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A Monte Carlo technique has been developed to investigate the carrier dynamics and 
static gain saturation in graded-index separate confinement heterostructure quantum- 
well laser structures. The calculated electron relaxation times and gain compression 
coefficient show good agreement with published experiments. 

1. Introduction 
In semiconductor lasers, the drive for low threshold current forces one to go towards narrow 
quantum-well lasers. At the same time, since photons have to be strongly confined in the active 
region, large-bandgap cladding layers have to be incorporated. As a result, electrons and holes 
have to be injected into the quantum wells from very high energies and they have to shed -300 
to 500meV of energy before lasing through the quantum-well state, leading to prolonged 
carrier capture in both graded-index and ungraded-index separate confinement heterostructure 
(GRINSCH and SCH, respectively) quantum-well lasers. The carrier relaxation processes, via 
the nonlinear gain saturation phenomenon, is known to strongly affect the intrinsic modulation 
speed limit of a semiconductor laser [l-5]. This effect is investigated with the Monte Carlo 
method in this paper, where both electron relaxation and gain saturation are simultaneously 
simulated. Using the Monte Carlo approach, unlike the usual density matrix formalisms 
[l, 61, the details of the electron relaxation process such as intersubband relaxation by polar 
optical phonon and electron-electron scatterings can be included explicitly. Furthermore, the 
complications arising from the composition-graded confinement layers can also be handled. 
Owing to their larger mass and their having less excess energy to shed, the hole relaxation 
processes are much faster than the electron processes [7-91. Hence the relaxation processes 
in the conduction band dominate the device response. For this reason and to simplify the 
study, the hole effects are not included in this paper. 

2. Monte Carlo techniques 
The laser structures studied consist of a single InO.zGaO.eAs quantum well (4 to 1Onm width), 
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sandwiched between symmetrically graded (70% to 14% Al, 200nm thick) AlGaAs 
confinement layers. We have developed a Monte Carlo technique to simulate carrier relaxation 
in these structures. Using this method, we can simulate how an ensemble of carriers injected at 
the barrier edge progress through the graded-index region, are captured by the quantum well, 
and relax to their thermal equilibrium. 

In our Monte carlo method, we model the carrier transport in the 3D graded-index region 
and the 2D well region separately. The usual 3D Monte Carlo method [lo] is employed to 
simulate electron transport in the 3D graded-index region; 3D acoustic phonon scattering, 
polar optical phonon scattering, and inter- and intravalley scattering are considered. The 
2D well region includes the quantum-well layer and a thin layer of its neighbouring barrier 
that experiences significant quantum confinement effects. 2D Monte Carlo simulation is 
performed in this region. The dominant scattering mechanism in this region is polar optical 
phonon (POP) scattering. Using the Fermi Golden Rule, the intersubband POP rates are 
given by [ll] 

where N4 is the phonon occupation number, E, = 10.92 and E, = 12.90. The initial and final 
state wavevectors of the electron are kl and k2, while Q = f(kl - k2) and 4 are the phonon 
wavevector components parallel and perpendicular to the well layer. For simplicity, the carrier 
screening effects [12] are included in Equation 1 with Q0 = (e2n/e,kBT)1’2 as the Debye 
screening wavevector, where IZ is the carrier density. The multisubband coupling coefficients 
are given by 

H,,(Q) = JS &I dz21i,n(~~)~mn(z~) exd-Qlzl - 31) (2) 

where F,,,,,(z) = F,(z)F,,(z). Employing a finite-difference method, we obtain the envelope 
function F,,,(z) by solving the Schrodinger equation that describes the electronic states in the 
GRINSCH structure. For completeness, we also include the acoustic phonon (ACP) scattering 
rates in our model, although it is about 100 times smaller than the POP rates. 

Electron-electron (e-e) interactions become significant when the carrier density is 
moderately high. The total screened electron-electron scattering rate for the 3D region is 
found using the Fermi Golden Rule [13, 141 to be 

I’&ko) = nm*e4 c Ike - 4 
47rh3$,P2N auk p2 + Ike - k12 

where the sum is extended over the N carriers of the 3D ensemble, and p = 0.5Qo is the inverse 
effective screening length [14]. For the 2D region, the total electron-electron scattering rates 
are derived by summing over all tinal states the transition probability of two electrons in 
subbands i and j scattering into subbands m and n, respectively, after a collision [15]: 

r,(k) =$$$ cf;(ko)j 
2x l&?ln(q) I2 

do 
kd,n 0 (4 + %j2 

where q = Ig - g’l/2; g and g’ are the relative wavevectors of the initial and final states, 
respectively. Here, q. is the inverse screening length in two dimensions and Fijmn is the 
form factor giving the strength of this probability. Only dominant scattering processes are 
considered. They are the pure intrasubband scattering (i = j = m = n) and the intrasubband 
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scattering where i = m, j = n and i # j. We have implemented both the 2D and 3D e-e 
scattering mechanisms in our model using a rejection method [15, 161. 

