
Journal of Applied Mathematics and Physics (ZAMP) 
Vol. 31, 1980 Birkh~iuser Verlag Basel 

Interaction between a Normal Shock Wave and a Turbulent 
Boundary Layer at High Transonic Speeds. 

Part I: Pressure Distribution 

By A. F. Messiter, Dept of Aerospace Engineering, The University of Michigan, Ann 
Arbor, Michigan, USA 

1. Introduction 

In several recent studies, asymptotic methods have been used successfully for the 
derivation of rational approximations which describe the interaction of a turbulent 
boundary layer and a weak, stationary, normal shock wave. It appears that correct 
limiting forms of the equations can be determined, that numerical or analytical 
solutions to these equations are obtained easily enough to be of practical interest, and 
that numerical accuracy may be adequate for important parameter ranges. In the 
limiting case to be considered here, still for an unseparated boundary layer, the shock 
wave extends close to the wall, the upstream influence is small, and analytical solutions 
can be obtained for most of the flow field. Pressure distributions are derived in Part I; 
the wall shear stress and the possibility of predicting separation will be discussed in 
Part II. 

In many transonic flows of interest, there occurs a shock wave which, in an 
inviscid-flow approximation, is normal to a solid boundary, at values of the Reynolds 
number large enough that the boundary layer along the wall is fully turbulent. Since 
the strength of the shock wave must decrease to zero in the supersonic part of the 
boundary layer, there can be no discontinuity in the pressure at the wall. It is observed 
that the shock wave becomes slightly curved and is displaced slightly in the upstream 
direction. As the Mach number upstream is increased, still below the value required 
for separation, the shock wave extends further into the boundary layer; experimental 
results [1, 2] show an initially rapid rise in the wall pressure, followed by a gradual 
decrease in the pressure gradient over a distance several times larger than the 
boundary-layer thickness. 

Asymptotic descriptions of these flows, in the limit of infinite Reynolds number, 
have been discussed in References [3] through [10]; in particular, Reference [8] 
contains the first steps of the present work. In each of these studies, the representation 
of the undisturbed boundary layer in terms of a velocity-defect layer and a wall layer 
[1t-13] is regarded as providing an asymptotic description as the Reynolds number 
tends to infinity [14-18]. The pressure gradient in the boundary layer is large near the 
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shock wave, and consequently the forces resulting from changes in the Reynolds 
stresses are of higher order than terms retained, in most of the boundary layer. Thus, 
as for laminar flow [19-21], an asymptotic description of the changes in the mean flow 
can be obtained with the use of inviscid-flow equations for most of the boundary layer. 

The form of the velocity profile, however, implies two important differences from 
the laminar-flow case. First, for an unseparated turbulent boundary layer the wall 
layer is extremely thin, and the displacement effect resulting from deceleration of fluid 
close to the wall remains very small, even in a large pressure gradient. Thus, if the 
undisturbed velocity profile is known outside the wall layer, an approximation to the 
pressure can be found without knowledge of the flow details near the wall and there- 
fore without any further assumption about the nature of the turbulent stresses. Second, 
for a slightly supersonic external flow the sonic line is located at an arbitrary position 
(outside the wall layer) in the undisturbed boundary layer, depending on the relative 
sizes of the nondimensional friction velocity and the nondimensional difference 
between the fluid velocity and the critical sound speed in the external flow. As the 
Reynolds number tends to infinity, one can then study three cases, such that the ratio 
of these parameters tends to infinity, remains constant, or approaches zero. 

Adamson and Feo [3] considered an incident oblique shock wave in a flow with 
velocity only slightly greater than the sound speed, such that the sonic line is located 
very close to the edge of the boundary layer. The corresponding asymptotic formula- 
tion was shown to lead to a local-interaction problem requiring solution of the 
transonic small-disturbance equations for the local perturbations in the external flow, 
expressed in appropriately scaled variables. The influence of the boundary layer is 
represented on this scale through an effective wall boundary condition specifying a 
linear relationship between the streamline slope and the pressure gradient. Melnik and 
Grossman [4] studied a normal shock wave having strength, as measured by the 
nondimensional pressure jump, of the same order as the friction velocity, so that in 
the limit the sonic line is at an arbitrary location in the boundary layer. Numerical 
solutions of the transonic small-disturbance equations were obtained for perturbations 
in the defect portion of the boundary layer and in the neighboring external flow. 
Changes in the wall layer were also discussed in each of these papers. Melnik and 
Grossman later [5, 6] obtained additional numerical solutions for axisymmetric pipe 
flow. At higher upstream speeds, which might be characterized as 'high transonic 
speeds', the shock wave is stronger but the boundary layer can remain unseparated. 
For this case, a first approximation for the flow perturbations outside the wall layer 
was given by Adamson and Messiter [8]. The shock-wave strength, although still small, 
was taken to be large in comparison with the nondimensional friction velocity, so that 
in the undisturbed boundary layer the distance from the sonic line to the wall is much 
smaller than the boundary-layer thickness. The corresponding problem has also been 
discussed for an incident oblique shock wave [7, 9]. A brief preliminary description of 
some of the present results was given in Ref. [10]; a few details have since been 
modified. 
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In the present work, analytical solutions are derived which incorporate additional 

