
Supermodular Functions on Finite Lattices

S. DAVID PROMISLOW1 and VIRGINIA R. YOUNG2,*
1Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada.

e-mail: promis@yorku.ca
2Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA.

e-mail: vryoung@umich.edu

(Received: 2 August 2005; in final form: 21 October 2005)

Abstract. The supermodular order on multivariate distributions has many applications in financial

and actuarial mathematics. In the particular case of finite, discrete distributions, we generalize the

order to distributions on finite lattices. In this setting, we focus on the generating cone of

supermodular functions because the extreme rays of that cone (modulo the modular functions) can

be used as test functions to determine whether two random variables are ordered under the

supermodular order. We completely determine the extreme supermodular functions in some special

cases.
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1. Introduction

Traditionally, the supermodular order on multivariate distributions has been used

to compare the riskiness of multivariate random variables on I k , in which I is a

totally-ordered set, such as the real numbers, the positive integers, or some subset

of these sets, and k is a positive integer. Note that I k is a lattice under the partial

order given by x � y if each coordinate of x 2 I k is less than or equal to the

corresponding coordinate of y 2 I k . In fact, one can consider real-valued random

variables defined on lattices L more general than I k , and we do so in this paper.

Recall that a lattice is a set equipped with a partial order such that every pair of

elements ðx; yÞ has a least upper bound x _ y and a greatest lower bound x ^ y.

To define the supermodular order on random variables on lattices, we begin

by saying that a real-valued function defined on a lattice, f : L!R, is

supermodular if

f ðx _ yÞ þ f ðx ^ yÞ � f ðxÞ þ f ðyÞ; ð1:1Þ
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for all x; y 2 L. Next, one says that a random variable X on L, endowed with

some probability measure, is dominated by Y in supermodular order if

E½ f ðX Þ� � E½ f ðY Þ�; ð1:2Þ

for all real-valued supermodular functions f on L for which the expectations in

(1.2) exist. See Shaked and Shanthikumar [11], Müller and Scarsini [8], Müller

and Stoyan ([9]; Section 3.9), and Promislow [10] for more on the supermodular

order.

In this paper, we consider the problem of determining when two random

variables are related in the supermodular order. Our work is inspired by the

following example.

EXAMPLE 1.1. Two real-valued random variables on R, endowed with a

probability measure, are said to be ordered via first-stochastic dominance if

inequality (1.2) holds for all real-valued increasing functions f on R, for which

the expectations exist. To apply this definition to determine whether two random

variables are so ordered can be difficult. However, there is a subset of increasing

functions for which it is easy to check (1.2). Indeed, consider the collection of

increasing step functions fa of the form faðxÞ ¼ 1 if x > a and faðxÞ ¼ 0 other-

wise, for an arbitrary real number a 2 R. Then, (1.2) becomes

PrðX > aÞ � PrðY > aÞ: ð1:3Þ

It is well known that if (1.3) holds for all real numbers a, then Y dominates X in

first-stochastic dominance order; that is, (1.2) holds for all increasing functions,

subject to some technical requirements. See, for example, Mosler and Scarsini

[6] and the references therein. For more recent references on this topic, see

Müller [7] and Müller and Stoyan ([9]; Section 2.5). Note that (1.3) is certainly

easier to verify for all a than is (1.2) for all increasing functions f .

Similarly, it can be difficult to check whether two random variables are

ordered in the supermodular order. Promislow [10] shows that the supermodular

order is equivalent to one involving a sequence of mass shifts, for which

dominance might be easier to determine. In this paper, we take the approach in

Example 1.1 by seeking a representative subset (or test set) of supermodular

functions such that if (1.2) holds for all the functions in the test set, then it holds

for all supermodular functions.

In the next section, we present our basic framework and introduce the idea of

extreme supermodular functions on lattices. It is the set of extreme supermodular

functions that (in some sense) will serve as our test set. In Section 3, we find the

extreme supermodular functions on chain lattices, that is, lattices formed by

joining disjoint chains at their maximum and minimum. In Section 4, we turn our

attention to the lattices Zk
n and closely examine the lattice Zk

2, the lattice of

subsets of a k-element set. In Section 5, we determine the extreme supermodular
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functions on Z4
2. In Section 6, we focus on Z3

n and determine the extreme

supermodular functions on Z3
3. Section 7 concludes the paper.

2. Basic Definitions

Let L be a finite lattice with d elements, and let 1 and 0 denote the maximum and

minimum elements of L, respectively. We denote the space of all real-valued

functions on L by F . For each f 2 F and for each pair of elements ðx; yÞ 2
L� L, we define

�f ðx; yÞ ¼ f ðx _ yÞ þ f ðx ^ yÞ � f ðxÞ � f ð yÞ: ð2:1Þ

Note that if x and y are comparable, then �f ðx; yÞ ¼ 0.

We say that the pair ðx; yÞ is f -modular if �f ðx; yÞ ¼ 0. We say that the

function f is modular if every incomparable pair is f -modular. From (1.1), note

that function f is supermodular if �f ðx; yÞ � 0 for all x; y 2 L.

Denote the convex cone of supermodular functions by S and the subspace of

modular functions byM. As an aside, note that the supermodular functions S do

form a cone in Rd . Recall that a cone in a vector space is a set K such that 0 2 K
and �x 2 K for every � � 0 and every x 2 K. Moreover, S is convex: Let 0 �
� � 1 and let f ; g 2 S; then, �f þ ð1� �Þg 2 S because �� fþð1��Þg ¼ ��f þ
ð1� �Þ�g. Thus, the supermodular order is generated by a cone of functions, as

is the first-stochastic dominance order; see Marshall [5], Whitt [13], and Müller

and Stoyan (9; Chapter 2) for work on orders generated by cones of functions.

Our goal is to find a set of supermodular functions, or generators, E ¼
fe1; e2; . . . ; emg such that every supermodular function f can be written as f ¼Pm

i¼1 �iei for �i � 0, i ¼ 1; 2; . . . ;m. We know that such a set exists, since S is

the intersection of finitely many closed halfspaces; see Ziegler (14, Theorem

1.3). In particular, S is the intersection of Hx; y ¼ f f 2 F : �f ðx; yÞ � 0g as x; y
runs over the incomparable pairs of L. It is usually not difficult to find a basis for

the subspaceM, which means we can restate our goal with the quotient S=M in

place of S. We can then check that X is dominated by Y in the supermodular

order by verifying that inequality (1.2) holds for each generator in S=M and that

(1.2) holds with equality for each basis element inM. See Müller and Stoyan (9;

Theorem 2.5.1) for a related result.

The advantage of moving to the quotient cone is that S=M is a convex cone

without lines, and we can show that a minimal generating set E of S=M must be

precisely generators of the extreme rays of this cone. We will review briefly the

relevant facts. The nonnegative multiples of an element in a cone K form a ray.

We say that the ray K1 � K is extreme if for any a 2 K1 and any b; c 2 K such

that a ¼ bþ c, then we have b; c 2 K1. A set B is called a base of K if 0 =2 B and

for every point a 2 K such that a 6¼ 0, there is a unique representation a ¼ �b

with b 2 B and � > 0. If K has a compact, convex base then it follows from a

version of the Krein-Milman Theorem [1] that every point a 2 K can be written
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as
Pm

i¼1 �iei for �i � 0, in which the points ei span the extreme rays of K. In

contrast, it is of interest to note that a cone containing a nonzero subspace M

has no extreme rays since for any nonzero a =2 M and nonzero m 2 M ,

a ¼ ða� mÞ þ m and m is not in the ray generated by a, while for nonzero

a 2 M ; a ¼ 2aþ ð�aÞ and �a is not in the ray generated by a.

To verify that S=M has a compact, convex base, we define the linear

functional L on F=M by Lðf Þ ¼
P

x;y �f ðx; yÞ, and note that L is positive on the

nonzero elements of S=M. For our base, we take fk 2 S=M : LðkÞ ¼ 1g. This

is clearly a base, convex and closed. It is bounded due to the following lemma,

which is probably well known, but for lack of a suitable reference, we include a

proof.

LEMMA 2.1. Let K be a closed cone in Rd and let L be a linear functional on

K such that LðkÞ > 0 for all k 6¼ 0 2 K. Then, fk 2 K : LðkÞ ¼ 1g is bounded

under the usual metric k�k in Rd .

