
Journal of Applied Mathematics and Physics (ZAMP) 
Vol. 28, 1977 Birkh~iuser Verlag Basel 

Boundary-Layer Effects on the Reflection of Sound Waves 
and Weak Shock Waves at Shallow Incidence 
By Arthur F. Messiter, Department of Aerospace Engineering, The University of 
Michigan, Ann Arbor, Michigan, USA 

This paper is dedicated to Nicholas Rott, in appreciation for his helping to 
introduce me to aerodynamics, and in honor of his sixti.eth birthday. 

I. Introduction 

If a plane acoustic wave is incident upon an infinite plane wall, the reflected wave 
has smaller amplitude than the incident wave because of the time-dependent boundary 
layer along the wall. Zogg [1] has noted that the boundary-layer correction to the 
potential for the reflected wave is singular as the direction of propagation becomes 
parallel to the wall. The largest correction term becomes proportional to the ratio kfi/O, 
where ~ is the boundary-layer thickness, l/k is the wave length of the incident wave, and 
0 is the angle, for the incident wave, between the wave front and the normal to the wall. 
Zogg concluded that his solution is valid only if this ratio is small. By retaining 
nonlinear terms in the potential equation and transforming to a coordinate system 
moving with the wave, it is shown here that for small values of 0 the boundary-layer 
effect can be described in terms of a transonic-flow problem. The resulting approximate 
differential equation is linear with variable coefficients, and describes small per- 
turbations about a prescribed sound wave moving parallel to the wall. The'revised 
approximation becomes necessary when the angle 0 is of the same order as the square 
root of the nondimensional wave amplitude. 

A similar nonuniformity appears if a weak plane shock wave is reflected from an 
infinite wall. The linear-theory prediction of the boundary-layer contribution to the 
potential in the flow behind the reflected wave becomes large as the angle 01between the 
incident wave and the normal to the wall becomes small. In a coordinate system moving 
with the wave the flow is steady,and when Oiis small the shock-wave reflection can be 
described by the transonic approximation to the shock-polar equation. The position of 
the reflected wave is then known in a first approximation and so, for values of 01 larger 
than the minimum value for which regular reflection is possible, the boundary-layer 
correction is derived quite easily. The modified approximation is required when the 
angle 01 is of the order of the square root of the nondimensional shock-wave strength. 
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2. Reflection of a Sound Wave at Shallow Incidence 

The reflection of an incident plane acoustic wave from an infinite plane wall y -- 0 
is described by a potential 

dp(x, y, t) = ie a~  e i(~'-k~x~ cos kry  (1) 
k 

where x is measured along the wall; a o is the sound speed in the undisturbed gas; e << 1 
is the dimensionless amplitude of the incident wave; kr /kx  = tan 0; and k 2 --- k 2 4- k 2 
= (o2 /a  2 . The result (1) is a solution to the wave equation having a prescribed form for 
the incident wave and satisfying the boundary condition ~br -- 0 at y = 0. At y = 0, 

k x  ei(~t- kxx ) ~b~(x, 0, t) = ea o - -  
k 

(2) 

In the boundary layer 

poUt + Px = poUyy, py = 0 (3) 

where the pressure is found from (1) using p - P o  = -Poq~t ;Po, Po, and Po are the 
pressure, density, and viscosity coefficient in the undisturbed gas; and u is the x- 
component of velocity. The boundary-layer approximation requires Ogvo/a 2 << I, 

where Vo = Po/Po ; that is, we take k6 << 1, where fi = (2Vo/eg) 1/z. The solution of  (3) 
given by 

kx 
u = ea o -f f  ei('~ -- e - t l  +i)r/,~) (4) 

satisfies the boundary condition u = 0 at y = 0 and approaches the value of ~x given by 
(2) as y/6 - .  oo. The temperature profile is calculated using the energy equation; it is 
assumed that the wall temperature remains equal to the temperature in the undisturbed 
gas. The density is found from the equation of  state, and it then follows from the 
continuity equation that the boundary-layer contribution to the y-component of  
velocity as y/6 - .  oo is 

A v =  -�89 + i )  2 : -  1 + k  2) ( ~ -  ~ ekfao eit~ (5) 

where 7 is the ratio of specific heats, a 2 = ~Po/Po, and a is the Prandtl number; this 
expression is consistent with the result given by Rott  [2]. 