physical effects as higher-order terms for the case, first discussed rather briefly in Ref. 
[8], when the sonic line is very close to the wall. The functional form used for the 

undisturbed velocity profile is described in Section 2, to indicate how various param- 
eters will be calculated for later comparison with experiment. The basic solutions 

for the pressure distribution are derived in Section 3. In Section 4 corrections are added 

for flow along a wall having longitudinal curvature and for flow in a circular pipe, and 

comparisons with available experimental data are shown. It was also found possible, 
by a more lengthy derivation, to remove the restriction to weak shock waves; for the 

parameter ranges of greatest practical interest, the numerical results were seen to differ 
only slightly from the simpler solutions of Section 3, and the longer derivation has 

therefore been omitted here. 

2. Undisturbed Velocity Profile 

Nondimensional rectangular coordinates X and Y are measured along and 

normal to the wall, respectively, with Y = 0 at the wall and X = 0 at some point on 
the shock wave, e.g., at the intersection of the shock wave with the edge of the boundary 

layer as defined below. The reference length is a geometric length such as the length 

of the boundary layer from a leading edge up to the shock wave. The nondimensional 
mean-velocity components U and V, referred to the critical sound speed in the external 
flow, are in the Xand  Ydirections respectively, and the term p '  V ' / p  has been included 

in V. Here primes denote fluctuations about the mean, and p' V' denotes an average 
value. The nondimensional mean pressure P, density p, temperature T, and viscosity 

coefficient/z are referred to the critical values of pressure, density, and temperature, 
and the corresponding viscosity coefficient, in the flow just outside the boundary layer 
and ahead of the shock wave. The sum of the nondimensional Reynolds stress and 

viscous stress, in the boundary-layer approximation, is denoted by % and has been 
made nondimensional with twice the dynamic pressure, in terms of the same reference 
quantities. For later convenience the friction velocity u, is made nondimensional using 

the external-flow density: 

u~ = ~'~ 1 2 (2.1) - -  = -~U~ ci,  Ue = 1 + ~ 
Pe 

where the subscripts e and w indicate values in the external flow and at the wall, 
respectively, and c I is the undisturbed value of the skin friction coefficient, referred as 
usual to the dynamic pressure in the external flow. The nondimensional difference 
between the fluid velocity and the critical sound speed in the external flow is E, and in 
the present case u~ << E << 1. For simplicity, an adiabatic wall is assumed and the total 
enthalpy is taken to be uniform. The ratio of specific heats is 7 and is constant. 

As in references cited above, it is assumed that the undisturbed boundary layer 
can be described asymptotically in terms of a velocity-defect layer and a wall layer. 
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The defect layer occupies most of the boundary layer, and its thickness is taken equal 

to a boundary-layer thickness 3. The velocity differs from the external-flow velocity by 

an amount of order u~, the shear stress is ~- = O(u~), and the layer thickness is 3 = O(uO. 

The much thinner wall layer has thickness denoted by ~, and the velocity there is small, 
of  order u~. Coordinates measured in terms of these nondimensional thicknesses are 

defined by 

Y 
y = ~ ,  3 = O(u,) (2.2) 

Y ~ = tz__~ (T~] ~/2 U~ 1 (2.3) 
.17 = ~ ,  t~e \~ - J  u~ Re 

where ~ << ,3, and ~ has been set equal to the ratio of the nondimensional local 
kinematic viscosity and a friction velocity u,(T~/T~) ~/2 = (~./p~)l12 based on the density 

at the wall. The Reynolds number Re is based on the geometric reference length and 

the undisturbed external-flow velocity and kinematic viscosity; all parameters are 
understood to be evaluated immediately upstream of the shock wave. 