Proof. Suppose not; then, for any integer n, we can find kn 2 K such that

LðknÞ ¼ 1 and kknk � n. Let xn ¼ kn=kknk; then, 0 < LðxnÞ � 1=n, and

kxnk ¼ 1. By compactness of the unit sphere, we can suppose that xn ! x for

some x with kxk = 1, so x 6¼ 0. Since K is closed, x 2 K. But LðxÞ ¼ limn!1
LðxnÞ ¼ 0, a contradiction to the hypothesis. Ì

A similar problem arises in polymatroid theory where the object of interest is

the collection of submodular functions, that is, those satisfying (1.1) with the

inequality reversed. Edmonds [2] proposed the problem of finding the extreme

rays of the cone of functions on Zk
2 that are submodular, increasing, and assign 0

to 0. It can be shown that this cone is isomorphic to a direct sum of S=M and a

certain cone of modular functions (specifically, the positive measures – see the

remark at the end of Section 4.1), so for the lattice Zk
2, the two problems are

essentially equivalent. We find the cone S=M easier to deal with and more

natural for our particular application. Kovalëv [3] and Kovalëv et al. [4]

investigate extreme rays for certain subcones of submodular functions.

The rays of the cone S=M can be identified with the set Q of equivalence

classes under the equivalence relation � on S, whereby f � g if f � �g 2M for

some � > 0. We let ½ f � denote the equivalence class of f . We will, in what

follows, refer to a function f 2 S as being extreme to mean that ½ f � is an extreme

ray in Q. It follows that a function f 2 S is extreme, according to this definition,

if and only if f ¼ g þ h, for g; h 2 S, implies that either g 2 M or g � f .

For f ; g 2 S, we say g 	 f if all f -modular pairs are also g-modular. This

defines a relation on Q, ½ g� 	 ½ f �, which is well-defined, since if ðx; yÞ is f -

modular, then it is g-modular for all g � f . This relation is clearly transitive and

reflexive. It is not an order, but rather a preorder, because we can have two

distinct elements with precisely the same f -modular pairs. For example, for any f

that takes zero values except for positive values on 1 and 0, the f -modular pairs
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are all those ðx; yÞ for which neither x _ y ¼ 1 nor x ^ y ¼ 0. The importance of

this pre-order is given by the following.

LEMMA 2.2. If f ¼ g þ h, in which f ; g; h 2 S, then g 	 f .

Proof. Note that from (2.1),

�f ðx; yÞ ¼ �gðx; yÞ þ �hðx; yÞ � �gðx; yÞ � 0:

Therefore, if ðx; yÞ is f -modular, then �f ðx; yÞ ¼ 0, from which it follows that

�gðx; yÞ ¼ 0, or equivalently, ðx; yÞ is g-modular. Ì

This lemma leads to an equivalent characterization of extreme functions.

THEOREM 2.3. ½ f � is extreme if and only if ½ f � is a minimal non-modular

element with respect to 	. That is, for g =2 M, ½g� 	 ½ f � implies that g � f .

Proof. Suppose that ½ f � is minimal non-modular with respect to 	 and that

f ¼ g þ h, in which g; h 2 S and g =2 M. Then, by Lemma 2.2, we have g 	 f

and by minimality, we must have g � f .

Conversely, suppose that ½ f � is not minimal non-modular. Then, we can find

g in S but not in M, for which g 6� f and g 	 f . Any pair ðx; yÞ that is not g-

modular is also not f -modular, so we can choose a positive � that is less than

�f ðx; yÞ=�gðx; yÞ for all non g-modular pairs ðx; yÞ. Then, f � �g 2 S, and the

decomposition f ¼ ð f � �gÞ þ �g shows that f is not extreme. Ì

We will often proceed in the following manner. We are given a set E of

extreme (supermodular) functions on a given lattice L, and we want to show that

these constitute, up to equivalence, all the extreme functions. There are two ways

to proceed. One is to show that any function f 2 S can be written as positive

linear combination of functions in E. Another is to show that for any f 2 S there

is an e 2 E such that e 	 f . If we have identified E as a complete set of extreme

functions by this latter method, it will turn out that any f 2 S can be written as a

positive linear combination of functions in E, by invoking Theorem 2.3 and the

Krein-Milman Theorem [1].

The following definitions and examples introduce supermodular functions that

we use later in finding extreme functions on various lattices.

DEFINITION 2.4. We say that a 2 L is indecomposable if there does not exist

an incomparable pair ðx; yÞ such that x _ y ¼ a and there does not exist an

incomparable pair ðv;wÞ such that v ^ w ¼ a. We say that a 2 L is quasi-

indecomposable if x _ y ¼ a implies that x ^ y ¼ 0 and if x ^ y ¼ a implies that

x _ y ¼ 1, where in either case, ðx; yÞ is an incomparable pair. For an

indecomposable a, let inda denote the function that takes the value of �1 at a

and zero elsewhere. For a quasi-indecomposable a, let qina denote the function
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that takes the value of �1 at a, the value of 1 at 0 and at 1, and the value of 0

elsewhere. It is clear that these functions are supermodular.

EXAMPLE 2.5. In the lattice of subsets of a two-element set, the singletons are

indecomposable. In the lattice of subsets of a four-element set, the two-element

sets are quasi-indecomposable.

DEFINITION 2.6. Two common supermodular functions on a lattice are (1) the

upper function ux for x 2 L that takes the value 1 on all points greater than or

equal to x and the value of zero elsewhere and (2) the lower function ‘x that takes

the value 1 on all points less than or equal to x and the value 0 elsewhere. In

Definition 2.8 below, we introduce a generalization of these functions that

involve the concept of fans.

An upper fan F in L is a subset of pairwise incomparable points ða1;
a2; . . . ; amÞ, for which each pair of distinct points ðai; ajÞ has the same least upper

bound. We call the index m the length of the fan. A lower fan G in L is a subset of

incomparable points ða1; a2; . . . ; amÞ, for which each pair of distinct points ðai; ajÞ
has the same greatest lower bound; that is, G is an upper fan in the dual lattice.

EXAMPLE 2.7. In the lattice of all subsets of a four-element set fa; b; c; dg, we

can list all upper fans. In this example and in Sections 4 and 5, we write, say,

ab to denote fa; bg. For example, fab; acd; bcdg should more properly be

written as ffa; bg; fa; c; dg; fb; c; dgg, but we find the latter notation cumber-

some. The upper fans of this lattice are as follows:

(i) Any singleton in the lattice, that is, any subset of fa; b; c; dg (the restriction

is vacuous);

(ii) Any doubleton of incomparable points in the lattice, that is, any two subsets

of fa; b; c; dg neither of which is a subset of the other;

(iii) fab; ac; bcg;
(iv) fab; acd; bcdg;
(v) Any three of the three-element subsets; and

(vi) All four of the three-element subsets;

where in (iii) and (iv), we include all sets arising from the given one by a

permutation of the elements in fa; b; c; dg.

DEFINITION 2.8. Given an upper fan F (see Definition 2.6), for which b is the

common least upper bound of any pair of points, let uF denote the function that

takes the value 1 on all points x such that for some i, ai � x, but b 6� x; the value

2 on all x such that b � x; and the value 0 elsewhere. Note that uF generalizes the

notion of upper function ux.

For a lower fan G, for which c is the common greatest lower bound of any

pair of points, let ‘G denote the functions that takes the value 1 on all points x
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such that for some i, x � ai but x 6� c; the value 2 on all x such that x � c; and

the value 0 elsewhere. Note that ‘G generalizes the notion of lower function ‘x.

THEOREM 2.9. The functions uF and ‘G are supermodular.

Proof. We prove this for uF . We consider various cases for incomparable

pairs ðx; yÞ and show that f ðx _ yÞ þ f ðx ^ yÞ � f ðxÞ þ f ðyÞ in each case.


 If uFðxÞ ¼ 1 and uFð yÞ ¼ 0, then for some i, we have ai � x, which implies

that ai � x _ y. Thus, uFðx _ yÞ � 1:

 If uFðxÞ ¼ 1 and uFð yÞ ¼ 1, then for some i and j, we have ai � x and aj � y:

If i ¼ j, then uFðx _ yÞ � 1 and uFðx ^ yÞ � 1. If i 6¼ j, then b � x _ y, so that

uFðx _ yÞ ¼ 2.

 If uFðxÞ ¼ 2 and uFð yÞ ¼ 0, then uFðx _ yÞ ¼ 2.

