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Abstract. Several models are developed for the estimation of the rate of exponential die-off from 
decontamination data. Calculations with illustrative data are reported which indicate that the estima- 
tion of this rate and its variance are sensitive to changes in modelling assumptions. Since extrapolation 
using this estimated rate is used in the specification of planetary quarantine standards, special care 
should be taken in the selection of an appropriate model and corresponding estimation procedure 
for the analysis of each set of decontamination data to be used for this purpose. 

1. Introduction and Summary 

This report is concerned with the development of  decontamination models based upon 
the assumption that the probability, Ot, that a single micro-organism is alive at time t 
after initial exposure to a decontamination procedure is exponential, that is, is of the 

form 
0 , = ~  t, 0 < ~ < 1 .  (1.1) 

Observations are assumed to consist of counts x of  the number of  organisms alive per 
unit of  test material and corresponding sampling or dilution fractions, d. It  is common 
practice to report only the ratios y = x / d ,  which are the estimated total counts that 

would have resulted if complete counts had been feasible. 
The y ratios, or the x and d values if they are recorded separately, are used to 

estimate #. The negative inverse of  the logarithm to the base ten of this estimate is 
called the D-value by microbiologists. Its importance, and hence the importance of 
accurate and precise estimation of/~, in the specification of space quarantine standards 
is emphasized in Section 2. The remainder of  the paper is concerned with the devel- 
opment of  models based on (1.1) which enable the estimation of/~ under a variety of  
assumptions, For each model/~ is estimated using the data of  Section 3 in order to 

illustrate the importance of choosing a model and a corresponding method of analysis 

which incorporate the most realistic assumptions. 
The first model presented in Section 4 is the one assumed, at least implicitly, when 

unweighted least squares calculations are applied to the paired values of  t and v -- log y. 
An assumption of the model is that the v values have equal variance, or equivalently 

when the x's  are similar enough to warrant the assumption that they have equal means, 
that the x vaiues also have equal variance. The estimation of  the variance of the 
estimate of  # is sensitive to departures from this assumption in the illustration. 
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An alternative model is presented in Section 5 which utilizes both the x and d values 
instead of their ratios and which is based on independent binomial distributions for 
the x counts. For our illustrative data this model leads to a maximum likelihood 
estimate of # similar to the least square estimate for the first model but the esti- 
mated variance of this second estimate is considerably less. This shows the importance 
of dealing with the observed x counts instead of the derived counts, if possible, and of 
avoiding the assumptions of constant variance of the v logarithms when it is unrealistic 
as it is shown to be for our example. 

A Poisson approximation to the binomial model is presented in Section 6. Similar 
estimates of/2 and equal variances of these estimates are calculated for these two 
models. The advantages of this Poisson model are that it leads to simpler maximum 
likelihood estimation calculations when n is not assumed known than does the bino- 
mial model and that it is more easily extended to the situation where n, the initial 
loading, varies for different exposure times. This extension is devloped in Section 7. 
For our illustration the estimate of # is quite different when n is assumed to fluctuate 
widely than when it is relatively stable, again illustrating the importance of making 
realistic initial assumptions. 

For  all but the binomial model an estimate o f #  is obtained both with n, or its mean 
when n is variable as in Section 7, assumed known and when it is estimated from all 
the data. In the former case the common practice is followed of setting n equal to Yo, 
the y value based on an initial count with t =0, and the estimate o f #  is obtained using 
the remainder of the observations. In the latter situation all of the observations, in- 
cluding Yo, are used in the same manner to estimate both n and #. The two estimates of 
n and the corresponding estimates of # differ considerably for each model. This 
illustrates that n should not be experimentally determined and then assumed known 
unless it is well determined, that is, unless repeated initial counts have been made. 

The assumption of exponential die-off as given by (1.1) is basic to all of the models 
developed herein and is an assumption often made in analyzing decontamination 
data. The most common departure is for the rate of die-off, that is, the parameter #, to 
change with exposure time t. One way to overcome this difficulty is to apply Equation 
(1.1), and the models derived from it, over only part of the range of t. For instance, 
rapid early die-off is often ignored and models such as those presented here are then 
used to describe the data when the rate of die-offis more stable. 

