I - Q(q, ct) + ' ~ A )  = O, (2) 

where M is the mass matrix, Q is the vector that contains the external and non-conservative 
forces, as well as the velocity dependent inertia terms; and ~q  is the Jacobian of the constraint 
equations. The Lagrange multipliers A are introduced so that the expression in parenthesis 
becomes zero, thus leading to the following equations of motion: 

M/i + 4i¢~A = Q(q, ¢1). (3) 

Equations (1) and (3) constitute a set of n + m mixed differential algebraic equations (DAE) 
of index three [16], with q and A as unknowns. In order to avoid the direct integration of 
DAE, a double differentiation of the constraints equations may be carried out, yielding: 

M 0 Q 

These equations can now be integrated using standard numerical integrators with each function 
evolution performed using equation (4). In addition, this equation may also be easily modified 
to include Baumgarte's stabilization [ 1 ]. 
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2.2. AUGMENTED LAGRANGIAN FORMULATION 

The augmented Lagrangian formulation leads to the following equations of motion [3]: 

M~ + O ~ a ( ~  + 2 0 / ~  + g22~) + O~A* = Q(q, el), (5) 

where A* are the new Lagrange multipliers of the modified system. Note that the second term 
in the LHS of equation (5) represents the projection in the direction of the coordinates q of 
all the internal forces that are generated.by the dynamic penalty system when the constraints 
~, ~ and ~ are violated. Introducing • = Oq/i + Oq/l + Ot the following final result is 
obtained 

(M+~O~q) f t+~A*=Q(q,  it)-~a(~q4+~t+Zg2t~'+J-Jz~). (6) 

This index-one formulation may be viewed as the "generic penalty method" [3] to which 
the Lagrange's multipliers are added. As shown in [3] the augmented Lagrangian formulation 
allows the analyst to choose from a wide range of penalty values that assure convergence 
and avoid numerical ill-conditioning, thus avoiding the problems customarily attributed to the 
penalty formulations in multibody dynamics and allowing the use of non-stiff integrators. 

It is important to note that there is very important difference between equation (6) and 
the Lagrange's multiplier approach represented by (4). The leading matrix of equation (4) 
becomes singular in singular configurations and in the presence of redundant constraints. 
However, although the mass matrix M is in general positive semi-definite, the leading matrix 
of (6), (M + O~aOq),  is always positive definite, even in singular positions and/or with 
redundant constraints [5]. 

We are seeking the solution of (6) without having to use the algebraic constraint equa- 
tions (1). This requires that the correct values of A* be known so that they can be inserted in 
(6). The following iteration process [3] yields the unknown multipliers A* 

,~* * i+1 = A i  + tx(~ + 2 ~ / ~ +  f22~)i+l, i = 0 , 1 , 2 , . . .  (7) 

with A~ = 0 for the first iteration. Equation (7) physically represents the introduction at 
iteration i + 1 of forces that tend to compensate the fact that the addition of all the constraint 
terms are not exactly zero. It turns out that with the augmented Lagrangian formulation, the 
penalty numbers do not need to be very large (thus leading to a better numerical conditioning) 
since the resulting error in the constraint equations will be eliminated by the Lagrange's terms 
during the iteration procedure. 

The matrix formulation of (6), including the iterative process defined in (7), is given by 
the following expression: 

(M + ~o~4~q)/ti+ 1 = Miii - ~ o ~ ( ~ q / l  + ~t  + 2g2 /~  + ~22~), i = 0, 1,2, . . .  ,(g) 

where the subscript i represents the iteration number, and M~o = Q(q, q) for the initial 
iteration. Equation (8) may be used to iterate until ]]/t(i+1) _ ii(i)[[ < e, where e is a user- 
specified tolerance. 