 If uFðxÞ ¼ 2 and uFð yÞ ¼ 1, then for some i, we have ai � y � b and

ai � b � x, so that ai � x ^ y. Hence, uFðx ^ yÞ ¼ 1, and uFðx _ yÞ ¼ 2.

 If uFðxÞ ¼ 2 and uFð yÞ ¼ 2, then uFðx _ yÞ ¼ uFðx ^ yÞ ¼ 2. Ì

3. Extreme Functions on Chain Lattices

In this section, we find a basis for the modular functions and a complete set of

extreme supermodular functions on any chain lattice. A chain lattice is a lattice

that consists of the joining of disjoint chains at their maximum and minimum.

Specifically, let Cðm1;m2; . . . ;mkÞ denote the lattice that consists of the points

0, 1, and xij, in which j ¼ 1; 2; . . . ;mi and i ¼ 1; 2; . . . ; k. The order is given by

0 � xij � 1 for all i; j; xij � xil if and only if j � l; and for i 6¼ h; xij and xhl are

incomparable for all j; l. In other words, the lattice consists of k chains that

are disjoint except for 0 and 1. We let Ci denote the set f0; 1; xij for j ¼ 1;
2; . . . ;mig. The points other than 0 or 1 will be called the intermediate points

of Ci.

We first determine the subspace of modular functions M on Cðm1;
m2; . . . ;mkÞ. For k > 2, M is 2-dimensional, consisting of the functions

Mða; bÞ that take the value of a at 1, b at 0, and ðaþ bÞ=2 on all intermediate

points. For k ¼ 2,M is 3-dimensional, consisting of the functions Mða; b; cÞ that

take the value of a at 1, b at 0, c at all intermediate points of C1, and aþ b� c

on all intermediate points of C2. We say that a function on a chain lattice is in

normal form if it takes the value 0 at both 1 and 0. If k > 2, it is clear that for

each f 2 S, there is a g 2 S in normal form such that f � g, in which g is

unique up to positive scalar multiple.

As a first step in seeking extreme supermodular functions, we have the

following lemma.

LEMMA 3.1. Suppose k > 2. Then, for all i ¼ 1; 2; . . . ; k, the upper function

uxi1
is extreme.
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Proof. We can take as normal form for uxi1
a function that takes the value 1

on the intermediate points of Ci and a value of �1 on all other intermediate

points. Take any f in normal form such that f 	 uxi1
. Suppose that f ðxi1Þ ¼ �.

Then, for all h 6¼ i and for all l ¼ 1; 2; . . . ;mh, we have that ðxi1; xhlÞ is uxi1
-

modular and, therefore, f -modular. Hence, �þ f ðxhlÞ ¼ 0, or f ðxhlÞ ¼ ��. We

similarly conclude that f ðxijÞ ¼ � for all j ¼ 1; 2; . . . ;mi, thereby showing that f

is equivalent to a nonnegative multiple of uxi1
. Note that we must have � � 0,

since if not, we could contradict the supermodularity of f by looking at

intermediate points on chains Ch and Cj, where h and j are distinct indices and

neither is equal to i. ÌÌ

Remark. For k ¼ 2 and i ¼ 1; 2, the functions uxi1
are easily seen to be

modular.

In the lattice Cðm1;m2; . . . ;mkÞ, all the intermediate points are indecompos-

able. Let sij denote the supermodular function indxij
; that is, sij takes the value �1

on xij and 0 elsewhere. It is natural to ask when this function is extreme.

THEOREM 3.2.

(a) If k > 3, then sij is extreme for all j ¼ 1; 2; . . . ;mi and i ¼ 1; 2; . . . ; k.

(b) Suppose k ¼ 3. If mi > 1, then sij is extreme for j ¼ 1; 2; . . . ;mi. If mi ¼ 1,

then si1 �
P

j6¼i uxj1
.

(c) Suppose k ¼ 2. If mi > 1, then sij is extreme for j ¼ 1; 2; . . . ;mi. If, say

m1 ¼ 1, then s11 �
Pm2

j¼1 s2j.

Proof.

(a) We will show that for f 2 S in normal form with f 	 sij, it follows that f is

a nonnegative multiple of sij. The modular pairs for sij are those that do not

include the point xij. Take any two points other than xij that are in different

chains. The sum of the values of f on these two points must then equal 0.

Since we have at least three such chains from which to choose, the only way

this can occur is if f takes the value 0 on all such points. Because f is

supermodular, f ðxijÞ � 0. Thus, f equals a nonnegative multiple of sij.

(b) When k ¼ 3, then we still have three chains from which to choose, except

when mi ¼ 1. For the final statement, note that when mi ¼ 1,

si1 þMð2; 0Þ ¼
X

j 6¼ i

uxj 1
:

(c) Suppose m1 > 1; then, take f 	 s1j in normal form. It follows that for any

h 6¼ j and for all l ¼ 1; 2; . . . ;m2, we have f ðx1hÞ ¼ �f ðx2lÞ. By adding to f
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the modular function Mð0; 0;�f ðx1hÞÞ, we obtain that f is equivalent to a

nonnegative multiple of s1j. For the final statement, note that when m1 ¼ 1,

s11 þMð0; 0; 1Þ ¼
Xm2

h¼1

s2h:
Ì

THEOREM 3.3. A complete set of extreme supermodular functions for the chain

lattice Cðm1;m2; . . . ;mkÞ is given as follows:

(a) When k > 3, fsij; uxi1
: j ¼ 1; 2; . . . ;mi; i ¼ 1; 2; . . . ; kg is a complete set of

extreme functions.

(b) When k ¼ 3, fsij : mi > 1; j ¼ 1; 2; . . . ;mi; i ¼ 1; 2; 3g [ fuxi1
: i ¼ 1; 2; 3g

is a complete set of extreme functions for Cðm1;m2;m3Þ.
(c) Suppose k ¼ 2. If m1 ¼ m2 ¼ 1, then s11 � s21 � u1 is the unique extreme

function. Otherwise, fsij : j ¼ 1; 2; . . . ;mi > 1; i ¼ 1; 2g is a complete set of

extreme functions for Cðm1;m2Þ.

Proof. Take f 2 S in normal form. If all values of f are nonpositive, then we

can directly write f as a linear combination of the functions sij with nonnegative

coefficients. If not all values of f are nonpositive, suppose that �, the maximum

value of f , occurs at an element in Ci. Then, since f is supermodular, its value on

all other chains must be less than or equal to ��. By subtracting � times the

normal form of uxi1
, as given in the proof of Lemma 3.1, we obtain a function

with all values nonpositive. This proves (a), and for (b) and (c) we use the results

from the corresponding statements in Theorem 3.2. Ì

4. The Lattice Zk
n

Generally, one considers the supermodular ordering between random variables

defined onRk , that is, on k-variate random variables. Therefore, in our context of

finite lattices, we are interested in supermodular functions on the lattice Zk
n that

consists of all k-tuples x ¼ ðx1; x2; . . . ; xkÞ, in which each xi takes a value of 0 to

n� 1 and x � y if xi � yi for all i ¼ 1; 2; . . . ; k.

In this section, we first give a basis for the modular functions on Zk
n. We then

determine when the supermodular functions uF and ‘G are extreme. After that,

we provide a useful representation of functions in F and use that representation

to find complete sets of extreme functions for the lattices Z2
n and Z3

2.

4.1. MODULAR FUNCTIONS ON Zk
n

For the purpose of finding a basis for the modular functions, define ‘ and n,

respectively, on Zk
n by ‘ðxÞ ¼

Pk
i¼1 xi and by setting nðxÞ equal to the number of

nonzero entries in x. Let �ði;mÞ denote the element of Zk
n that consists of all
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zeros except for an entry of m in position i. Note that �ði; 0Þ ¼ 0 for all i. For

i ¼ 1; 2; . . . ; k and m ¼ 1; 2; . . . ; n� 1, let Mði;mÞ denote the function that

takes the value 1 on all x for which xi ¼ m and takes the value 0 elsewhere. It is

clear that each Mði;mÞ is modular and that these functions are linearly

independent.

THEOREM 4.1. For the lattice Zk
n, the space M of modular functions is

generated by Mði;mÞ and the constant functions and is, therefore, of dimension

kðn� 1Þ þ 1.