Another approach for dealing with departures from assumption (1.1) is to assume a 
different distribution of the underlying tolerances to exposure of the microorganisms 
being studied. Assumption (1.1) can be thought of as an assumption that the proba- 
bility a single microorganism dies before time t is 1 _#t.  This is the cumulative toler- 
ance distribution of a single-parameter exponential distribution. 

Thus assumption (1.1) is equivalent to an assumption of exponentially distributed 
tolerances in the population of microorganisms. The well-known probit and logit 
methods of analysis have been developed and extensively applied for the more flexible 
two-parameter normal and logistic tolerance distributions, respectively. Another 
possible tolerance distribution which is a direct extension of (1.1) is the two-parameter 
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gamma distribution. Research is certainly needed to determine appropriate tolerance 
distributions for a variety of organisms and types of exposure. However, assumption 
(1.1) is widely used and holds in many experimental situations, so it is appropriate to 
concentrate in this report on models derived from that assumption. 

2. Importance to Space Quarantine 

Decontamination models are of general interest in microbiology. They are of particular 
interest in the development of procedures to achieve a high probability of sterilization, 
for instance, in the food and medical supply industries. However, the main concern 
which motivated this work is the sterilization of interplanetary spacecraft. Internation- 
al planetary quarantine agreements have been reached which imply that the proba- 
bility of contaminating Mars must be less than 10 -r  for a single flight, where r is of the 
order of magnitude of three. The number of viable contaminants on a spacecraft 
before final decontamination can be made less than l0 S, where s is no larger than eight. 
So it is pertinent to set no, the number of viable organisms assumed to be present at the 
beginning of decontamination, equal to l0 s and to determine the exposure time, say 
t ,  needed to reduce the probability that the corresponding x is zero to 1-10-L For the 
models in this paper, it is appropriate to set t~ = (r+s)g), where 

a = - 1/(loglo ) > 0 (2 .1 )  

can be defined from (1.1) as the value of t for which 0 t =0.1. An estimate of 6, usually 
called a D-value, can be used to form an estimate ?r of t~ given by 

?r = (r + s) D. (2.2) 

The simplicity of (2.2) explains the practice of microbiologists of thinking in terms 
of the estimator D of 6 instead Of in terms of an estimator of/~. Moreover, the use of 
(2.2) can be thought of as plotting the expected value of n evaluated at a = D  verses t 
on semi-logarithmic graph paper and then extrapolating linearly to find the value of t 
for which this line reaches the sterilization probability standard. The extent of the 
extrapolation required, which is specified by the multiplier (r + s) in (2.2) and which 
we have indicated could be as large as eleven, means that it is imperative for sterili- 
zation applications to estimate ~, or alternatively #, as well as possible. Once an 
estimate of/~, denoted by/~, is calculated, the corresponding D-value can be computed 

by replacing # by/i  in (2.1). 

3. Illustrative Data 

The parameter # will be estimated using each of the models presented in this paper for 
the data presented in Table I. The t and y values listed there have been taken from a 
graph presented by Bruch (1965) in a discussion of dry-heat sterilization at a Space- 
craft Sterilization Technology Conference. It has been assumed that the y values were 
determined by diluting the test material for each t value so that a count of the 
order of magnitude of 300 or less could be obtained, making such a count and expand- 
ing that count by division by the dilution fraction. Counts and dilution fractions which 
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TABLE I 
Number (x) of Bacillus subtilis var. Niger spores recovered per strip 

vs exposure time (t) in hours at 120 ~ temperature in air at 
atmospheric pressure 

Trial 
number t y d x m 

0 0 6.3 • 105 10 -4 63 6.3 • 101 
1 0.167 4.6 • 105 10 -4 46 6.3 • 101 
2 0.500 3.4 • 105 t0 -4 34 6.3 x 101 
3 0.750 2.5 • 105 10 -4 25 6.3 • 101 
4 1.0 1.6 x 105 10 -z 161 6.3 x 102 
5 1.5 3.4 x 104 10 -2 336 6.3 x 10 ~ 
6 2.0 3.4 x 10 ~ 10 -z 34 6.3 • 10 a 
7 3.0 1.4 • lO s 1 136 6.3 • 105 
8 4.0 3.4 • 101 1 34 6.3 • 105 
9 5.0 2.0 x 10 ~ 1 2 6.3 • 105 

could  have led to the values g raphed  by  Bruch have been entered in the x and d 

columns,  respectively,  for  i l lus t ra t ive purposes .  The m co lumn lists values of  m =dn 
for  n set equal  to 6.3 x 105, the ini t ial  expanded  count  recorded  by Bruch before  expo-  

sure o f  his test  o rganisms  to dry  heat.  The first co lumn of  t r ia l  numbers  in Table  I 

indexes the exposure  t imes used in the exper iment .  