The main advantage of using equation (8) is that the penalty terms are in fact used as an 
intermediate tool in order to compute the Lagrange's multipliers for which no new equations 
are integrated, i.e., only n equations are solved in the integration process. Therefore, the value 
of the penalty factor a does not affect the solution, but only the convergence rate. Experience 
shows that when the constraints are scaled to unity, penalty factors ranging from 10 5 to 10 7 
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give a good convergence rate, and only 2 to 3 iterations are required to converge to the 
solution. 

Note that the added cost of using equation (8) to refine the solution and obtain the Lagrange 
multipliers is fairly small, since its leading matrix remains constant during the iteration process 
needed for a function evaluation. Therefore, at each iteration step only the computation of 
the acceleration-dependent term, a forward reduction, and a back-substitution are required. 
The numerical implementation of the algorithm using standard integrators [2t], available in 
commercial mathematical libraries, is rather simple and may be described as follows. 

Using standard ODE integrators with accelerations as primary variables the algorithm for 
the augmented Lagrangian formulation becomes: 

ALGORITHM ALF 
1. Given q and/1 at time step I. 
2. Use (8) iteratively to solve for ~ (function evaluation), with Mit0 = Q(q, el) for the initial 

iteration. Then use (7) to calculate the Lagrange multipliers A*, if desired. 
3. Call the numerical integration subroutine (n.i.s.) to compute q and ¢1 at time step I + 1. 
4. Upon convergence of the n.i.s, update the time variable and go to step 1. 

3. Augmented Lagrangian Formulation with Projections 

3.1. MOTIVATION 

As explained above the Augmented Lagrangian Formulation (ALF) shows very good charac- 
teristics and robustness as a general way of formulating and solving the equations of motion 
in descriptor form. At the time of coupling the equations of motion with the ODE integrator 
and performing the numerical integration, we pose the following question: 

Is there a computationaUy effi..cient way. of bringing down to zero (within machine precision) 
not only the weighted term (~/i + 2/-//z~ +/22~/i) but also each of the individual constraints 
~, • and • during the integration process? 

If this were possible, the ODE integrator would be alleviated from the already small con- 
straint errors and would yield higher accuracy. We impose, however, the condition that for 
the sake of numerical efficiency the new approach should make the individual constraints 
- position, velocity or accelerations - be satisfied (we call this process constraint cleaning) 
without having to resort to coordinate partitioning or transformation to a minimum set of 
coordinates because these lead to expensive computations. 

3.2. PROJECTION OF THE SOLUTION TO THE CONSTRAINT MANIFOLD 

During the integration process the augmented Lagrangian formulation yields a solution set 
of q, / l  and ii that does not enforce each individual constraint to be exactly equal to zero. In 
order to achieve full constraint satisfaction at each time step we propose a mass-orthogonal 
projection that takes the solution to the constraint manifold where q/i, ~ ,  ~ are all equal to 
zero. In essence, our objective is to force the set of DAE to meet the underlying ODE at each 
time step. It is important to note that this projection scheme can also be carried out in the same 
manner within the classical Lagrange multiplier technique, and in doing so one eliminate the 
need of further stabilization such as the method of Baumgarte [1]. 
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(a) Projection in q 

During the time integration process the numerical integration scheme yields a set of coordinates 
q* that does not completely satisfy the constraint coordinates ~/i = 0. In order to satisfy the 
constraints, we perform a mass-orthogonal projection of the solution to the constraint manifold 
and obtain a new set of positions q that satisfies df = 0. This can be enforced by the solution 
of the following constrained minimization problem 

minV = 1 q ~ (q - q*)TM(q -- q*) subject to ~/i(q, t) = 0. (9) 

It may be seen how the mass matrix M has been intentionally added to the objective 
function with the idea that the resulting equations will have the same leading matrix as that 
used in the dynamic analysis (equation (6)). In what follows and for the sake of clarity we 
will assume that the mass matrix is constant. The ensuing procedure is perfectly valid for a 
non-constant mass matrix. 