The velocity U, in the undisturbed boundary layer just ahead of the shock wave 
is expressed in the defect layer in terms of y and in the wall layer in terms of 37, as 
follows: 

U~, ~ U~ + U~Uo~(y), y = 0(1) (2.4) 

u .  ~ u,(T~/re)~ao~(y) ,  y = o(1)  (2.5) 

The form of the profile is shown in Figure 1 for u~ << e << 1. Equations (2.4) and (2.5) 

are [13], respectively, the 'law of the wake' and the 'law of the wall', written here for 

a compressible boundary layer, and are taken to be asymptotic representations valid 
as u~ -+ 0, withy and 37 held fixed respectively. Throughout the analysis also e ~ 0 such 

that uJE --~ O. In the wall layer the Reynolds stress and the viscous stress are both of 
the same order as the wall shear stress ~'w = O(u~). Since Y = O(~) is extremely small, 

the momentum equation gives r ~ zw. As 37 = Y/g --~ 0% the viscous stress becomes 
extremely small, while ~- remains equal to r~ in the limit, provided that alsoy = Y/3--~ O. 

The mixing length approximation K2p(~ dU~,/d37) 2 = r~ + . �9 �9 is introduced here for 
y << 1 and 37 >> 1, where K is the yon K/trmfin constant, taken equal to 0.41. For a 
perfect gas with uniform total enthalpy, p T  = pwTw and T = �89 + 1) - �89 - 1)UL 
Integration gives, for y << 1 and 37 >> 1, 

U,, = F sin ( r -  ~(Tw/T~)~12u,(~ -~ In 37 + c)} (2.6) 

where c = constant and I' = (7 + 1)1/2/(~ ' - 1) 1/2- This is van Driest's [22] result, 
with the added simplifying assumption of uniform total enthalpy. 

Expansions of Eqn. (2.6) for Uu ---> 1 + ~ and for U~ -+ 0 should agree, respec- 
tively, with expansions of the defect-layer velocity (2.4) as y --~ 0 and of the wall-layer 
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velocity (2.5) as .9 ~ oo. For Uu ~ 1 + E and Uu ~ 0, respectively, Eqn. (2.6) gives 

U,, ,,, 1 + ~ + (udK)(ln y - 21-I) (2.7) 

U,, ,,, u~(Tw/Te)lm(x -1 ln37 + c) (2.8) 

where II is Coles' [13] profile parameter; c ,~ 5.0 and, for zero pressure gradient, 
II ~ 0.5 or perhaps a little larger. Since 37 = (8/8)y, comparison of Eqns. (2.6) and 
(2.7) gives 

u,K -z In (~/8) = (Te/T~o)zI2U~(,) - u~(2I-IK -~ + c) (2.9) 

where U~(~) = F sin -~ (F-1Ue). The expansions (2.7) and (2.8) require, respectively, 
y ~ 0 slowly and 37 -+ ~ slowly as u~ ~ 0; since u, = O(1/ln Re), from Eqn. (2.9), one 
might take, e.g., y = O(u m) and .9 = O(u~ '~) as u~ -+ 0, where m > 0 and n > 0. A 
difference from the incompressible case arises because Eqn. (2.8) with .9 = (8/g)y does 
not agree with Eqn. (2.7). That is, the expansion as 37 --~ ~ of the wall-layer solution 
does not agree with the expansion as y ~ 0 of the defect-layer solution. Thus these 
solutions have no common domain of validity and cannot be matched. This type of 
problem has been discussed in detail by Lagerstrom and Casten [23], with a model 
example related to flow at low Reynolds number. In the present case, the density has 
different values for y = O(1) and for .9 = O(1), and the difficulty is resolved by use of 
the solution (2.6) for ~ << Y << 8; this feature was also noted by Adamson and Feo [3] 
and by Melnik and Grossman [4]. 