We have successfully implemented the modelling of the carrier capture and re-emission 
processes - the 3D c) 2D transitions made by the carriers between the 3D and the 2D 
regions - within the Monte Carlo approach in our model. The technique is based on the 
reasoning that if we carry out a 2D Monte Carlo calculation for the graded region by including 
all subbands, then in principle the same result can be obtained from a corresponding 3D Monte 
Carlo calculation. In practice, we find that by considering up to five subbands a satisfactory 
modelling of the 3D H 2D transitions can be achieved. In our method, we model both the 
3D -+ 2D and 2D + 3D transitions as phonon-assisted processes. A transition energy level 
Et, is introduced to facilitate the 2D * 3D transition. We carry out the 3D -+ 2D transition 
if, upon the termination of a 3D free-flight, the total carrier energy after a phonon emission 
scattering process is expected to fall below E,. A final 2D state is chosen from the nearest 
subband considering energy and momentum conservation. We perform the reverse 2D --f 3D 
transition when the total energy of a well carrier is expected to exceed Et, after a phonon 
absorption scattering process. To conserve the in-plane energy and momentum, the in-plane 
wavevector is unchanged. Its z-directed wavevector is then obtained by considering energy 
conservation; its z-orientation is randomly selected. In our study, we set E, equal to one 
knT (26meV) above the subband minimum of the highest (tlfth) state being considered. 
This setting is confirmed with a series of simulation runs. We find essentially no change 
if E,, is increased somewhat, showing that inclusion of five subband levels is quite 
adequate. 

In addition to the above, the Pauli exclusion principle is invoked during the Monte Carlo 
simulation, using an array of k-cells and ensuring adherence to the principle in k-space. Details 
of the Monte Carlo program are presented elsewhere [17, 181. 

In Fig. 1 we show a typical carrier relaxation simulation result, the time evolution of the 
energy distribution of an ensemble of electrons injected from the edge of the confinement 
layer. The distribution is organized in terms of the total energy (sum of the potential and the 
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Figure 7 Time evolution of the energy 
distribution for an ensemble of 10000 relaxing 
electrons, injected from the edge of the con- 
finement layer with a kinetic energy of 15meV 
at time 0. The simulation is performed on a 
(linear) L-GRINSCH structure with a 5nm 
quantum well, under an applied electric field of 
3 kVcm-’ The ensemble of 10 000 electrons 
is equivalent to an injection density of 
10 l6 cm-3 in the simulation. 
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Figure 2 Comparison of the final distribution 
from the Monte Carlo simulation of Fig. 1, and 
the analytical quasi-Fermi distribution. The 
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kinetic energies) of the carrier; the conduction band of the low-bandgap material is the 
reference energy level. The ensemble of electrons is injected with an initial thermal 
distribution that is normally distributed with a zero mean in-plane momentum and a non- 
zero mean velocity-weighted perpendicular plane momentum, corresponding to an injected 
mean kinetic energy of 15meV. It is seen in Fig. 1 that after a sufficiently long time 
(>2Ops), the distribution has reached equilibrium. The final distribution is plotted in Fig. 2 
as the occupancy of well states. It is clearly shown in this figure that the final distribution 
obtained from the simulation compares very well with the analytical quasi-Fermi distribu- 
tion, as expected. 

It is useful to determine the electron capture time and compare it against published 
experiments. Electron capture is defined in this study as the time taken for the injected carrier 
to be captured into the ground state (first subband) of the quantum well. The simulation results 
show that the number of ensemble carriers captured rises roughly as (1 - exp(-t/r,)), where 
TV is the electron capture time constant. In Fig. 3, we show the calculated electron capture time 
constant obtained from additional simulations for different well widths, and for parabolic 
graded structures (P-GRINSCH) under similar simulation conditions. The figure shows 
that carrier relaxations in GGRINSCH structures are -30% faster than in P-GRINSCH 
structures. This result is in good agreement with the experiments of Morin et al. [8], where 
carrier capture time constants of 8.2~s and lops, compared to our calculated time constants 
of 6.7~s and 8.8 ps, are measured for 5 nm well width L-GRINSCH and P-GRINSCH 
structures, respectively. 