In order to solve the problem posed by equation (9), we use an augmented Lagrangian 
method and minimize the following function 

V* 1 1 = ~ (q - q*)TM(q - q*) + ~ ~Tczai + ~/iTA, (10) 

where o~ is the penalty factor that we will assume is identical for all the constraints (although 
the constraints may be scaled so that each one has a different penalty value). As mentioned 
above a good choice for cz when working in double precision arithmetics is 10 7. 

We now differentiate V* with respect to q and equate to zero, yielding 

OV* 
~ o ~  + ~ A  O, (11) H(q, t )  = 0q = M ( q - c l * )  + = 

where H(q, t) is the vector of n nonlinear functions. Equation (11) constitutes a system of 
nonlinear algebraic equations that can be solved by Newton-Raphson iteration. The first order 
expansion of H(q, t) yields: 

H(q + A q ,  t) = M(q - q*) + 4i~c~4i + ~/i~A + MAq 

+ (4i~aa~q + ~qC~4i + 4i~qA)zaq. (12) 

From equation (12), we can set up the following iterative procedure to calculate q 

(M + ~/i~CZ~q)A (i+1) = - 7  (i) (13) 

with 

7~ i) = M(q(i) - q * ) +  ~ A ( i )  (14) 

and 

q(/+l) = q(i) + Zl(i+l) and A(/+1) = A(i) + czai(i+1), (15) 

where the superscript indicates the iteration number. The terms involving #qq  have been 
removed from the tangent matrix because they are much smaller than #~aa iq .  Equations (13) 
through (15) can be used iteratively until tAq[ < e, where e is a user-specified tolerance. 



Augmented Lagrangian and Mass-Orthogonal Projection Methods 119 

Note the important feature that the leading matrix in equation (13) is identical to that used 
in equation (6) for the dynamic analysis. Furthermore, since the solution q is close to the 
initial values q*, the projection problem can be solved using a modified Newton-Raphson 
method with no need for updating the tangent matrix and therefore, the only cost associated 
with the projection is the evaluation of a new right hand side and a forward and backward 
substitution. 

REMARK I. The constraint minimization problem of equation (9) can also be solved using 
the classical Lagrange multiplier method. In this case the projection scheme can be performed 
using the following equation: 

(16) 

which has the same leading matrix as that of equation (4). Therefore, the formation and 
decomposition of the leading matrix can be avoided. 

(b) Projection in il 

Similarly during the time marching integration process the numerical integration scheme 
yields a set of velocities Cl* that does not complete satisfy the constraint conditions ~ = 0. 
Again, we perform a mass-orthogonal projection of the solution to the velocity constraint 
manifold and obtain a new set of velocities Cl that will satisfy # = 0. Since the projection 
in q has been previously carried out, ~/i = 0, and therefore the mass-orthogonal projection to 

= 0 is enforced by the solution of the following constrained minimization problem 

min V = 1 q ~ (Cl-Cl*)TM(cl-Cl *) subjectto #(q,  /l, t) = 0. (17) 

The projection will lead to equations that have the same leading matrix as that used in 
the dynamic analysis (equation (6)). The time derivative of the constraint equation can be 
expressed as 

#(q,/1, t) = ~q/l  + ~t. (18) 

The augmented Lagrangian method is used again to minimize the following function 

V* 1 1 ~T = ~ (el - / l*)TM(/l  - / l* )  + ~ # Tcz~ + o', (19) 

where tr are the new Lagrangian multipliers. We now differentiate V* with respect to Cl and 
equate to zero. Accordingly, 

H(q,/l ,t) - 04 = M(q - ~l*) + = (20) 

T " T  where we have made use of the fact that # q  = #q.  Substituting equation (18) into equa- 
tion (20), the following set of algebraic equations for the generalized velocities are obtained: 

(M + #t~et#q)/l = Mcl* - # ~ ( ~ # t  + tr), (21) 
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where the Lagrange multipliers are updated by the following expression: 