The defect layer, where y = O(1), has nearly constant density and is described in 
a first approximation by incompressible-flow equations. The domain of validity of 
Eqn. (2.6) can be made to include y = O(1) if ,c-l(lny - 2II) is replaced by Uoz(y), 

where Uo~(y) is the same function as for incompressible flow. Then 

U~ = I ~ sin {sin- ~ (F-~ U~) + I ' -  ~(T~/T~)ZmU~Uo~(y)} (2.10) 

Expansion for u~ ~ 0 gives Eqn. (2.4) i fy  is held fixed, Eqn. (2.7) i fy  ~ 0 sufficiently 
slowly that also u~ In y -+ 0, and Eqn. (2.6) i fy  = (8/~)37 ~ 0 more rapidly, such that 
u~ In .9 is held fixed. The use of Eqn. (2.10) was suggested by Maise and McDonald [24], 
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who showed that this assumed profile permits good correlation with experimental data 
for adiabatic flat-plate boundary layers. Their interpretation of Eqn. (2.10) notes that 
a transformed velocity I' sin-1 (P-1U,) is predicted to have the incompressible form 
U~(~) + (Tw/Te)~f2u,uol(y) everywhere outside the wall layer. 

A second relation between 3 and u~ for OP/SX = 0 can be found with the help of 
the von K~irm~in integral of the momentum equation, following a derivation similar 
to that for incompressible flow given, e.g., by Cebeci and Smith [25]. The result is, to 
second order in u d Ue, 

m13= u~ ~2Ue(Tw)l'2 4 ( Tw ) f o  | } u~ "-8 -~e + I'~--~ Z + ml-- 3 -~ - 1 u~ dy Ue 2 (2.11) 

The positive constant m~ is defined by 

m~ = - 8  uol(y) dy (2.12) 

and occurs in another context in the following section. For analytical purposes, the 
function Uo~(y) is represented in Coles' [13] form 

Uo~(y) = ,c -~ l ny  - I/x-l(1 + cos Try) (2.13) 

for 0 < y < 1, with uo~(y) = 0 f o r y  > 1. 
In the derivation which follows, the boundary-layer thickness is taken as one of 

two important characteristic lengths. The other length is the distance from the wall to 
the sonic line in the undisturbed boundary layer, denoted in nondimensional form by 
3,. Substituting Eqn. (2.13) in Eqn. (2.10), setting y = 3,/3, and expanding for 
3./3 --~ 0 gives 

u~K -~ In (3/3,) = (TdTw)~'2[U,(~) - U~(0)] - 2IIK- lu,. (2.14) 

A s ,  -+ 0, In (3/3,) ~, Ku;-%[1 - (y - 1),/4 + - . .  ] - 2I/;  thus 3,/3 -+ 0 if u~/, --~ O. 
An alternative form of the velocity profile (2.6) in terms of a coordinate y* = Y/3,, 
is 

U, = P sin {sin -~ (I "-~) + r'-~(Tw/T~)~/2,~-~u~ lny*} (2.15) 

for y--~ 0 and jT-+ ~ .  

3. Interaction Along a Plane Wall 

As u,--~ O, the orders of magnitude of the mean pressure gradient and fluid 
acceleration near the shock wave are larger than in the undisturbed boundary layer. 
The Reynolds-stress transport equations can be used to show that in most of the 
boundary layer the contributions to the mean forces resulting from changes in the 
turbulent stresses are sufficiently small, in comparison with the pressure and inertia 
terms, that they may be neglected as u, --~ O, not only in a first approximation but also 
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in the calculation of some higher-order terms. Correct asymptotic representations of 
the mean velocity and pressure perturbations can therefore be derived using inviscid- 
flow equations. Also, as noted at the end of this section, displacement effects resulting 
from flow changes very close to the wall are extremely small, and so the largest terms 
in the solution for V should approach zero as the distance from the wall decreases. 

In the equations which follow, all laminar and turbulent stresses are neglected, as 
are the entropy changes across the shock wave; order-of-magnitude estimates given at 
the end of this section show that the neglected terms are in fact of higher order than 
any of the terms retained. The equations describing the fluid motion can then be 
written in the following form: 

q2 
a 2 div q = q. V ~- (3.1) 

a 2 = �89 + 1) - �89 - 1)q 2 (3.2) 

pq. Vq = - ~,- 1VP (3.3) 

Here q, q, and a = (p/p)lI2 are, respectively, the velocity vector, the magnitude of the 
velocity, and the sound speed, all nondimensional with the critical sound speed in the 
external flow just ahead of the shock wave. The gradient and divergence operators 
imply differentiation with respect to the nondimensional variables X and Y. Crocco's 
theorem, simplified by the assumption of uniform total enthalpy, is 