In conventional (uncompressed) optical gain spectra calculations [19], the carrier distribution 
in the active layer is assumed to be in equilibrium and is modelled using quasi-Fermi functions. 
This is a reasonable assumption if the photon density in the optical cavity is low, when the 
electron-hole recombination times are -1 ns while the carrier relaxation time is -lops. 
However, the quasi-Fermi assumption is not applicable as the stimulated emission rates 
approach the carrier energy relaxation times under high photon density conditions. In our 
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Figure 3 Calculated electron capture time 
constant as a function of well width for 
L-GRINSCH and P-GRINSCH (parabolic 
index grading) 5nm quantum well 
structures. The simulation is performed 
under similar simulation conditions as in 
Fig. 1. 

study, we obtain the carrier distribution from the Monte Carlo simulation of the carrier 
dynamics, as described above. 

Obviously, under intense photon emissions, the carrier dynamics simulation must consider 
the large amount of accompanying carrier recombination. To do this, the optically coupled 
region (OCR) of the carrier distribution f(E) is first estimated. We first calculate the optical 
gain spectra and then obtain the above-threshold steady-state lasing mode solution from the 
multimode coupled electron-photon rate equations describing the laser operation. This 
calculation is based on our previous work [20]. From this solution and from consideration of 
linewidth broadening factors, we then estimate the OCR of the carrier distribution f(E). An 
additional scattering rate Rstim is included for those carriers in the OCR. This rate can be 
derived from the usual steady-state photon rate equation as 

where us is the group velocity, r is the optical confinement factor, N,, is the number of carriers 
in the OCR, and A is the area considered in the simulation. 

3. Gain saturation simulation 
A two-step approach is employed to simulate the gain saturation effects in the layer structure to 
enable direct calculation of the gain compression coefficient. Since gain compression is a 
material phenomenon, its coefficient is independent of the waveguiding structure, such as 
whether its facets are antireflection coated. In fact, we find it more convenient to perform 
our calculations in the latter example of an equivalent travelling-wave optical amplifier. In 
addition, we make the laser line of the optical input signal coincide with the lasing mode of 
the would-be laser so that the ensuing simulation applies to the laser situation as well. In the 
first step, carrier relaxation is simulated to obtain the initial equilibrium state, having a desired 

S761 



Y. L. Lam and J. Singh 

carrier density in the well and a peak optical gain G1. Since we assume no optical input signal 
for now, the photon population S1 N 0. 

Next, we desire a second steady-state solution of the system having a tinite photon 
population &. Owing to gain saturation, the associated material gain Gz will be smaller than 
Gr. The reduction of the optical gain due to gain compression can be modelled [2] using 
G = Ge(1 - Cr), where the gain compression coefficient E is given by [21] 

AG 1 [ 1 G2 - G1 1 
6 = - EC, s=oz -____- 

S2 GI 
To facilitate the transition from an S = 0 initial steady state to the S # 0 second steady state, 

a stimulated emission rate of Rsu,,, is instantly established by the external CW optical input 
signal. The photon population Sr in the active layer is thus given by 

This stimulated emission rate Rstim is held constant throughout the entire Monte Carlo 
simulation, while the carriers adjust to establish a new steady state, having peak gain G2, 
OCR carrier count N,cr,2, and a final photon population S2 = R,,~No,,2/~.&I’G2. With 
these results, the gain compression coefficient can now be calculated using Equation 6. It is 
noted that holding the stimulated emission rate fixed, or equivalently varying the optical 
input signal to bring about a change in the photon population from Sr to S2, is solely for 
computational convenience only and does not in any manner affect the compression 
coefficient calculation, since steady-state analyses are employed here to characterize the gain 
saturation effects. 

Gain saturation is simulated for the L-GRINSCH structure having a 5 nm width quantum 
well. The initial steady state is established for a carrier density of - 1.1 x 101’ cm-’ in the 
quantum well, with a Monte Carlo simulation involving an ensemble of 6000 carriers. In 
equilibrium, most of these carriers (4268 out of 6000) are in the quantum well. The peak 
gain G1 = 640 cm-‘. To translate the simulation to the second finite S steady state, a 
stimulated emission rate of Rgim = lOlo s-l (with an OCR of 5meV FWHM at the band 
edge) is established. Figure 4 shows the changes in the peak optical gain, the numbers of 
carriers in the well (N,,tt) and the number of carriers in the optical coupled region (N,), 
respectively, during the transition from the initial zero-photon state to the final finite-photon 
state. 