4. A Least Squares Model 

A simple mode l  can be ob ta ined  by  no t ing  f rom (1.I)  tha t  log0  t = t  log#.  Since y/n is 

an es t imate  o f  0t, where n is the number  o f  organisms exposed  init ial ly,  v = l o g y  

satisfies, at  least  approx imate ly ,  

v = log n + t log # .  (4.1) 

The ini t ia l  l oad ing  n is a ssumed  to be the same for each t. Moreover ,  it  is assumed tha t  

the var iance  o f  v is the same for  each t. This la t ter  a s sumpt ion  allows the s imple 

unweighted  least  squares technique to be appl ied  to (v, t) pairs  to es t imate  the slope 

l o g #  and,  i f  i t  is no t  assumed know,  the in tercept  logn.  The fo rmer  es t imate  is the 

negat ive  inverse o f  the D-value  when logar i thms  to the base ten are used. 

The a s sumpt ion  o f  equal  var iab i l i ty  for  the v's is no t  ent i rely unreasonable .  Each x 

is of  the same order  o f  magni tude ,  say 7. Assume in add i t ion  tha t  each x is a sample  

f rom the same popu l a t i on  with  mean  Y. Also  assume tha t  each x value has var iance  7 

as i t  wou ld  for  the Poisson dis t r ibut ion .  W i t h  these assumpt ions ,  the mean  and  

var iance  o f  y are 7/d and  7/d 2 and  the var iance  o f  v = l o g y  is approx ima te ly  p ropor -  

t iona l  to 1/7, a cons tan t  independen t  o f  d and  t. The  p ropo r t i ona l i t y  cons tant  is 

uni ty  i f  na tu ra l  logar i thms were used in defining v. 

The least  squares es t imate  o f  l o g #  is 

log# =E uv/E u2 (4.2) 
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with u = ( t -  D if n is unknown, where f denotes the sample mean of the t's. I f  n is 
assumed known, u = t  and v is replaced by w - l o g y - l o g n .  In the former case, the 
least squares estimate of logn is 

log n = ~ - (log #) [ (4.3) 

where ~ is the sample mean of the v's. In both cases the variance of the least squares 

estimate of log/~ is 

V (log ~) = V ( v ) / ~  u 2 , (4.4) 

where V(v) is the variance of v and is estimated by summing the squared deviations of 
the v's f rom their estimated values calculated by substituting least squares estimates 
into the right side of the Equation (4.1). This sum of squares is then divided by the 
number of  entries in the sum less the number of least squares estimates calculated. 

After use of  (4.4), the estimated variance of fi =anti log (log#) is computed by noting 

that 

V (fi) ~ fiZV (log/~) (log e 10) 2 (4.5) 

when common logarithms are used. The factor (loge 10) 2 on the right of  (4.5) is deleted 

when dealing with natural logarithms. 
Using all the data in Table I in Equations (4.2) and (4.3) leads to the estimates 

/~ = 0.069 and ~ = 1.1 x 10 6. Setting n =Yo = 6.3 x 105 and using Equation (4.2) excluding 

Yo yields/~=0.082. The estimated variances of  kl for these two situations, calculated 
from (4.4) and (4.5), are 0.66 x 10 .4  and 0.61 x 10 -4, respectively. These illustrative 

calculations show that somewhat different estimates of  # can be obtained when n is 

estimated from all the data. This difference is particularly noteworthy in view of the 
extrapolation based on p to be made in the space quarantine setting as described in 