A second-order term can now be added to the external potential flow [1], in the 
form of a correction to the reflected wave satisfying the boundary condition that 
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q~r(x, 0, t) equals the value of Av given by (5). It is found that 

(a(x, y, t) = ie ao ei(Co,_kxx ) COS kyy 
k 

+ �89 - i) ~ - .  + ~ eaok6 - -  e i(~ kx:,- k,r) (6) 
kr 

The second term in (6) is small in comparison with the first term if k6 << 0. However, 
this may not be a sufficient condition for the validity of (6), and the nature of the proper 
approximation for small 0 is not obvious. Resolution of these questions requires a 
nonlinear potential equation and discussion of the relative sizes of the three small 
parameters e, k6, and 0. 

For irrotational isentropic flow the continuity and Bernoulli equations are 

p, + pVZ~b + V~b. Vp = 0 (7) 

tk,+�89 2 + - a  2 - - - ( p y - l _  a z_ (8) 

l\0/ 'p" ~: 1 

A first approximation gives a2(p - Po) = - Po( a, and q~, = a~4~.  An equation for ~b 
which is accurate to second order is then 

a2V2q~ - ~b u = 2V~b. V~b, + (7 - 1)~btV2~ b (9) 

Substitution of the solution (6) in the right-hand side of (9) gives terms of order gZao2o9 
and e2a2ooo(k6/O). Since the terms in ao2~brr on the left-hand side are of order cameo0 2 and 
ea2ooO2(k6/O), there is an implication, which will be examined below, that  the 
approximate solution (6) may require 0 >> e 1/2. If  0 = O ( g  U2) ,  the order of magnitude 
of the boundary-layer correction, but not its functional form, can be found by replacing 
0 with e 1/2 in (6). The conjecture then is that this correction is of order el/2ao 6 and does 
not become larger if 0/g 1/2 ~ 0. Only the case k6 << gl/2 will be considered, since this 
case corresponds to a useful range of numerical values and also leads to certain 
simplifications. The condition 0 >> e ~/2 for the validity of (6) is then a stronger 
requirement than the condition 0 >> k6 originally suggested. 

The nature of the nonuniformity for small 0 is perhaps made more clear if we 
consider small perturbations about a small-amplitude wave traveling parallel to the 
wall. A coordinate system moving in the positive x-direction at speed ao/cos 0 is 
introduced by the transformation 

Y = k(x  cos 0 - aot) (10) 

where k = o~/a o, as before. The potential equation (9) can be rewritten for 0 << 1 with 
the nonlinear terms simplified by use of the approximation q~t ~ -ao4~x. The result is, 
in a temporary mixed notation, 

-k2a202d~ -t- a2dpyy + 2aokdp~, = -aok3(y + 1)q~b~ + " "  (11) 
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and it is easily shown that all omitted terms are necessarily smaller than those retained. 
The signs here appear unfamiliar because the flow is from right to left; if ~ were 
replaced by - ~, the usual signs would be obtained. In (11), t3/~ t implies differentiation 
with Y held fixed, and in this system it is expected that the solution will change only 
slowly with t. For  the largest term in ~b, the part corresponding to an incoming wave is 
considered to be prescribed, and the condition ~b r = 0 at y = 0 is to be satisfied. For  the 
second term, there is no incoming wave and the y-derivative has the value given by (5) 
asy  ~ 0. If only the first two terms in (11) are retained, the solution (6) is obtained, with 
sin 0 replaced by 0, etc. 

Motivated in part by the considerations discussed above and in part by the 
anticipated nature of the results, we try the following asymptotic expansions of the 
potential in the limit as e ~ 0 and 0-~ 0 with 02/• fixed: 

c~ = (~ao/k)c~o(~, f ,  t') + el/2ao~t~l(.~, )7, ~ + " "  (12) 

37 = el/2ky, ~= eogt (13) 

The characteristic time is taken as (e~)-  x because in the moving coordinate system the 
motion is nearly steady, but the nonlinear wave steepening is proportional to the square 
of the amplitude and the resulting change in waveform is no longer negligible when the 
time becomes of this order. When this assumed form of solution is substituted in (1 1), 
the largest terms are found to give 