~2 x q = ~,-~TVs (3.4) 

where ~ = curl q, and the specific entropy s has been made nondimensional with the 
gas constant R. Since the upstream value of V contributes terms of higher order than 

those to be retained here, the shock-polar equation beomes 

U~U~ - 1 (3.5) 
V~ = (U~ - Ua) 2 2U~/(7 + l) - (U~Ua - 1) 

where the subscripts u and d here denote, respectively, values immediately upstream 
and downstream of the shock wave. Since the jump in the velocity vector across a 
shock wave is in a direction normal to the shock, the shock-wave slope is 

dX~ Va (3.6) 
d Y  Uu - Ua 

where the shock-wave location is denoted by X = Xs(Y). 
I f  the nondimensional friction velocity u, is small in comparison with the non- 

dimensional shock-wave strength e, the sonic line in the undisturbed boundary layer 
is very close to the wall, as can be seen from Eqn. (2.14) and Figure 1. That is, if u, --~ 0 
and u~l~ --~ O, then also ~,/~ --~ 0. A complete description of the local pressure changes 
would require both an 'outer' solution, obtained by taking a limit of the equations 
With coordinates Y/~ and X/A  held fixed, and an 'inner' solution, obtained with Y/g ,  
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Figure 2 
Asymptotic representation of 'outer' flow. 
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and X / A ,  fixed, for suitable choices of A and A,. The shock wave can extend nearly 

to the wall, as shown in Figure 2, and so the upstream influence described by the 
inner solution is very small; it is shown later that A, = O(u}/2~,), where 3,/~ = 

O(exp (-Ke/uO) from Eqn. (2.14). For the outer solution, therefore, U~ can be taken 
equal to the undisturbed velocity (2.10) or (2.4). The inner solution describes perturba- 

tions about the undisturbed boundary-layer flow, while the outer solution describes 

perturbations about a different boundary-layer flow, downstream of the shock wave; 
the two solutions should match in a proper asymptotic sense. 

For Y = O(~) the length scale A in the downstream direction is found from Eqn. 

(3.1) and the vorticity equation to be A = O(bo3), where b2o(E) = 1 - Mo 2 and Mo is 
the Mach number in the external flow behind a normal shock wave. Coordinates x and 
y are defined by 

X Y 
x = bo--~ y = -~ (3.7) 

where 

bo = (7  + 1)1'2,~2{1 - ~(2~, + 1), + . . . )  (3.8) 

Since the shock wave is nearly normal, the shock-polar equation (3.5) gives Ua = 

(1 + 0 -  ~ + O(uO. This result suggests that throughout the flow downstream of the 
shock wave U should be represented as a constant value 1 - ~ + . . -  plus small 
perturbations of order u~. It is convenient to separate the rotational part, which can 
be calculated from Crocco's theorem (3.4), and the irrotational part, which is to be 
found from the solution of Eqn. (3.1) satisfying the appropriate boundary conditions. 
In the limit as u~ ~ 0 with x and y held fixed, the velocity components are then 
expressed in the form 

= U2Ucr) (  x 1," ~)  -t- " ' '  U ( l + 0 - 1 + u ~ u ~ ' ~ ( x , y ; 0 +  ~ 2 , , j ,  

+ u # i x ( x , y ;  ,)  + u~,~2x(x,y; 0 + "  (3.9) 
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V/bo(~) = u~4~(x,  y ;  E) + u~(~2v(x, y ;  E) + . . .  (3.10) 

where the functions of  e shown will be expanded below for  E -+  0. 

The  ent ropy s is nearly constant  along a streamline, and the equat ion of  state 

gives P = pT,  since changes in p ' T '  are of  higher order than  terms to be retained here. 

I t  follows tha t  along a streamline P T - y l ( r - ~  ,,, PeTY Y/(~- ~ to the order  required here. 
Substi tution of  T = a 2 f rom Eqn. (3.2) then gives the pressure as 

PIPe = 1 - 7 ( U -  U~) - 72(Uu - 1)(U - U~) + . . .  (3.11) 

Also, Crocco ' s  theorem gives f~ ~ 7-1Pds/d~b,  where ~by = pU,  $x  = - p V ,  and 

f2 = Vx  - Uy, and so f~/P ,,~ f~u/P~ along a streamline. Substi tut ion in the expression 

for f~ allows calculation of  terms in the rotat ional  par t  o f  U: 

ul ' '  = (1 + 27, + "  .)Uo~(y) (3.12) 

fj ug~ = 7 -  1 2 
4 Uo~(y) + 7 U o z ( y ) $ ~ ( x , y )  dy + . . "  (3.13) 