Section 2. 
In the calculation of the estimated variances of p, estimated variances of  v utilizing 

natural logarithms and deviations of  the v~ from their estimates were calculated and 
equalled 0.35 and 0.53 according to whether or not n was set equal to Yo. I f  instead the 
variance of v were estimated, in accord with our justification for assuming that the 
v's have common variance, by l/~?, where 2 is the sample mean of the x 's  and an 
estimate of 7, then we would obtain 0.011 in both cases as our estimate of the variance 
of v. The disparity between these estimates indicates that the assumption of constant 
variance for v = logy  is unreasonable for our illustrative data and therefore that none 
of these variance estimates are very meaningful. However, one of the first pair of  
variances would be used, if any, since they are based on observed deviations of  the 
v's from their estimates and not just o n  modelling assumptions and because the x 
values are not usually available when least squares calculations are applied to the y's. 
This comparison of variance estimates illustrates the fact that the assumption of equal 
variance for the v's upon which commonly used unweighted least squares calculations 

are based can not be taken for granted. 
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5. A Binomial Model 

The reasonableness of the model given by (4.1) depends on the assumption that each 
x observation has the same mean. This assumption is often unacceptable even though 
the x's are usually within a power of ten  of each other. A more reasonable assumption, 
and one which leads to unequal variances for the v's and to a slightly more compli- 
cated model and estimation equations, is that x follows a binomial distribution with 
each of dn organisms observed at time t independently having probability #t of 
survival. This leads to a model specified by the binomial probability funct ionf(x)  for 

x, where / A . \  

f (x )=lT)( ,u t ) ' : ( l - -# ' )dn- -x ,  X = 0 , 1  .. . .  ,dn, (5.1) 

and where (dn)  is the binomial coefficient representing the number of ways of select - 

ing x organisms from a total available ofdn. 
The model given by Equation (5.1) with both n and each of the sampling fractions 

assumed known is often encountered in bioassay and epidemiology as documented 
by Cornell and Speckman (1967) who reference, illustrate and compare several methods 
for estimating #. Peto (1953) works out the maximum likelihood procedure which 
when applied to the data in Table I with n =Yo yields fi =0.078, which is very close 
to the comparable least squares estimate of 0.082 given in Section 4. This method 
entails maximizing the joint likelihood function which equals the products of the 
right-sides of Equation (5.1) formed using all of the combinations of d, t and x values 
observed in the experiment. The approximate (asymptotic) variance formula for fi, 
which is also given by Peto, leads to an estimated variance of fi of 0.17 x 10-s. This is 
considerably smaller than the corresponding variance estimate cited in Section 4 and 
illustrates, at least when n is assumed known, that taking into account that the x 
variables do not all have the same mean and using the actual x observations and 
corresponding dilution factors d instead of just their y ratios makes more efficient 
estimation o f #  possible. The main drawback to the use of this binomial model instead 
of the least squares model of Section 4 is the difficult computations required to esti- 
mate both n and # using all the data. This difficulty is overcome to some extent in the 
next section. 

6. A Poisson Model 

Since 0 t is usually small relative to nd for t > 0  because of the exponential die-off 
assumed in Equation (1.1), the binomial probability model given by (5.1) can alter- 
natively be approximated using the Poison probability function 

f (X) = e-~'~.X/x!, x = 0, 1 .. . .  , (6.1) 

where 2 =ndOt =ndl at is the mean of x given t for the distribution specified by (6.1) as 
well as by (5.1). This model leads to easier estimation calculations than the binomial 
model in Section 5, particularly when n as well as # is to be estimated. 
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The model given by (6.1) has been introduced by Williams (1961) in the context of a 
genetic study for equally spaced t values. He develops tables to assist in the maximum 
likelihood estimation of # and studies the significance of departures from the model. 
To apply his work directly to the model depicted by (6.1), the dilution factors d would 
have to be the same for each t. 

A formula which can be solved iteratively for a maximum likelihood estimate of # 
in model (6.1) for any set of  exposure times, thus avoiding the restrictions in William's 

model, is 
n ~ diti/1 t' - T = 0 (6.2) 

where T = ~ t i x i  and n is assumed to be known. When n is not known and X - ~ x l ,  
joint maximum likelihood estimates o f #  and n are given by 

( Z  tfli/1n/Z d~/1t') - T / X  = 0 ; (6.3) 

= X / Z  dft t' . (6.4) 

A method of solving such equations iteratively which also leads to variance estimates 
is discussed, for instance, by Rao (1952, pp. 165-172). 