Proof. Let f be a modular function that is 0 at 0. We will prove the theorem

by showing that f is determined by its values on �ði;mÞ for i ¼ 1; 2; . . . ; k and

m ¼ 1; 2; . . . ; n� 1. Specifically, we will show that if x ¼ ðx1; x2; . . . ; xkÞ 6¼ 0,

then

f ðxÞ ¼
Xk

i¼1

f ½�ði; xiÞ�: ð4:1Þ

We verify (4.1) by induction on ‘ðxÞ. Expression (4.1) is clearly true for elements

y such that ‘ð yÞ ¼ 1. Suppose it true for all y with ‘ð yÞ < r, and choose x with

‘ðxÞ ¼ r. If nðxÞ ¼ 1, then (4.1) is trivially true. If not, let x0 be obtained from x

by replacing a nonzero entry with 0, and let x00 be obtained by replacing all the

other entries with 0. Then, x0 _ x00 ¼ x, x0 ^ x00 ¼ 0, and

f ðxÞ ¼ f ðx0Þ þ f ðx00Þ

because f is modular. Because both x0 and x00 satisfy (4.1) by the induction

hypothesis, it is clear that x does as well. Ì

One can also derive Theorem 4.1 from Theorem 3.3 of Topkis [12], which

characterizes the modular functions for any lattice that is a product of chains.

Note that Theorem 4.1 implies the well known fact that if X and Y are random

variables on Zk
n ordered according to the supermodular order, then they have

equal marginal distributions. In the particular case of Zk
2 viewed as the lattice of

subsets of a k-element set, the modular functions are sums of a signed measure

on the set plus a constant.

4.2. WHEN ARE uF AND ‘G EXTREME SUPERMODULAR FUNCTIONS ON Zk
n
?

From Theorem 2.9, we know that uF and ‘G (see Definitions 2.6 and 2.8)

are supermodular for fans F and G on any finite lattice. In Lemma 3.1 and

Theorem 3.2, we determined when ux and indx on chain lattices are extreme. In
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this subsection, as a parallel to that, we determine when uF and ‘G are extreme

on Zk
n.

Define ðZk
nÞ* ¼ fx 2 Zk

n : xi 6¼ 0 for at least 2 values of the index i ¼ 1;
2; . . . ; kg. In other words, ðZk

nÞ* consists of elements other than �ði;mÞ and 0.

We say that a function f on Zk
n is in normal form if f ðxÞ ¼ 0 for all x =2 ðZk

nÞ*.

Note that we do not have a general definition of normal form; it depends on the

particular lattice. The definition we give for normal form for functions on Zn
k is

different from the one we gave for chain lattices in Section 3.

LEMMA 4.2. For all f 2 F , there is an f o in normal form such that f � f o, in

which f o is unique up to positive scalar multiple.

Proof. Let

f o ¼ f �
X

i;m 6¼ 0

f ð�ði;mÞÞMði;mÞ � f ð0ÞI ;

in which I is the function that is identically 1. It is clear that f o is in normal form

and is equivalent to f . If g is any other such function, then f o � �g is modular

for some � > 0 and takes the value 0 on all �ði;mÞ and on 0. By Theorem 4.1,

f o ¼ �g. Ì

LEMMA 4.3. If f 2 S is in normal form, then f is order-preserving. That is,

x � y implies that f ðxÞ � f ð yÞ.
Proof. Suppose that x and y are elements of Zn

k that agree in all positions,

except that xi ¼ m and yi ¼ mþ 1 for some m ¼ 0; 1; . . . ; n� 1. Then, by

supermodularity of f ,

f ð yÞ � f ðxÞ þ f ½�ði;mþ 1Þ� � f ½�ði;mÞ� ¼ f ðxÞ:

An obvious induction completes the proof. Ì

From Lemmas 4.2 and 4.3, we can deduce the well known result that in the

definition of supermodular order (1.2), we can restrict f to be an increasing

supermodular function in our finite setting. See Müller and Stoyan (9; Theorem

3.9.11) for the corresponding result in a more general setting.

We say x 2 Zk
n is f-zero if f oðxÞ ¼ 0, in which f o � f is in normal form. It

follows from Lemma 4.3 that if x is f -zero, then y is f -zero for all y � x.

LEMMA 4.4. Suppose f 	 g, where f and g 2 S. If x is g-zero, then it is f-zero.

Proof. Suppose f and g are in normal form. If x is g-zero but not f -zero, let z

be a minimal point from those elements dominated by x on which f takes a

nonzero value. Then, z has at least two nonzero entries, so we can certainly find

nonzero a; b such that z ¼ a _ b. But, then, �f ða; bÞ ¼ f ðzÞ 6¼ 0, a contradiction

since ða; bÞ is g-modular by Lemma 4.3. Recall that �f is defined in (2.1). Ì
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THEOREM 4.5. Let F be an upper fan in Zn
k; see Definition 2.6.

(a) If F ¼ fa1g, then uF is extreme if and only if a1 has more than one nonzero

coordinate, and ‘F is extreme if and only if a1 has fewer than ðk � 1Þ nonzero

coordinates. Otherwise, uF and ‘F are modular.

(b) If F ¼ fa1; a2g is an upper fan of length 2, then uF ¼ ua1
þ ua2

; thus, uF is

not extreme. Similarly, if G ¼ fa1; a2g is a lower fan of length 2, then

‘G ¼ ‘a1
þ ‘a2

; thus, ‘G is not extreme.

(c) For any upper fan F or lower fan G of length greater than 2, uF and ‘G are

extreme.

Proof. We prove this theorem for uF . Parts (a) and (b) are straightforward, so

we focus on part (c). Suppose f 2 S is in normal form and f 	 uF . We will show

that f is a nonnegative multiple of uF . The multiple, of course, could be 0, which

arises when f is modular.

Let F ¼ fa1; a2; . . . ; amg be an upper fan with m � 3, and let b be the

common least upper bound of any pair. Let f ða1Þ ¼ �. For each i, we know that

ða1; aiÞ is uF-modular and, thereby, f -modular. Moreover a1 ^ ai is uF-zero, so

f ða1 ^ aiÞ ¼ 0 by Lemma 4.4. Therefore, f ðbÞ ¼ �þ f ðaiÞ for all i. Similarly,

f ðbÞ ¼ f ða2Þ þ f ða3Þ, showing that for all i, f ðaiÞ ¼ � and f ðbÞ ¼ 2�.

Suppose that z is greater than or equal to some ai but not b. Let w be such that

ai _ w ¼ z and ai ^ w ¼ 0; the existence of such an element w is easily verified.

Our hypothesis on z shows that w cannot dominate any of the elements in F;

therefore, w is uF-zero, from which it follows that f ðwÞ ¼ 0. Thus, ðai;wÞ is uF-

modular and, thereby, f -modular, showing that f ðzÞ ¼ �: A similar argument

shows that for all z greater than or equal to b, f ðzÞ ¼ 2�. Thus, we have shown

that f ¼ �uF . Ì

4.3. A REPRESENTATION OF FUNCTIONS IN F

We now introduce a representation of functions that will be useful in determining

extreme supermodular functions. At the end of this subsection, we describe how

to thus use this representation. In the next subsection, we apply our technique

and find complete sets of extreme supermodular functions for Z2
n and Z3

2.

For any x 2 ðZk
nÞ*, let �x be the function defined by

�xðyÞ ¼

1; if yi ¼ xi except for an even number

of indices j on which yj ¼ xj � 1;

�1; if yi ¼ xi except for an odd number

of indices j on which yj ¼ xj � 1;

0; for all other y:

8
>>><

>>>:

For example, take k ¼ 3 and n � 5. Then, �234 takes the value 1 on 234, 124,

133, and 223; the value �1 on 134, 224, 233, and 123; and the value 0 elsewhere.
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THEOREM 4.6.

< uy; �x > ¼
1; if y ¼ x;

0; if y 6¼ x.

�

Here < �; � > denotes the inner product on F defined by < f ; g > ¼
P

x2Zk
n

f ðxÞgðxÞ.
Proof. When y ¼ x, this is clear because there is no other element in the

support of �x that is greater than or equal to x, other than x itself. In all other

cases, the set of elements in the support of �x that are greater than y either is

empty or contains an even number of elements, with half of them assigned the

value of 1 and the other half �1. Ì

Given f 2 F , define f̂f on ðZk
nÞ* by f̂f ðxÞ ¼ < f ; �x >. We refer to f̂f as the

upper transform of f . From Theorem 4.6, if f is in normal form, then we can

write

f ¼
X

x2ðZk
n Þ*

f̂f ðxÞux: ð4:2Þ

If f � g, then f̂f ¼ � ĝg for some � > 0; therefore, the upper transform (up to

positive scalar multiple) is independent of the equivalence class.