Substi tution of  the representat ions (3.9) and (3.10) into Eqn. (3.1) leads to differential 

equations for ~ and  42: 

~ , ~  + ~yu  = 0 (3.14) 

62x,, + 62vy = - u g ~  + (1 + e)(Mo/bo)2(2 + (7 - 1)Mo2)(u7 ~ + $~x)$1x~ 

2 (r)  + (1 + E)Moc~,(uxy + 24h~u) (3.15) 

Expansion of  the shock-wave slope (3.6) gives, after integration, the shock-wave 

location x = x~(y; u ,  e) as 

u~(1 + �89 + . - . ) ( ~ z ( 0 , y ;  e) - ~x(0, 1' E)} + . . .  x,  = u,x,~(y; ~) + . . . .  N 

(3.16) 

where the origin of  coordinates  has been chosen so that  x, = 0 at y = 1. Thus the 

shock wave is located at x = 0 in a first approximat ion ,  as implied in Figure 2, and 
the flow propert ies are to be studied in the quarter-plane x > 0, y > 0. Boundary  

condit ions at x = 0 are found f rom the shock-polar  equat ion (3.5), expanded in Taylor  

series about  x = 0: 

~ x ( O , y )  = --2{1 + (7 - 1)e + .-.}Uo~(y) (3.17) 

1 {1 (7 - ~-) }$~y( , Y)  4,2x(0,y) = - x ~ ( y ) $ ~ ( O ,  y )  + 2e - a E 2 0 

y - 1  2 (3.18) 2 Uol(y) + ' "  

I t  is also required that  4~1~(x, 0) = ~2~(x, 0) = 0 and that  all disturbances approach  
zero as x 2 + y2 ___> oo. 
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The limiting form of  ~1 as E --~ 0 was first given in Ref. [8]; here a term propor-  

tional to E is included. The solution is expressed in terms of  a distribution of  sources 
along the y-axis:  

~ ( x , y )  -- - {1 + (7' - 1)e + . . . }  Uol(~)ln{x 2 + ( y  - ~)2}112d~ (3.19) 
- - O D  

The extended definition U o l ( - y )  = Uo~(y) gives a potential  for - o r  < y < oo which 
is symmetric about  y = 0 and thus satisfies the boundary  condit ion there. As 
x 2 + y2 ~ O, the contr ibut ion to the complex velocity is 

u~(4zx - i4~y) = -2u~{1 + (7 - 1)~ + . - . }~c - l ( ln  z - 2II) + . . .  (3.20) 

where z = x + iy. The pressure Pw at the wall found from evaluation of  Eqn. (3.11) 
as y--~ 0 is 

P~ - Pr = 27u~{1 + (2), - 1)~ + -- .}  2Xfo= uo (n) d~7 p ,  -g- xZ + 72 + . . .  (3.21) 

where P~/P~ = 1 + 7'{2E + (2y - 1)E 2 + . . . }  is the pressure ratio across a normal  
shock wave when the upstream speed is Ue = 1 + e. At  larger distances, as x ~ + 
y2 ~ 0% 

u,((~lx - iq~lu) = u,{1 + (7 - 1 ) , + " - } f ~ - ~ + . . .  ) (3.22) 

where m~ is defined by Eqn. (2.12); substitution of  the approximate analytical form 
(2.13) gives m~ = 8(1 + II)/K. That  is, the integrated effect is that  o f  a concentrated 
source having nondimensional  volume strength per unit length equal to {1 + - �9 �9 }m~u~3. 

One-fourth o f  this fluid appears to be added to the external flow in the quadrant  

x > 0, y > 0. Since d ( p U )  ~ (1 - M ~ )  d U  along a streamline downstream of  the 
shock wave, and 1 - M g  ~ (7' + 1)E, the local increase in the boundary-layer  
displacement thickness is �88 + l)~mlu~3 + . . . ,  as can also be found by direct 
calculation. An equivalent observation was made for E = O(uO by Melnik and 

Grossman [5, 6]. Perturbat ions in turbulent  stresses contr ibute only a higher-order 
change locally; the present result does not  include the further displacement effect 
which occurs on a larger length scale as a new equilibrium velocity profile is approached.  
Finally, the shock-wave shape found from Eqn. (3.16) is, for  y--~ 0, 

x~(y)  - x,(O) 2e {1 + (7' - �89 + - -  ~ y + . . .  (3.23) 

and, for  y ~ m, 

x ~ ( y )  - x,(0)  = u, {1 + (7 - �89 + - }  

x In y + ~r Uol(~) In ~ d~7 + . . . .  (3.24) 
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F o r y  = Y/3 ---> oo, the shock-wave displacement continues to increase, and should be 
matched with a suitable perturbed external-flow solution evaluated as Y--> 0. 