O "(i+1) = O "(i) + Oz~ i(i+l). (22) 

A more efficient implementation of the augmented Lagrangian penalty formulation for the 
projection of velocities is given by the following recursive set of equations: 

(M + ~ q ) ~ l  (i+l) - M~I (0 - ¢~c t~ t  (23) 

and the recursion is started by setting 

/t (0 = ¢1" and o "(i) = a ~  i(i). (24) 

Equation (23) constitutes a system of linear algebraic equations in dl that may be readily 
solved. Since the leading matrix in equation (23) depends on the generalized coordinates 
only, the leading matrix needs to be triangularized only once, and the recursion expressed by 
equation (23) will only require a forward reduction and a back-substitution. 

REMARK II. Similar to the projections in q, if the classical Lagrangian multiplier method is 
used, the projection in velocities can be performed solving the following equation: 

which again has the same leading matrix as that of equation (4). 

(c) Projections in (t 

Following the same procedure as in the velocity analysis, the projection of the generalized 
accelerations onto the acceleration constraint manifold can be obtained through the following 
constrained minimization problem: 

rain V = 1 q ~ (q - ii*)TM(it -- i~*) subject to ~(q,/1, i~, t) = 0. (26) 

For the holonomic case, the second time derivative of the constraint equations can be expressed 
as: 

&(q, dl,/i, t) = Cq/i + ~liqdl + ~t.  (27) 

The augmented Lagrangian formulation of the above minimization problem is established by 
defining a modified objective function: 

V* 1 1 ~iT = ~ (q - q*)TM(it - i~*) + ~ ~Tot~ + ~, (28) 

where ~¢ are the new Lagrange multipliers. We now differentiate the modified objective 
function with respect to the generalized accelerations to obtain 

OV* , l ~ c ~  + q~e~ O, (29) H(q,/l, it, t) = 0--=6- = M ( / i -  q*) + = 
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where we have made use of the identity 

4i~ .. T (30) 
= ~ / i .  

Substituting equation (27) into equation (29) the following set of algebraic equations for the 
generalized accelerations are obtained: 

(M + #~cXqiq)/i = M/i* - #~{cz(~qCl +q~t) + ~}, (31) 

where the associated Lagrange multipliers are updated by the following expression: 

t~(i+l) = N(i) + O~(i+1). (32) 

The numerical implementation of the augmented Lagrangian formulation for the projection 
of accelerations is given by the recursive set of equations 

(M + #~C~¢q)/i (i+1) = M/i (i) - ¢~cZ(#q/i + Ct) (33) 

and the recursion is started by setting 

/i(0) = / i ,  and ~(0) = cz~i(0). (34) 

Equation (33) constitutes a system of linear algebraic equations in/i that are solved repeatedly 
until convergence in the generalized accelerations is achieved. Since the leading matrix in 
equation (33) is the same as that of equation (23) used for the velocity projection, the 
acceleration analysis will require only a forward reduction and a back-substitution. 

4. Numerical Implementation of the Mass-Orthogonal Projections 

4.1. INDEX-1 FORMULATION 

Equation (6) or equivalent (8) can be solved using standard ODE integration [21] with 
accelerations as primary variables. The projections in displacement and velocities can be done 
at each time step to yield a set of corrected values for q and Cl that lie on the constraint manifold. 
The numerical implementation of the augmented Lagrangian formulation with projections and 
with accelerations as primary variables becomes: 

ALGORITHM ALF-INDEX 1 
1. Given q and ~1 at time step 1. 
2. Use (8) iteratively to solve for ~ (function evaluation), with M/i 0 = Q(q,/i) for the initial 

iteration. Then use (7) to calculate the Lagrange multipliers A*, if desired. 
3. Call the numerical integration subroutine (n.i.s.) to compute q and/i at time step I + 1. 
4. Use equations (13) and (23) to perform the projections in position and velocities, and 

obtain a clean set of q and/t. 
5. Upon convergence of the n.i.s, and update the time variable and go to step 1. 