Moreover, the following is clear from the definitions of f̂f and �x:

If f 2 S and if x 2 Zk
n has exactly two nonzero entries, then f̂f ðxÞ � 0: ð4:3Þ

Indeed, in that case, f̂f ðxÞ ¼ �f ðy; zÞ for some y; z. For example, if x ¼ ða; b;
0; . . . ; 0Þ, we can take y ¼ ða� 1; b; 0; . . . ; 0Þ and z ¼ ða; b� 1; 0; . . . ; 0Þ.

The inverse formula for f in normal form is given simply as

f ðxÞ ¼
X

y�x; y2ðZk
n Þ*

f̂f ð yÞ; ð4:4Þ

for x 2 ðZk
nÞ*. Also, from Theorem 4.6, we have that

ûuyðxÞ ¼
1; if y ¼ x;

0; otherwise.

�

The following lemma extends this result to ûuF , for F an upper fan of length at

least two. We omit the proof because the result follows easily from the inverse

formula in (4.4).

LEMMA 4.7. Suppose F ¼ fa1; a2; . . . ; amg is an upper fan of length m � 2

with ai 2 ðZn
kÞ* for i ¼ 1; 2; . . . ;m and with common pairwise least upper bound
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b, then ûuF is given by

ûuFðyÞ ¼
2� m; if y ¼ b;
1; if y ¼ ai for some i ¼ 1; 2; . . . ;m;
0; otherwise.

8
<

:

To help deduce supermodularity of f 2 F from f̂f , we have the following

theorem.

THEOREM 4.8. For any incomparable x; y 2 Zk
n and for f 2 F in normal form,

�f ðx; yÞ ¼
X

z2Kx;y

f̂f ðzÞ;

in which

Kx; y ¼ fz 2 ðZk
nÞ* : z � x _ y; z 6� x; z 6� yg:

Proof. The set fz � x _ yg is a union of four disjoint sets, namely (1) Kx;y,

(2) those elements that are � x but 6� y, (3) those elements that are � y but 6� x,

and (4) those elements that are � x ^ y. Since f ðxÞ is the sum of the values of

f̂f over the second and fourth sets, f ðyÞ is the sum of these values over the third

and fourth, and f ðx ^ yÞ is the sum of these values over the fourth, the result

follows. Ì

Similarly to Lemma 4.4, we have

LEMMA 4.9. If f 	 g and ĝgðxÞ ¼ 0, then f̂f ðxÞ ¼ 0.

Proof. Suppose that there is some point z with ĝgðzÞ ¼ 0 but f̂f ðzÞ 6¼ 0.

Choose such a z that is minimal. Let A ¼ fx 2 ðZk
nÞ* : x � z; and ĝgðxÞ 6¼ 0g. If

A is not empty, let a ¼ maxðAÞ. Choose incomparable points v;w such that z �
w � a and v _ w ¼ z. It is straightforward to check that such points exists. If

b 2 Kv;w, then b � z and b 6� a imply that b =2 A and so ĝgðbÞ ¼ 0. By Theorem

4.8, ðv;wÞ is g-modular. Therefore, ðv;wÞ is f -modular, and the sum of the

values of f̂f on Kv;w is zero. But this is a contradiction, since f ðzÞ 6¼ 0 and for all

other points b in Kv;w, f̂f ðbÞ ¼ 0 by minimality. If A is empty, we can choose any

incomparable ðv;wÞ such that v _ w ¼ z and argue as above. Ì

The use of the upper transform facilitates the search for extreme (super-

modular) functions and gives us immediate answers in a couple of simple cases.

We first describe a general strategy that will not only prove that a certain set is

extreme but can provide an algorithm for writing a function as a positive linear

combination of proposed extreme functions.
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Let E be a potential set of extreme functions. Let G be the set of all f with

f̂f � 0, so that any function in G is equivalent to a positive linear combination of

upper functions by (4.2) and Lemma 4.2. Suppose we can find a closed cone (in

the usual topology on Rd) K � S such that for all f in K but not in G, there is an

e 2 E and � > 0 with f � �e 2 K. By taking the maximum value of � such that

f � �e 2 K, which exists because K is closed, and repeating, we will eventually

write f as a sum of an element in G and a positive linear combination of elements

in E. This follows from the cone structure of K. For example, if �1 is the

maximum value such that f � �e1 2 K and �2 is the maximum value such that

f � �1e1 � �2e2 2 K, then we cannot choose e1 again as the next function to

subtract a multiple of, for if f � ð�1 þ �Þe1 � �2e2 2 K for some � > 0, we could

add �2e2 to deduce that f � ð�1 þ �Þe1 2 K, thereby contracting the maximality

of �1. The trick is to come up with a suitable K – or we should say, with a

suitable description of K – to fit the situation, since a corollary of the above is

that in fact K ¼ S.

4.4. APPLYING THE REPRESENTATION TO Zn
2 AND Z2

3

In this subsection, we apply the method described at the end of the previ-

ous subsection to find complete sets of extreme supermodular functions on Z2
n

and Z3
2 .

THEOREM 4.10. A complete set of extreme functions for the lattice Z2
n is given

by fux : x 2 ðZ2
nÞ*g.

Proof. By (4.3), S � G, and we are done. Ì

From Theorem 4.10, we can deduce the well known result that for bivariate

distributions, the supermodular order is equivalent to the upper orthant order in

our finite setting. See Müller and Stoyan (9; Theorem 3.8.2) for this result in a

more general setting.

We next consider the lattice Z3
2 , which we view as the lattice of all subsets of

the set fa; b; cg.

THEOREM 4.11. For the lattice Z3
2 , the extreme functions are all of the form

uF , in which F is an upper fan from the list fab; ac; bcg, fabg, facg, fbcg, and

fabcg.
Proof. Here we can directly take K ¼ S. Let f 2 S. If f 62 G, then f̂f ðabcÞ <

0 because f̂f � 0 on any two-element subset of fa; b; cg by supermodularity of

f , or equivalently, by (4.3). Since Kbc;ac ¼ fabc; abg, we must have f̂f ðabÞ þ
f̂f ðabcÞ � 0 by Theorem 4.8, and similarly both f̂f ðacÞ þ f̂f ðabcÞ � 0 and

f̂f ðbcÞ þ f̂f ðabcÞ � 0.

It is easily seen that

uab;ac;bc ¼ uab þ uac þ ubc � uabc: ð4:5Þ
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From (4.2) and (4.6), we deduce that ûuab;ac;bc takes the value of 1 on each two-

element set and the value �1 on abc. Let h ¼ f þ f̂f ðabcÞuab;ac;bc; then,

ĥh ¼ f̂f þ f̂f ðabcÞûuab;ac;bc takes the value of 0 on abc. Moreover, on each two-

element set A, ĥh takes the value f̂f ðAÞ þ f̂f ðabcÞ, which we have shown is

nonnegative. It follows that h 2 G as required. Ì

Remark. For the extreme functions on Z3
2 , we do not need functions of the

form ‘G, in which G is a lower fan, because each ‘G is equivalent to some uF .

Indeed, it is easy to see that ‘a � ubc, ‘a;b;c � u1; and ‘0 � uab;ac;bc. This

correspondence does not occur, however, for Z2
k when k > 3.

An alternative proof which does not use the upper transform is to simply note

that for any f 2 S in normal form, satisfying f ðabÞ � f ðacÞ � f ðbcÞ,

f ¼ f ðbcÞuab;ac;bc þ ½ f ðabÞ � f ðbcÞ�uab þ ½ f ðacÞ � f ðbcÞ�uac þ ½ f ðabcÞ

� f ðabÞ � f ðacÞ�uabc:

Note that the supermodularity and normalcy of f imply that f ðbcÞ � 0.

Conjecture. We conjecture that for Zk
2 , k 6¼ 4, any extreme function is of the

form uF or ‘G. The case k ¼ 4 is different because any two-element set is quasi-

indecomposable. We will consider this lattice in detail in the next section.

5. The Lattice Z4
2

In this section, we determine a complete set of extreme supermodular functions

for the lattice Z4
2 . Similarly as we did for Z3

2 , we view Z4
2 as the lattice of subsets

of the set fa; b; c; dg.