The solution for q~2 can be found in two parts. A particular solution of the 

differential equation (3.15) can be made to satisfy homogeneous boundary conditions 
~2x(0, y)  = 4,2u(x, 0) = 0 if sources are distributed over the entire x, y plane with the 

source strength chosen to be an even function of both x andy.  The boundary condition 
(3.18) at x = 0 is then satisfied by a distribution of sources along the y-axis, with 

strength taken to be an even function o f y  so that q~2u remains zero at y = 0, as in the 

solution for 41- Of special interest is the total source strength found by carrying out 
the integrations as x 2 + y2 _+ 0% with the help of integrations by parts and Eqns. 
(3.14) and (3.17). The pressure, correct to order u~(x 2 + y2)-~/2 as x 2 + y2 _+ 0% and 

the second-order source strength m2 are found to be 

P - PI 1 x 
p ,  = -y{u~[1 + (2y - 1)~ + . . . ] m ~  + u~(1 + . . . ) m 2  + . .  ')'~2]r x 2 + y2 

(3.25) 

m2 = 2(5y + 9) dy 2(y + dy u~,(y) - 1) 6~(0, y)  (3.26) 

For a constant value o fy  such tha ty  >> 1, P initially decreases as x increases from zero, 
reaches a minimum at x = y, and then increases again. However, there is a small error 
at the shock wave x = x~(y) = 0(~-  lu, In y),  because the largest term in Eqn. (3.25) 
is O(E-~u~ In y/y=), whereas the correct first approximation is found from the shock- 

E-~"Zm21t2rr" ~2 If  it is desired, the accuracy of Eqn. (3.25) can polar equation as - z r  -~ 1/~ .y J �9 
be improved~near x = x~ by addition of a term - y u p y ~ 2 , ( O , y ) / ( x 2 +  y2) with 
y2~2~(0 , y )  approximated by its leading terms O(lny)  and O(1) a sy  ~ c~; away from 
x = x~ the added term is smaller than the second-order term originally shown. 

As x 2 + y2 _+ 0, the perturbation velocity becomes large, and it is again clear that 

an inner solution is required. For the choice of origin shown in Eqn. (3.16) and in 
Figure 2, x~(0) r 0 and so the singularity in Eqn. (3.20) is displaced from its correct 

location through a distance - x~(0) = O(u~/e). The domain of validity near x = 0 can 
be extended slightly by addition of a term -2u~K-l(1 + . . . )  In (1 - x~(O)/z) in Eqn. 
(3.20) for u ~ ( ~  - i~ly). This is accomplished formally by taking a limit as x ~ 0 with 

ex/u~ held fixed and then constructing a composite solution. The correction is local, 
and introduces only a smaller change of order ~-*u~/[zl when Iz/x=(O)l >> 1. The 
modification is, however, necessary for matching with the inner solution. A discussion 
of the inner solution given in Ref. [8] is briefly reviewed here, in a slightly modified 
form. For Y = O(3.), the undisturbed velocity is U~ = 1 + O(u~), and the differential 
equations show that changes in U along a streamline are also O(u~) in a distance 
A X  = 0(u~/23,). Inner variables x* and y* and disturbance velocities u* and v* are 

defined by 

x* (~T2/2)~2[X - bo 8&(0)] y* = Y (3.27) 
: 1~1 /2 . . 112R  ' ~--:, (Y + . j  -~ ~, 
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y 
u* = ( U -  1), v* = 1)lI2uaj2 (3.28) 

u~ (7 + 

where factors (~cT~/2) 1/2 have been included for convenience. Equation (3.1) and the 

vorticity equation are then approximated by the transonic small-disturbance equations 
with prescribed vorticity: 

u*~u*/~x* - ~v*/~y* + . . . .  0 (3.29) 

~v*/~x* - ~u*/Oy* = - l / y *  + . . .  (3.30) 

The shock-wave relations (3.5) and (3.6) become 

/~d*2 1 * = ~(u,, - u*)2(u * + u*) + . . .  (3.31) 

dy "-'--~ = u* - u* (3.32) 

where the subscripts u and d again refer to quantities immediately upstream and 

downstream of the shock wave and the shock-wave location is given by x* = x*s(y*). 