( 0 2 / e ) t ~ O ~  - -  ~0fi)7 = 2~b0~r + (7 + 1)~b0~t~0~ (14) 

This is the unsteady form of the transonic small-disturbance equation. If 0 2 / e  ~ o0, 
then 37 = O ( e l / 2 / 0 )  and the terms on the left-hand side are dominant;  the solution 
satisfying proper initial and boundary conditions again gives (1). If 02/e --~ 0, the largest 
terms are those on the right-hand side, and the resulting equation describes a plane 
wave traveling in the positive ~-direction with dc~o~/dt'-- 0 along characteristics d~/d~ 
~ �89 + 1)~0~. 

The differential equation for the second approximation is 

(02/e)q~l~ -- ~b,y~ = 2q~l~z+ (7 + l)(~b0~q~l~)X (15) 

This is the equation which would have to be studied if the boundary-layer correction 
were to be calculated for 0 = O(e~/2). For  02/e ~ 0% a solution of (15) satisfying the 
boundary condition obtained from (5) again leads to the correction term in (6). For  
02/e = O(1), the equation is linear with variable coefficients which depend on the 
solution for q~o. The boundary condition at 37 = 0 would again be obtained from (5), 
and some kind of initial condition would be required. For  example, one might consider 

a semi-infinite plate y = 0, x > 0 with the incoming wave prescribed as sinusoidal at x 
= 0. For  0z/e ~ 0, the first term in (15) disappears, and the resulting equation describes 
the boundary-layer perturbations on a wave traveling parallel to the wall. Solutions to 
this problem are expected to exist, and so it seems that solutions for ~b~ must remain 
bounded as 02/e ~ 0. Thus for small 0 the boundary-layer correction to ~b appears to 
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become no larger than O(el/2ao 6) and the anticipated restriction 0 << e 1/2 for the 

validity of  (6) appears to be correct. 

3. Reflection of  a Weak  Nearly Normal  Shock Wave 

A plane shock wave moving at speed cs, into a gas initially at rest and having 
uniform properties, gives a velocity eao to the gas, where for weak shock waves e << 1 
and c J a  o = 1 + �88 + 1)e + ". ". I f  the shock wave is reflected f rom an infinite plane 
wall, at an angle 0z from the normal, the reflected shock wave lies at an angle 0 t + O(e) 
from the normal,  and behind the reflected shock wave the flow is parallel to the wall at 

speed Au = 2eao cos 0r + " ' ". In a coordinate system moving parallel to the wall at a 
speed u~ = cJcos  Oz, the flow is steady. Coordinates x and y will be measured along 
and normal to the wall, with x positive to the right. We consider a shock wave moving 
to the left, so that the steady flow now is in the positive x-direction, f rom left to right. 
The velocity components  ui and vl, in the x and y directions respectively, in the region 

behind the incident shock wave are 

C s 

ul - eao cos 0r (16) 
cos 0r 

vl = - e a o  sin 01 (17) 

The velocity u2 behind the reflected shock wave is 

Cs 
U z = U ~ - A u - - -  2 e a o c o s O  r + . . .  (18) 

cos Oi 

The boundary layer behind the reflected shock wave, described by linearized equations, 

has velocity profile 

u - u~ = - (Au) erf (y /6)  (19) 

where uo~ - Au ~< u ~< u~ and fi = (4VoX/Uo~) l/z, for x > 0. I f  the wall and undisturbed 
gas temperatures are equal, the continuity equation gives a velocity component  normal  

to the wall, as y /6  ~ ~ ,  

1 + ( y -  1)ty-1/2M 2 (Au)~ J / / V O  ~1/2 
(20) 

U ~ - -  /171/2 \UooX/ 

In the external flow behind the reflected shock wave, the small displacement effect 
of  the boundary layer gives an additional term in the potential, so that now 

1 + (~ - 1 ) a - 1 / 2 M ~  
ck = uzx  + 2 

rrl/Z(M~ _ 1)1/2 

• (Au) {x  - ( M ~  - 1)~/~y} ' ~  (21)  
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where M 2 = u2/a 2 is the Mach  number  in the external flow behind the reflected shock 
wave, for  Vo -- '  O, and is approx imate ly  equal  to Moo = u~/ao. In the combina t ion  M 2 