LEMMA 5.1. qinab is extreme in Z4
2 .

Proof. Suppose that f 	 qinab is in normal form. From the qinab-modularity

of ða; bÞ, it follows that f ðabÞ ¼ 0. Let f ðacÞ ¼ �. Then, by the qinab-modularity

of any non-disjoint pair of two-element sets (not including ab), we see that the

value of f on all two-element sets is �, and the value of f on all three-element

sets is 2�. Finally, the qinab-modularity of ðabc; abdÞ shows that f ðabcdÞ ¼ 4�.

Since the normal form of qinab takes the value of 4 at 1, 2 on the three-element

sets, 1 on the two-element sets other than ab, and zero elsewhere, we are

done. Ì

Our main result in this section is the following theorem.

THEOREM 5.2. A complete set of extreme functions for the lattice Z4
2 , viewed

as the lattice of subsets of a four-element set, consists of the following: ‘0; ‘B, in

which B is a lower fan consisting of three one-element sets; qinA, in which A is a
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two-element set; uF for the upper fans F in Example 2.7 ðiiiÞ � ðviÞ; and ux, in

which x is a subset of fa; b; c; dg with more than one element.

Remark. We do not need to include the other functions of the form ‘G since

they are all equivalent to listed ones. For example, ‘ab � ucd , ‘fab;ac;adg � ubcd ,

‘fab;c;dg � ufab;acd;bcdg, and ‘fa;b;c;dg � ufabc;abd;acd;bcdg.

Before giving the proof, we need some preliminary comments. We will need

the values of f̂f for the given functions. For uF , where F is an upper fan, we have

given ûuF in Lemma 4.7. For the other three functions in the statement of

Theorem 5.2, we represent f̂f as eleven-dimensional vectors, where the first value

is f̂f ðabcdÞ, the next four are the values of f̂f on the three-element sets, in the

order abc; abd; acd; bcd, and the final six are the values of f̂f on the two-element

sets, in the order ab; ac; bc; ad; bd; cd.

qîncd ¼ ð1;�1;�1; 0; 0; 1; 1; 1; 1; 1; 0Þ;
‘̂‘0 ¼ ð1;�1;�1;�1;�1; 1; 1; 1; 1; 1; 1Þ;

‘̂‘b;c;d ¼ ð�1; 0; 0; 0; 1; 1; 1; 0; 1; 0; 0Þ:

We follow the strategy given in the preceding section. We let K consist of

all f such that �f ðA;BÞ � 0 if A and B are both three-element sets, both two-

element sets that are not disjoint, or both one-element sets. Clearly K � S. By

using Theorem 4.8, we can translate this into conditions on f̂f . Consider any

Bdiamond^ consisting of abcd, two three-element sets B and C, and B \ C. Then,

f is in K if and only if f̂f is nonnegative on B \ C (the base of the diamond), the

sum of the two values of f̂f on any Blower edge^ is nonnegative, and the sum of

the values of f̂f on all four points is nonnegative. To see this, suppose, for

example that B ¼ abc and C ¼ abd. Then, fabg ¼ Ka;b, the two points on a

lower edge fab; abcg ¼ Kac;bc, and the set of all four points fabcd; abc; abd;
abg ¼ Kacd;bcd .

We will often want to show that such a sum of values is strictly positive. Note

that to show that the sum of all four values is positive for f 2 K, we need only

show the sum of the two values on any Bupper edge^ is positive.

For any function f and any two-element set A, let �f ðAÞ ¼ �ð f̂f ðabcdÞ þ
f̂f ðBÞ þ f̂f ðCÞ, in which where B and C are the two three-element sets containing

A. Then, the fact that the sum of the four values of f̂f � 0 means that

�f ðAÞ � f̂f ðAÞ: ð5:1Þ

Proof of Theorem 5.2. Given any f in K but not in G, we seek e from the list

of extreme functions given in the statement of Theorem 5.2 such that f � �e 2 K
for some � > 0. This will occur if and only if we can find e such that whenever

the sum of êe over one of the subsets S (equal to a diamond, lower edge, or base)
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is positive, then the sum of the values of f̂f over S is positive. We can, then,

choose

� ¼ min
S

P
y2S f̂f ð yÞ

P
y2S êeð yÞ :

We will assume throughout, relabeling if necessary, that

f̂f ðabcÞ � f̂f ðabdÞ � f̂f ðacdÞ � f̂f ðbcdÞ: ð5:2Þ

Note that for e ¼ uab;ac;bd ; uabc;abd;acd;bcd; ‘0, or ‘b;c;d , the sum of values of êe

over any diamond equals 0, and in order to verify that one of these will work, we

need only check the condition for f̂f on the base and lower edges.

Let �ð f Þ be the number of three-element sets with f̂f ðBÞ < 0:

CASE 1: �ð f Þ � 3. Choose e = ‘0. The sum for ‘̂‘0 is positive only on the

diamond bases, that is, the two-element sets. By virtue of the fact that any two-

element set is contained in one of abc; abd, or acd, on which f̂f is negative, the

edge condition implies that f̂f ðAÞ > 0 on all two-element sets. By Bedge

condition,^ we mean that the sum of the values of f̂f is nonnegative on the

lower edges of any diamond.

CASE 2: �ðf Þ ¼ 2: As in Case 1, we must have f̂f ðAÞ > 0 for all two-element

sets, except possibly cd. Therefore, the sum of f̂f is positive on any lower edge

for which the two-element set is other than cd and the three-element set is either

acd or bcd. If also f̂f ðabÞ þ f̂f ðabdÞ > 0, we can choose e ¼ uab;ac;bc.

If f̂f ðabÞ þ f̂f ðabdÞ ¼ 0, we must have f̂f ðabcdÞ ¼ � f̂f ðabcÞ ¼ � f̂f ðabdÞ > 0

in order that the sum over the diamond with base ab is nonnegative. Then, the

sum of f̂f over all diamonds is positive, as seen from looking at the Bright^ upper

edge. In this case, we can take e ¼ qincd .

CASE 3: �ð f Þ ¼ 1. Because f̂f ðabcÞ þ f̂f ðabÞ � 0 and f̂f ðabcÞ < 0, we have

f̂f ðabÞ > 0. Similarly, f̂f ðacÞ > 0 and f̂f ðbcÞ > 0. It follows that we can take

e ¼ uab;ac;bc.

CASE 4: �ð f Þ ¼ 0. We divide this case into four subcases, A – D. Note that

since f =2 G, we must have f̂f ðabcdÞ < 0.

SUBCASE A: Suppose �f ðbcÞ > 0. This implies by (5.2) that �f ðabÞ and

�f ðacÞ are positive because �f ðabÞ � �f ðacÞ � �f ðbcÞ > 0. It follows from (5.1)

that f̂f ðabÞ; f̂f ðacÞ, and f̂f ðbcÞ > 0. We can, therefore, take e ¼ uab;ac;bc since the
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lower edges on which êe has a positive sum are only those from ab; ac, or bc to a

point other than abc.

SUBCASE B: Suppose �f ðbcÞ � 0 and �f ðadÞ > 0. Then, by (5.2),
�f ðabÞ � �f ðacÞ � �f ðadÞ > 0, and it follows from (5.1) that f̂f ðabÞ; f̂f ðacÞ, and

f̂f ðadÞ are positive. Moreover, f̂f ðbcdÞ > 0 since if not, then f̂f ðBÞ ¼ 0 for all

three-element sets B by (5.2), and we would have �f ðbcÞ ¼ � f̂f ðabcdÞ > 0, a

contradiction. We can take e ¼ ‘b;c;d because the sums of êe are positive over all

lower edges starting from ab; ac; ad or ending with bcd.

SUBCASE C: Suppose �f ðbcÞ � 0, �f ðadÞ � 0, and �f ðabÞ > 0. Then,

f̂f ðacdÞ; f̂f ðbcdÞ, and f̂f ðabÞ are all positive. Indeed, if f̂f ðacdÞ ¼ 0, then �f ðadÞ
¼ � f̂f ðabcdÞ > 0, a contradiction. Also, the sum of f̂f over the four elements of

the diamond fabcd; acd; bcd; adg is positive. Indeed, f̂f ðabcÞ þ f̂f ðabdÞ <
� f̂f ðabcdÞ because �f ðabÞ > 0, while f̂f ðabcÞ þ f̂f ðbcdÞ � � f̂f ðabcdÞ because
�f ðbcÞ � 0. It follows that f̂f ðbcdÞ > f̂f ðabdÞ, so f̂f ðbcdÞ þ f̂f ðacdÞ > f̂f ðabdÞ þ
f̂f ðacdÞ � � f̂f ðabcdÞ > 0, where the next-to-the-last inequality arises from

�f ðadÞ � 0. In this case, we can take e ¼ uab;acd;bcd .