The gain compression coefficient is calculated with Equation 6 to be E = 1.1 x lo-l7 cm3. 
The mrtttudes of E found in published experiments on bulk laser diode are (i) 
7 x lo- cm3 to 6.7 x lo-l7 cm3 [2, 221 (from the frequency response); (ii) lo-l7 cm3 [23] 
(from subpicosecond gain dynamics); (iii) 5.4 x 10-l’ cm3 [24] (using a parasitic-free optical 
modulation technique); and (iv) 1.2 x lOpi7 cm3 [25] (by measuring the intensity modulation 
spectra of current-modulated Fabry-Perot lasers). The experimental values of E for 
quantum-well lasers are (i) -3 x lo-l7 cm3 [26, 271 (from the frequency response); (ii) 
4.3 x lo-r7 cm3 [28] (by studying nondegenerate four-wave mixing); and (iii) 2.45 to 
7.34 x lo-r7 cm3 [29] (by relative intensity noise measurements). Furthermore, other recent 
theoretical studies have found the gain compression coefficient to be 1.67 x lo-t7 cm3 
[30] and 1.33 x lo-r7cm3 [31, 321. Therefore, reasonable agreement has been found 
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60 80 --- Figure 4 Results of the gain 
saturation simulation. 

between the e values obtained in the present study and published experimental and theoretical 
studies. 

We note that the gain saturation response time is related to the carrier relaxation time, i.e. the 
time required for a newly injected carrier (replenishing the carriers recombined in stimulated 
emission) to achieve equilibrium with the carrier population in the well. This is supported 
by the observation in Fig. 4 that the steady-state A& is lower at higher S, since more carriers 
are in the transit phase at higher photon emission rates. That is, in a hypothetical situation of 
faster carrier relaxation, fewer carriers will be in transit and more carriers will be in the well, 
contributing to the optical gain. We therefore see that the carrier relaxation time is intimately 
related to the static gain suppression phenomenon - longer relaxation time leads to greater gain 
compression. We have calculated the threshold carrier density nth for the GGRINSCH having 
typical laser parameters [20]; the results are shown in Table I. The electron capture time 
constants at these threshold densities are also calculated and listed in Table I. It is seen that 
these times are quite independent of the quantum-well width (within 4 to 10 run). Hence we 
expect the gain compression coefficient to be insensitive to variations in the quantum-well 
width under lasing conditions also. 

It is interesting to note from Fig. 4 that the gain saturation response is estimated to have a 
time constant of about 28~s. This is clearly longer than the electron capture time constants 
of 15 to 18~s given in Table I. This deviation can be explained by noting that the condition 
under which Fig. 4 has been calculated is for computational convenience only: a fixed 
stimulated emission rate is used causing the photon population to increase from 
3 x 1010cn~2 to eventually S, = 1.7 x 101r cmP2, where it stabilized at gain G2. The 
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TABLE I The 2D and 3D threshold carrier density nth of L-GRINSCH quantum-well lasers and the 
calculated electron capture time constants at lasing conditions (i.e. at carrier density equal to n,,,) 

Well width (nm) 

4 5 7 10 

2D (10” cm-*) nth 1.09 1.10 1.16 1.30 
3D (101* cmm3) nL 2.74 2.20 1.65 1.30 
Electron capture time constant (ps) 15.5 17.8 17.4 18.0 

‘strict’ approach would have required the photon population S, = 1.7 x 10” cm-* to be 
established immediately and be maintained until the gain stabilized at Gz. We therefore see 
that Fig. 4 is calculated with a comparatively lower stimulated emission rate at the initial 
portion of the response simulation. The resulting lower carrier recombination rate (and the 
corresponding lower carrier reinjection rate) leads to a longer response time, which explains 
the above observation. 

4. Conclusions 
We have successfully modelled the carrier relaxation processes and the gain saturation 
phenomenon in GRINSCH quantum-well lasers, using the Monte Carlo technique. 
Calculated electron capture times for L-GRINSCH and P-GRINSCH quantum-well laser 
structures have been found to compare reasonably well with published experiments. From 
gain saturation simulation, a gain compression coefficient of 6 = 1.1 x lo-l7 cm3 is 
calculated. Furthermore, we have shown that the electron relaxation times are more or less 
independent of the well width under lasing conditions, implying that the gain saturation effects 
are also similarly insensitive to the well width variation. 
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