For the data in Table I with n =Y0, Equation (6.2) yields/1=0.077. Its estimated 
^2  2 ^t~ variance is # /~m~t i # =0.17 • 10 -5. These results are almost the same as those 

obtained with the binomial model in Section 5. When n is not assumed to equal Yo, 
Equations (6.3) and (6.4) lead to / i  =0.056 and/1 = 1.4 • 106. These results indicate the 
sensitivity of the estimate/1 to the value taken for n and also the discrepancies which 
can arise between an estimate o fn  based on a single initial count and an estimate based 
upon all the data. This emphasizes again the need for several observations at t = 0 if  
n is to be experimentally determined and then assumed known in further calculations 

used to estimate #. 

7. A Model with Variable Loadings 

The Poisson model in Section 6 forms a base for easily allowing for the variation in the 
initial loading n over the tubes prepared for different exposure times. Since n is large 
in spacecraft decontamination applications, it is reasonable to approximate its distri- 
bution by that of  a continuous ransom variable and since n can not be negative, the 
gamma distribution is the natural one to use. Its probability density function, with 

the mean and variance ofn  equal to ~/fl and a/f12, respectively, is 

f (n) = fl~n~-le-~n/F(~), ~, fi, n > 0. (7.1) 

The gamma distribution is flexible, assuming an exponential form when a = 1 and 
moving through stages of decreasing skewness towards normality as ~ increases. 

Multipling the right sides of  Equations (6.1) and (7.1) leads to 

f (x, n) = fl~ (d#t) ~ e-"(P+dU~)nX+~-1~IF (~) x !]. 

Integrating out n yields a negative binomial probability function for x given by 

f ( x ) -  F(e)  x[ f l + d ~  \ ~ d # t J  ' x = 0 , 1  . . . . .  a, f l > 0 .  (7.2) 
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The mean of x is equal to c~dpt/fl, which is just the mean 2 for the binomial and Pois- 

son models of  Sections 5 and 6 with n replaced by its mean e/ft .  

The parameter  # has been estimated using (7.2) with the mean o:/fl of n set equal 
to Yo, the assumed known and fixed value ofn  used in calculations for previous models. 
The parameter fl has been set successively equal to 1, �89 and 0.4 x 10 -5. When fl = 1 
the variance and mean of n are equal, as when n has a Poisson distribution. Taking 
/~ = �89 makes the variance of n twice its mean, representing slightly more variability than 
when n has a Poisson distribution. When f l=0.4 x 10 .5 the variance of n is much 
larger than its mean and this illustrates the use of  this model when there is extremely 
diffuse information about n. For these three situations the maximum likelihood 
estimates of  # are 0.078 for fl = 1 and �89 as compared to 0.077 for the corresponding 
Poisson model in Section 6, and 0.089 for fl = 0.4 x 10- 5. This illustrates that allowing 
for variability in n does not affect the estimate of/~ when this variability is relatively 
small but does when it is large, and hence should be taken into account in this latter 
instance through the use of  model (7.2) as opposed to those given by (5.1) and (6.1). 

The parameters ~ and/~ as well as # in (7.2) can be regarded as unknown and esti- 
mated from the data by the maximum likelihood procedure, although the calculations 
are formidable. For  our illustration, the resultant estimates of p, c~ and/? are 0.064, 
4.10 and 0.273 x 10 -5, respectively. The latter two estimates lead to 1.5 x 1 0  6 and 
5.5 • 1026 as the estimated mean and variance of n. The point values of these estimates 
should not be emphasized too much because the likelihood contour is relatively flat 
around its maximum point, that is, the estimates of p, c~ and/~ could be varied quit a 
bit without reducing the likelihood of the sample markedly. However, these estimates 
do indicate that for this example it is not very reasonable to assume that n is the same 
for each exposure time in the Poisson model in Section 6 or in the binomial model 
in Section 5 which it approximates. This calculation, like the first one in this section, 
also illustrates the sensitivity of the estimate of # to assumptions made about n in 
developing the model upon which the estimation calculations are based. 
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