Note that it may be desired not to perform the projection (step 4 in the above algorithm) 
at each time step. Instead, one may wish to carry out the projection at every given number 
of steps. The numerical examples of Section 5 below show the trade off between accuracy 
and numerical Cost when performing the projection at each time step or at a given number of 
steps. 
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Also note that when using the accelerations as primary variables the projection in it is 
not necessary because the condition ~i = 0 is implicitly.satisfied in the dynamic analysis 
(equation (6)) as a consequence of imposing that ~ and • be equal to zero. In addition, if 
the projection in q and Cl are performed at every time step the choice of parameters for Iz 
and ~ is irrelevant, in fact they may be set equal to zero since the constraints in positions 
and velocities are now being satisfied at each time step. The same conclusions apply for the 
classical Lagrange multipliers technique (equations (4), (16) and (25)). 

4.2. INdEX-THREE FORMULATION 

We describe in this section a way of integrating the equations of motion and carrying out 
the projection scheme using an index-three formulation, in which the positions q become the 
primary variables during the integration process, Let us start by rewriting the equations of 
motion (equation (6)) in the following form: 

M~ + ~ c ~  + ~ A *  = Q(q, dl), (35) 

where the terms ~ and ~ have been eliminated due to the fact that the projections in positions 
and velocities enforce that these constraints are equal to zero. 

The difference equations of the numerical integration scheme may be expressed in general 
asl 

/1,~+1 = aqn+l + c1,~+1, qn+l = bqn+l + Cln+l, (36) 

where a and b are constants that depend on the numerical integration scheme and the time step, 
^ ^ 

{:1,,+1 and e/n+1 are known quantities that depend on the positions, velocities and accelerations 
at step n and/or previous steps. Note that if the method is explicit, a and b will be equal to 
zero. The substitution of equation (36) into equation (35) yields: 

bMqn+l + ~ ( a ~  + A*) = Qn+l - M~ln+l, (37) 

which constitutes a set of nonlinear algebraic equations with qn+: as unknowns. We use 
Newton-Raphson iteration and evaluate the solution by means of an iterative process, 

Of] (i) Aq(i+l) = f(q(i)) (38) 
0q] 

where i is the iteration number. The function f is defined as 

f(qn+:) = M/t~+I + ~ ( a ~  + A*) - Q~+I (39) 

and the tangent matrix is approximated by 

Of ,,~ bM + 4~a4~q Qq. (40) 
0q 

Similar to what was done in the projection in q, the terms involving 4~qq have been eliminated 
because they are negligible compared to the terms given in (40). 

As a result of using the positions q as primary variables, the solution of equation (37) yields 
a set of qn+l that not only satisfies dynamic equilibrium, but also the constraint conditions 
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= 0 to machine precision. As a consequence the.projection in q is not necessary, and only 
/1 and ii need to be projected to satisfy • = 0 and ~/i = 0. 

The numerical implementation of the augmented Lagrangian formulation with projections 
and index-three formulation becomes: 

ALGORITHM ALF-INDEX3 
1. Given q,/1 and ii at time step I. 
2. Use (38) iteratively to solve for qt+l Then use (15) to calculate the Lagrange multipliers 

),*, if desired. 
3. Use equations (23) and (33) to perform the projections in velocities and accelerations, 

and obtain a clean set of ¢1 and/1. 
4. Update the time variable and go to step 1. 

5. Numerical Results 

First Example. The simulation of a double pendulum that moves from rest in the horizontal 
position under gravity effects is carried out. Each link has a distributed unit mass and a 
unit length. We use natural coordinates for the modeling process [22] and for the integration 
we use the midpoint rule which is second order, implicit, A-stable and B-stable method, 
symplectic and also energy preserving in the linear regime [23]. The time step of integration 
is 0.001 seconds and the total time of simulation is 20 seconds. 