- 1 above,  M 2 is used somewhat  arbi t rar i ly  in place of  Moo. Since e << l, 

(M2-1 ) l /2=(M~-  l)l/2{l + (  1 + 7 - 1  M2 

Au } 
x - -  + . . .  (22) 

MZ-luoo 

Therefore  the boundary- layer  correct ion to q~x as found  f rom (21) is p ropor t iona l  to 
(M2~ - 1)-1/2(uoox/vo)-1/2Au. Since the shock-wave thickness is o f  order  e-%o/U~o, 

the correct ion te rm remains  small in compar i son  with Au for  values o f x  which are large 

in compar i son  with the shock-wave thickness. 
Using (21), we can expand the slope tan (0 + #) o f  a downs t ream-running  

characteristic,  where /a = sin -1 ( l / M )  and 0 is now the flow deflection angle. A 

characterist ic ~ = cons tan t  is given by 

( 1 7+1 
y = ( x - 4 )  M22 - 1) 1/2 2 (Mz 2 -  1) 2 

1 +  ( 7 - 1 ) a - 1 / 2 M ~  Au(vo y / a + . . . }  (23) 
x - � 8 9  u~ \ u ~ /  

where ~ is defined by  setting x = ~ at  y = 0. Since a weak shock wave bisects the angle 

between ups t ream and downs t ream characteristics,  the angle OR between the reflected 
shock wave and the no rma l  to the wall is, approximate ly ,  OR = �89 - ~(#2 + Pl + 01), 
where the subscripts 1 and 2 again refer to condi t ions behind the incident and reflected 
shock waves respectively. A relation between 01 and 01is found by setting vl/u~ ~ 01 in 
(17). Since #1 - P~ and P2 - ~1 are approx imate ly  p ropor t iona l  to 01, we can express 
OR in terms of  01. I f  a boundary- layer  correct ion is added,  

( l + �89 secZ OOesinOlcos01 + OR = 01 + 1 . . . . . . . .  
tan 2 01 

7 + 1  M~ l+(7-1)# - l /2M2Au(vo  ~ 1/z 
+ . . . . .  (24) 

4 M 2 - 1 -n ~7~ u~o \ U o ~ /  + 

Since M 2 - 1 --- (sin 2 01 + ~ 7  + 1)e + . . - ) /cos  2 01, it is evident f rom (22) and 
(24) that  neglected terms in the approx imat ions  M ] - 1 ~ M 2 - 1 and O R ~ 01 will 
remain  small in compar i son  with the first terms only if 01 << el/2. At t ransonic  speeds the 
velocity componen t s  behind the incident shock wave are found using (16) and (17) to be 

ul/a* = 1 - �89 + 0/2/(7 + 1) + " "  (25) 

vl/a* = -cO1 + "'" (26) 
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The approximate shock-wave slope and shock-polar equation for the reflected shock 
wave are given by 

- - V  1 

OR - - -  ( 2 7 )  
U 1 - -  U 2 

(v l~  2 _ ? + 1 
a* /  2 { ( a ~ - l ) - ( ~ * 2 - 1 ) }  2 

(28) 

Thus/d 2 and O R are expressed implicitly in terms of 0~and s. In the special case for which 
the gas velocity is sonic behind the reflected shock, M 2 = 1 and/22 = a*, and we find 

(y + 1)s -- ~ 1 (29) ? +  l)s 

Then 202/(? + 1)s ~ 4.24. For any given value of ul, there is also a value ofu2 for which 
the right-hand side of (28) is a maximum, corresponding to a maximum flow deflection 
angle across the reflected shock wave. If  this condition is combined with (25), (26), and 
(28), it is found that the minimum value of the angle 01 for which regular reflection is 
possible is given by 

202 ( i 2 0 2  ) 3  

(? + 1)s --- ~7 1 7 +  1)e 
(30) 

and 202/(7 + 1)s = 4. 
To calculate the boundary-layer displacement effect for 0 r = O(el/2), we first 

introduce small perturbations in the shock-wave relations. If/2~21) and v~ 1) are the 
perturbations in velocity components downstream of the reflected shock wave and 0~ ) 
is the perturbation in the angle between the reflected shock wave and the normal to the 
wall, we find at the shock wave 