SUBCASE D: Suppose �f ðabÞ � 0. If f̂f ðabcÞ > 0, then the sum of values of

f̂f over any lower edge is positive, and we can choose e ¼ uabc;abd;acd;bcd .

If f̂f ðabcÞ ¼ 0, then f̂f ðabdÞ > 0. Indeed, if f̂f ðabdÞ ¼ 0, then �f ðabÞ ¼
� f̂f ðabcdÞ > 0, a contradiction. The sum of values of f̂f is positive over any

diamond with base equal to ad; bd; or cd. Also, the sum of the values of f̂f is

positive on any lower edge ending in abd; acd, or bcd. Thus, we can choose

e ¼ uabd;acd;bcd . Ì

6. The Lattice Z3
n

In this section, we examine extreme supermodular functions on the lattice Zn
3.

We begin by introducing a new collection of supermodular functions, and we

determine when those functions are extreme. We then describe a complete set of

extreme supermodular functions on Z3
3 .

6.1. MULTIFANS IN Z3
n

In this subsection, we define a new collection of functions. In the next

subsection, we show that members of that collection are supermodular, and we

determine when they are extreme.

For each x 2 Z3
n and i ¼ 1; 2; 3, let Cði; xÞ denote the set of all points y whose

i-th coordinate is less than or equal to xi and whose other two coordinates agree

SUPERMODULAR FUNCTIONS ON FINITE LATTICES 407



with x. For example, if x ¼ ð3; 2; 4Þ, then Cð1; xÞ ¼ fð3; 2; 4Þ; ð2; 2; 4Þ; ð1; 2; 4Þ;
ð0; 2; 4Þg. We will refer to any such set Cði; xÞ as a line segment.

A multifan consists of a pair of nonempty subsets of ðZ3
nÞ*; ðA;BÞ, such that

(i) Each of A and B intersects any line segment in at most one element.

(ii) For each a 2 A and i ¼ 1; 2; 3, the set Cði; aÞ intersects B in a point piðaÞ,
which is necessarily unique from (i).

(iii) For each b 2 B, there exists some a 2 A and index i ¼ 1; 2; 3 such that

b ¼ piðaÞ.

Note that the i and a in (iii) need not be unique.

If ðA;BÞ is a multifan with A \ B non-empty, then A ¼ B ¼ fxg, and we

define uA;B to be the upper function ux. If ðA;BÞ is a multifan with A \ B ¼ �,

then we define the function uA;B (modulo the modular functions) to be the one

with

ûuA;BðxÞ ¼
1; x 2 B;

�1; x 2 A;

0; elsewhere.

(

Recall that we can recover uA;B from ûuA;B by the inverse formula in (4.4). When

A has one point, it is easy to verify that either B ¼ A or B is an upper fan of

length three, with uA;B ¼ uB.

A multifan will be called irreducible if it is not possible to find a partition of

A into two sets A1 and A2 and a partition of B into two sets B1 and B2 such that

ðA1;B1Þ and ðA2;B2Þ are multifans. Note that if ðA;BÞ is a multifan with

A ¼ fxg, then it is automatically irreducible.

EXAMPLE 6.1. We list the irreducible multifans in the lattice Z3
3 .

1. jAj ¼ 1: For each element A ¼ fða; b; cÞg, for which no entry is equal to

zero, we have a collection of 2k fans, in which k is the number of coordinates

of ða; b; cÞ equal to 2. Each B is of the form B ¼ fðx; b; cÞ; ða; y; cÞ; ða; b; zÞg,
in which each x, y, and z is either 0 or 1 if the corresponding entry above it

in A is 2, or 0 if the corresponding entry above it in A is 1. We also have all

the multifans for which A ¼ B ¼ fxg, with x 2 ðZ3
3Þ*.

2. jAj ¼ 2:
a. A ¼ fð1; 2; 2Þ; ð2; 1; 2Þg, and B ¼ fð0; 2; 2Þ; ð2; 0; 2Þ; ð1; 1; 2Þ; ð2; 1; xÞ; ð1;

2; yÞg, in which each of x and y is either 0 or 1, so there are four

possibilities for B corresponding to this particular A. Then, there are

another two possibilities for A obtained by permutation, with four Bs each.
b. A ¼ fð1; 1; 2Þ; ð1; 2; 1Þg, and B ¼ fð0; 1; 2Þ; ð1; 0; 2Þ; ð0; 2; 1Þ; ð1; 2; 0Þ; ð1;

1; 1Þg, with two other possibilities obtained by permutation.
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3. jAj ¼ 3:
a. A ¼ fð1; 2; 2Þ; ð2; 1; 2Þ; ð2; 2; 1Þg. In all cases, B will contain (0, 2, 2), (2,

0, 2), (2, 2, 0), and either (i) (1, 1, 2), (1, 2, 1), and (2, 1, 1), (ii) (1, 1, 2),

(2, 1, 1), (0, 2, 1), and (1, 2, 0), or one of the two other possibilities

obtained from (ii) by permuting the three coordinates.
b. A ¼ fð1; 1; 2Þ; ð1; 2; 1Þ; ð2; 1; 1Þg, and B ¼ f(0, 1, 2), (0, 2, 1), (1, 0, 2),

(1, 2, 0), (2, 0, 1), (2, 1, 0), (1, 1, 1)g.

A multifan ðA;BÞ in Z3
3 cannot have jAj � 4; otherwise, the condition that A

intersects any line segment in at most one point will be violated.

6.2. WHEN IS uA;B EXTREME IN Z3
n
?

In parallel to Theorem 2.9, Lemma 3.1 and Theorem 3.2, and Theorem 4.5, in

this section, we show that uA;B is supermodular and moreover extreme if ðA;BÞ is

irreducible.

Given any multifan ðA;BÞ, we can find irreducible multifans ðAi;BiÞ such

that

uA;B ¼
X

i

uAi;Bi
ð6:1Þ

as follows: Define a relation R on A by aRa0 if there exists i; j ¼ 1; 2, or 3 such

that piðaÞ ¼ pjða0Þ. Let R* be the transitive closure of R. Given any equivalence

class A1, let B1 ¼
S3

i¼1 piðA1Þ. Then, ðA1;B1Þ is a multifan. Suppose we had

partitions so that ðA01;B01Þ and ðA001 ;B001Þ were multifans. Then, we cannot have

a0 2 A01 and a00 2 A001 such that a0Ra00, for this would contradict the fact that B01
and B001 were disjoint. By an obvious induction, we could not have a0 in A1 and

a00 in A001 such that a0 and a00 were equivalent under R*. This shows that ðA1;B1Þ
is irreducible.

Suppose now that A1 and A2 are two distinct equivalence classes. We must

have that the corresponding B1 and B2 are disjoint, for if b were a point in both,

then b ¼ piða1Þ ¼ pjða2Þ for some a1 2 A1; a2 2 A2, contradicting the fact that a1

and a2 are not equivalent. Formula (6.1) follows as the index runs through the

various equivalence classes.

THEOREM 6.2. For any multifan ðA;BÞ, we have uA;B 2 S. In addition, if ðA;BÞ
is irreducible, then uA;B is extreme.

Proof. To show supermodularity of uA;B, we will show that for any

incomparable ðx; yÞ, there is an injective function q : A \ Kx; y ! B \ Kx; y. By

invoking Theorem 4.8, this shows that �uA;B
� 0, since any point in Kx; y on which

ûuA;B takes a value of �1 will be cancelled out by a value of 1.

Given any x; y, we can suppose, interchanging and reindexing them if

necessary, that x1 � y1 and x2 � y2. Take any a in Kx; y. Then, since a 6� y, we
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must have at least one index i for which ai > yi. If 1 is the only such value of i,

we define qðaÞ ¼ p2ðaÞ. If there is such a index different than 1, then we define

qðaÞ ¼ p1ðaÞ. In any event, we maintain at least one index i for which

½qðaÞ�i > yi, so that qðaÞ 6� y. It is clear that qðaÞ � a � x _ y. Now, for

i ¼ 1; 2, we have ai � ðx _ yÞi ¼ xi. Since a 6� x, we must have that a3 > x3

and, therefore, ½qðaÞ�3 ¼ a3 > x3. Thus, we do not have qðaÞ � x, and it follows

that qðaÞ 2 Kx;y.