Figure 1 illustrates the time histories of the energy resulting from the analysis using the 
index-one formulation. The first plot shows the energy when no projection is made, the second 
when the projection is applied every 100 time steps, the third at every 10 steps and the fourth at 
every time step. These figures show that the errors are small in all cases (less than 0.04%) even 
when there are no projections to the constraint manifold. However, the proposed projection 
process helps reducing the integration errors. 
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Fig. 2. Constraint violations in positions, velocities and accelerations with and without projections. 

The results obtained in the constraint stabilization using the proposed projection process 
are shown in Figure 2 which compare the errors in # ,  # and # with and without projections. 
It may be observed how the projection process reduces the constraint errors to machine 
precision. 

Table 1 shows the results obtained, and illustrate the improvements in accuracy as mea- 
sured by the error in the total energy when compared with the maximum kinetic energy of the 
system. Table 1 also illustrates the increment in CPU time necessary for the projections. It 
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Table I. Comparative results with and without projections using ALF-INDEX 1. 

Method % Increment in Max. error in % of % Increment 

CPU time max. kinetic energy in accuracy 

Standard A.L.E - 0.0377% - 

Projecting every 100 steps 1.9% 0.0287% 76.13% 

Projecting every 10 steps 8.5% 0.0039% 966.67% 

Projecting every step 23.40% 0.0004% 10668.37% 

Table 2. Comparative results of a long simulation with and without projections. 

Method A E  A L  Drift A E  Drift A L  CPU time 

Lagran. with no Stabilz 2 . 4 . 1 0  ° 2.5 quadratic linear 380 

ALF # = 1, f~ = 10 9 . 0 . 1 0  -3 5 .0 .10  -6 linear none 314 

ALF-INDEX1 3 . 0 . 1 0  -4 ,,~ 10 -14 linear none 391 

ALF-INDEX3 3 .0 .10  -4 ,~ 10 -14 linear none 211 

may be seen how only 23.40% increment in CPU time, resulting from the projection at each 
time step, yields a much higher increase in accuracy. 

Second Example. We solve the simulation problem proposed in [16] as a benchmark to 
observe the accuracy of index reduction methods in long simulations. The problem consists 
of a single pendulum of unit mass and length, modeled with Cartesian coordinates x and 
y, subject to a fictitious gravity of unit value. A large oscillation problem is studied with 
horizontal initial position (x = 1 and y = 0) and initial velocity (5 = 0 and ~) = -1 ) .  

The numerical simulation is performed for 1000 units of time using the trapezoidal rule 
with fixed step size equal to 0.01 in a SPARC I workstation. The results of the simulation 
are shown in Table 2 where the four algorithms are compared: first, the Lagrange's multiplier 
approach with no constraint stabilization (equation (4)); second, the ALF with no projections 
and parameters # = 1 and f~ = 10; third the ALF-INDEX1 (accelerations as primary 

1 2 3 

Fig. 3. Assembly of two four-bar linkages. 
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Fig. 4. Two four-bar linkage: coordinate xl (top), velocity ~l (middle) and Lagrange multiplier (bottom). 

variables) with projection at every time step; and fourth the ALF-INDEX3 (positions as 
primary variables) with projections at every time step. 

The results are compared in Table 2, where A E  and AL indicate, respectively, the total 
energy error and drift of the length of the pendulum (the only constraint) at the end of the 
simulation. Table 2 also illustrates the total CPU time used by each of the methods as well as 
the drifts in AE and AL. It may be seen that the first case yields, as expected, unacceptable 
results. The augmented Lagrangian formulation with projection yields a substantial improve- 
ment in accuracy as well as constraint satisfaction over the standard ALF. In addition, an 
important observation comes from the comparison of the CPU time taken by the index-one 
and index-three formulations: the difference is almost 100%. 