(31) 

- - -  + - -  ( 3 2 )  
OR ~1 /21 --  U2 

where y = x/0 R has been used as the first approximation to the shock-wave position. 
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For  the flow behind the shock wave, the differential equat ion for the per turbat ion 
potential  is 

(M 2 ---(1) - l)02xx = ~b~zar)y (33) 

where now M~ - 1 ~ (7 + 1)(1 - u2/a*). The approximat ion  used earlier for 012>> e 

required only outgoing waves, but  for 0~ = O(~) the shock-wave relations require bo th  
families o f  waves. Using (20), the form of  solution is 

(o~ 1~ = ~(x - 2y) 1/2 + 3(x + 2y) 1/2 (34) 

where 2 = (M 2 - 1) ~/2, and the values o f  the constants  e and/~ are found  f rom (20) and 

(31). I f  M 2 < 1, but  01 is still large enough to permit regular reflections, the differential 

equat ion for q~) is still (33) and the form of  solution is 

(o~21) = Ar ~/2 cos �89 + Br 1/2 sin �89 (35) 

2y 
r 2 ---- x 2 -4- ~2y2 ,  0 = t an -1  __ (36) 

X 

where now 22 = 1 - M 2. The constants  A and B are found f rom (20) and (31). 

It is found f rom the solutions (34) and (35) that the . (1) per turbat ion velocity u2 is o f  
order u| 1/2 and does not  grow indefinitely large as M 2 ~ 1, as would 

typically be the case in a small-perturbation solution. For  [M 2 - 1[ << a the characteris- 

tic length in the y direction is the distance x/O R f rom the wall to the shock wave, which is 

small in compar ison  with the characteristic length O(x/2) obtained if the two terms in 

the differential equat ion are assumed to be o f  the same order. Thus for IM~ - 1[ << ~ the 

proper  scaling for the y-coordinate  involves O R rather than 2, and when written in 
proper  variables the limiting form of  the differential equat ion contains a single term:  

~)(21y)y = 0 (37) 

The solution ~b~ 1) = f ( x ) y  + g(x) is required to satisfy the boundary  condit ions at y = 0 

and at the shock wave, and is found to agree with the solutions (34) and (35) evaluated 
for M 2 -~ 1. 

Finally, if (M 2 - 1)/e ~ 0 and also x-- .  0, the boundary- layer  correction" u2" t l) will 

be large in compar ison  with luz - a*l if eax/v << ~2/(M2 - 1) 2 but remains small in 

compar ison  with a* provided that eaox/v >> 1. Thus the boundary- layer  correction is 
calculated as a simple displacement effect as long as the distance f rom the shock wave is 

much larger than the shock-wave thickness. For  x = O(e-%o/ao)  the problem 

becomes an interaction problem of  the type described by Sichel [3] for a normal  shock 

wave. The boundary- layer  thickness here is o f  order ~- 1/2vo/ao, smaller than e-  1yo/ao, 
and so the boundary  layer can still be considered thin, but  the pressure now appears in 

the m o m e n t u m  equat ion and is not  known in advance. In an outer region where x 

= O(e - l vo /a  ) and y = O(e-3/2vo/a), the correct  approximate  equations describe a 
two-dimensional  shock structure with v/a* = O(e3/2). 
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Abstract 

When either a plane acoustic wave or a weak shock wave is incident upon an infinite wall, the boundary- 
layer correction to the reflected wave becomes large ifth~ angle between the wave front and the normal to the 
wall approaches zero. It is shown that transformation to moving coordinates leads to transonic flow 
problems whose solution permits removal of the singular behavior in each of  these cases. 

Zusammenfassung 

Wenn eine ebene Schallwelle oder ein schwacher Stoss so auf eine Wand auftrifl't, dass der Winkel 
zwischen der Wellenfront und der Wandnormalen gegen Null geht, so wird die Korrektur der reflektierten 
Welle wegen der Wandgrenzschicht gross. In der vorliegenden Arbeit wird gezeigt, dass eine Transformation 
auf bewegte Koordinaten auf ein transonisches Problem fiihrt, dessen Losung die Singularit~it in beiden 
FAllen vermeidet. 
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