So, qðaÞ 2 B \ Kx;y, and it remains to show that q is injective. Point (i) in the

definition of a multifan shows that each of p1 and p2 is injective, so we need only

consider the case for which qðaÞ ¼ p1ðaÞ and qða0Þ ¼ p2ða0Þ and show that we

cannot have qðaÞ ¼ qða0Þ. By the definition of q, we have ½qðaÞ�j ¼ aj > yj for at

least one of j ¼ 2 or 3. On the other hand, ½qða0Þ�j � a0j � yj for both j ¼ 2 and 3.

Thus, qðaÞ 6¼ qða0Þ.
Now, suppose that ðA;BÞ is irreducible. We derive the extremeness of uA;B by

an argument similar to that of Theorem 4.5, except now it is convenient to use

the upper transform. Suppose that f 	 uA;B with f 2 S. We will show that for

some nonnegative scalar �; f̂f ¼ � ûuA;B. First note that from Lemma 4.9, f̂f ðxÞ ¼
0 for all x =2 A [ B, as is true for ûuA;B.

For any a 2 A, define �ðaÞ by f̂f ðaÞ ¼ ��ðaÞ. It is clear that �ðaÞ � 0. From

Theorem 4.8, �uA;B
ðp1ðaÞ; p2ðaÞÞ¼

P
z2Kp1ðaÞ;p2ðaÞ

ûuA;BðzÞ ¼ ûuA;BðaÞ þ ûuA;Bðp3ðaÞÞ ¼
�1þ 1 ¼ 0. Thus, ðp1ðaÞ; p2ðaÞÞ is uA;B-modular and, thereby, f -modular. It

follows that 0 ¼ �f ðp1ðaÞ; p2ðaÞÞ ¼ f̂f ðaÞ þ f̂f ðp3ðaÞÞ; thus, f̂f ðp3ðaÞÞ ¼ �ðaÞ.
Because there was nothing special about the index 3, we have f̂f ðpiðaÞÞ ¼ �ðaÞ
for i ¼ 1; 2; 3.

We complete the proof by showing that �ðaÞ is the same for all a 2 A. It is

clearly sufficient to show that �ðaÞ ¼ �ða0Þ for aRa0. In this case, we have

that for some i; j ¼ 1; 2 or 3, piðaÞ ¼ pjða0Þ, so �ðaÞ ¼ f̂f ð piðaÞÞ ¼ f̂f ð pjða0ÞÞ ¼
�ða0Þ. Ì

6.3. EXTREME SUPERMODULAR FUNCTIONS ON Z3
3

In this subsection, we determine a complete set of extreme supermodular

functions on Z3
3 .

LEMMA 6.3. For all f 2 S, x 2 ðZ3
nÞ*, and index i ¼ 1; 2; or 3; we have

X

y2Cði; xÞ
f̂f ð yÞ � 0: ð6:2Þ

Proof. Let x ¼ ða; b; cÞ and take i ¼ 1. If either of b or c ¼ 0, then (6.2) is

clear from (4.3). Otherwise, let x1 ¼ ða; b� 1; cÞ and x2 ¼ ða; b; c� 1Þ. Then,

Kx1;x2
¼ Cð1; xÞ, and we can apply Theorem 4.8 to get (6.2). Ì
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THEOREM 6.4. For the lattice Z3
3 , a complete set of extreme supermodular

functions is given by the collection of uA;B, for ðA;BÞ an irreducible multifan, as

listed in Example 6.1.

Proof. We follow the basic strategy described at the end of Section 4.3 with

K equal to the set of all f 2 F such that the sum of all values of f̂f over any line

segment is nonnegative. By Lemma 6.3, K � S.

Given f 2 K � G, define two increasing sequences of sets as follows: Let

A1 ¼ fag, where a is any point on which f̂f < 0. Some such point exists because

f =2G. For each index i, choose a point bi on Cði; aÞ such that f̂f ðbiÞ > 0. These

points must exist by our hypothesis that f 2 K. We continue inductively.

Suppose Bk is defined. For each b 2 Bk and index i ¼ 1; 2; 3, we check if there is

a point a 2 Ak such that f̂f ðaÞ < 0 and b 2 Cði; aÞ. If not, we check if there is

such a point a =2 Ak , and if so, then we add that point to Ak . This leads to a larger

set Akþ1. For each a 2 Akþ1 and index i ¼ 1; 2; 3, we check if there is a point

b 2 Bk \ Cði; aÞ such that f̂f ðbÞ > 0. If not, there must exist such a point b =2 Bk ,

which we add to Bk . This leads to a larger set Bkþ1. Eventually, we reach an

index n such that Anþ1 ¼ An.

If we can show that neither An or Bn has two points that lie on the same line

segment, then it is clear that ðAn;BnÞ is the multifan we want. Specifically, if

� � j f̂f ðcÞj, where c 2 An [ Bn, then f � �uAn;Bn
2 K since every line segment

containing a point b 2 Bn will also contain a point a 2 An by the construction.

Suppose, for example, that An contains distinct points a and a0 on the same

line segment. It follows from the definitions of An and Bn that we would then

have a sequence a ¼ a1; b1; a2; b2; . . . ; ak ¼ a0 and a sequence of indices

i1; i2; . . . ; ik , where the same index does not appear twice in a row, such that

bj 2 Cðij; ajÞ \ Cðijþ1; ajþ1Þ, and f̂f ðaiÞ < 0 for all i ¼ 1; 2; 3. No element with a

zero entry can appear as an aj because, for example, f̂f ðx; y; 0Þ � 0 by (4.3) if

x; y > 0. Also, no element with a zero entry can appear as a bj. Otherwise, if say

aj ¼ ðx; y; zÞ and bj ¼ ðx; y; 0Þ, then ajþ1 will have its third coordinate equal to

zero because ajþ1 does not line on the same line segment with bj as does aj by

construction. Therefore, all the aj and bj in this sequence have coordinates either

1 or 2. In fact, to go from aj to bj, we decrease one coordinate in aj by 1, then to

go from bj to ajþ1, we increase a different coordinate by 1. It follows that the

sums of the coordinates of any two aj’s are equal. Therefore, a and a0 cannot be

distinct and lie on the same line segment because for this to occur, a and a0

would differ by 1 in one coordinate. Ì

From the proof, we immediately obtain that to check a function on Z3
3 for

supermodularity, we need only check that the sum of the values of f̂f on all line

segments is nonnegative.

For n > 3, the situation is not clear. Now, we can find sequences described as

in the proof of Theorem 6.2 for which jumps of two or more in an index are

allowed, and we cannot easily rule out the fact that An or Bn contains two
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elements on the same line segment. For example, even in Z3
4 , we have the

sequence

ð3; 2; 1Þ; ð2; 2; 1Þ; ð2; 3; 1Þ; ð1; 3; 1Þ; ð1; 3; 3Þ; ð1; 2; 3Þ; ð3; 2; 3Þ

leading from (3, 2, 1) to (3, 2, 3). Some relaxation in the proof is possible. For

example, in forming the sets Ak , we can change the condition on a from being

f̂f ðaÞ < 0 to f̂f ðaÞ þ f̂f ðbÞ � 0. It might well be, however, that we need to adopt

a cone smaller than the given one for K.

7. Summary

In this paper, we examined the convex cone of supermodular functions on a finite

lattice. We were motivated to consider the cone of supermodular functions

because it generates the supermodular ordering between random variables, in the

sense of Marshall [5]. In Sections 1 and 2, we argued that a base for the modular

functions and the extreme rays of the cone of supermodular functions (modulo

the modular ones) give one a collection of test functions for determining whether

two random variables are ordered according to the supermodular ordering.

Throughout the remainder of the paper, we focused on finding the extreme

supermodular functions on various lattices. In Section 3, we completely

determined the extreme functions on chain lattices. In Section 4 through 6, we

concentrated finding extreme functions on the lattice Zk
n and determined a

complete set of extreme functions for the lattices Z3
2 , Z4

2 , and Z3
3 . We conjectured

what the extreme functions constitute for the lattice Z2
k , and we encourage the

interested reader to pursue this research.
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