Third Example. Figure 3 shows the initial position of a one degree-of-freedom assembly 
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(L) 
Fig. 5. Five link open-chain multibody. 

of two four-bar linkages. This mechanism constitutes a particularly critical example, because 
it undergoes a singular configuration any time it reaches the horizontal position. Then, the 
number of degrees of freedom increases instantaneously from 1 to 3. To define the position 
of the system, we use the 6 position variables (Xl, Yl, x2, Y2, x3, Y3). All the links are of 
length g = 1 m and have a uniformly distributed mass m = 1 Kg. The gravity force acts in 
the negative Y direction, with a value g = 8.81 rn/s 2. At t = 0 the initial velocity is 5:1 = 1. 
We integrate the motion for 10 seconds with time step of 0.025 seconds using the trapezoidal 
rule and the algorithm ALF-INDEX3. The value of the penalty parameter is c~ = 107. 

The results obtained are displayed in Figure 4. The top plot shows the time history of the 
coordinate Xl, the middle shows the velocity 5:1, and the bottom one shows the Lagrange 
multiplier A1, corresponding to a constant distance constraint between point 1 and the fixed 
end of the leftmost link. During the simulation the mechanism goes through the singular 
position (Ix1[ = 1) 10 times with no difficulty and without locking the simulation. 

Fourth example. The mechanism of Figure 5 is composed of five links interconnected by 
revolute joints. It is modeled with 30 natural coordinates [22] and 25 constraint equations. 
The motion is due to self weight and the simulation is carried out using the trapezoidal rule 
with the algorithm ALF-INDEX3 during 10 seconds. The time step is 0.008 seconds and 
ot = 107. 

The results obtained are displayed in Figure 6. The top plot shows the time history of the 
tip acceleration which shows peak values of 170 m/sec 2, thus indicating the good conver- 
gence characteristics of the method under very strong motions. The middle plot shows the 
total energy, which is nicely preserved during the integration process, and the bottom one the 
norm of the constraint violations with and without the augmented Lagrangian iteration. This 
iteration leads to a constraint satisfaction within machine precision. 

Fifth Example. The Andrew's squeezing mechanisms, described in detail in [24], has been 
proposed as an example to test numerical algorithms in multibody dynamics. We perform 
the simulation of this mechanism using the index-one formulation with a time increment of 
2 .10  -5 and o~ = 107, and the trapezoidal rule for the numerical integration. The total time of 
the simulation is 0.03 seconds, and the time history plots of the angles between the different 
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Fig.  6. Five-bar linkage: tip acceleration (top), energy (middle) and constraint errors (bottom). 

elements of  the mechanisms are illustrated in Figure 7. Then one of  the elements is substituted 
by a very stiff spring with constant equal to 108, thus adding additional numerical stiffness to 
the problem. The simulation is performed with no additional computational cost and yields 
the same results. All the constraint errors in position, velocities and accelerations are kept 
below 10 -14 . 

6. Conclusions 

We have presented in this paper a new method for multibody dynamics based on a combination 
of the augmented Lagrangian formulation and mass-orthogonal projections. We have shown 
through numerical simulation that the method yields a robust and efficient integration of 
the equations of  motion. The new method maintains all the advantages of the augmented 
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Lagrangian method such as: robustness with redundant constraints, positive definite and 
symmetric leading matrices even in changing configurations and singular positions; and 
easiness of implementation. In addition, it yields a much more accurate integration, as well as 
constraint satisfaction to machine precision. 

The mass.orth, ogonal projections are performed by a minimization process that eliminates 
the errors in # ,  ~/i and # (constraint cleaning). This process requires a reduced computational 
effort since the matrices used during the dynamic analysis are also used during the projections. 
Consequently, new matrix formation and triangularization for the solution of unknowns is kept 
to a minimum. 

The simulations illustrate the best performance/price ratio is obtained when the projections 
are made at every time step. The method shows good convergence characteristics under strong 
motions, for very stiff systems and under singular configurations. 
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