As x * - + - 0 %  u* approaches the undisturbed form u * ~  ln y*; the boundary 

condition at the wall is v*(x*, 0) = 0; and as x* --~ 0% y* ~ oo the solution should 

agree with the outer solution evaluated for x - xs(0) ~ 0, y -+ 0. 

Although complete solutions for u* and v* can only be obtained numerically, the 

asymptotic behavior is found relatively easily upstream as x* ~ - oo and downstream 

as x* ~ 0% y* -+ o~. As x* -+ -0% the solution has the form 

u* ~ ln y* + ekX*f(y*), v* ~ k-~ekX*f'(y *) (3.33) 

where f "  - On y*)k2 f  = 0 subject to the conditions tha t f ' (0 )  = 0 and that incoming 

disturbances be absent as y* -+ oo; the latter implies f '  ~ - (ln y*)~12kf as y* -+ oo. 

Numerical integration gives k = 0.59. Downstream a suitable class of  intermediate 

limits should be studied. As y* ~ ~ ,  a shock wave is present and must approach the 

nearly normal shock wave described by the outer solution. Thus, for y* -+ 0% since 

u* ~ lny*,  Eqns. (3.31) and (3.32) give u * ( O , y * ) ~  - l n y * .  I f  an intermediate 

variable y ,  = y*/~(u ,  ~) is introduced, with 1 << ~(u~, e) << 3/3", then In y* ~ In ~ + 
In Yn, where the first term is large and constant whereas the second term is O(1) and 

variable. In each of the differential equations (3.29) and (3.30) the two largest terms 

remain of the same order if x* = O(-qx/1---n ~) and v* = O(V'l--n-~7); then x* and 

y*(lny*)  z/2 are of  the same order. In the limit as x * - +  oo and y * - +  oo with 
x* / (y*X/ -~y  *) held fixed, In y* ~ in x* and so also x*/(y*~/Yffy*) ~ x * / ( y * ~  x*). 

For the derivation of higher-order terms, not to be shown here, it is convenient to 
make this replacement. In this limit, then, the largest terms in u* + In y* and 

(ln x*)-~/2v* can be written as functions of  x * / ( y * V ' ~  x*). The solutions are easily 
obtained and the results for U and V finally can be rewritten as 

U ~ 1 + (KT~/2)-lu~ lny*  -- QcT~/2)-lu~ In {x*~(ln x*) -1 + y*~} (3.34) 
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V ~ {(~, + 1)(KT2/2) -lu~ In x*}l/22(KT2/2) -lu~ tan-a {y*(In x*)lI2/x *} (3.35) 

Factors ( 1 -  M2) 112~ {(7 + 1)(~cT~12)-lu~lnx*} 1/2, where M is the local Mach 
number, appear in the locations expected for solutions of the Prandtl-Glauert 

equation. The flow is represented by superposition of a known rotational flow and an 
initially unknown irrotational flow, described in terms of perturbation velocities U - 1 
and (1 - M2)-l/2V which are linear in (~cT~12)-lu~ and are functions of variables 

(1 - M2)-~I2[X - bo 3xs(0)]/3. and Y/S,. For a limit such that [x - xs(0)] 2 + y2 __~ 0 
sufficiently slowly, with (1 - M2)~/2y/[x - xs(0)] held fixed, the largest terms obtained 

if Eqns. (3.34) and (3.35) are rewritten in the outer variables x and y are identical to 

the largest terms found from Eqns. (3.9) and (3.10), with the help of Eqn. (3.12) and 

a modified Eqn. (3.20) in which z is replaced by x - xs(O) + iy. Introduction of the 
inner solution thus removes the logarithmic singularity which appears in the outer 

solutions for the velocity and the pressure as x, y -+ 0. 
In the derivation of these results, terms ~(pU'U')/aX, O(pU'V')/OY, etc., were 

omitted from the momentum equation, and therefore a corresponding set of terms 
was omitted in Eqn. (3.1) and in the calculation of the changes in vorticity. Expressions 
for these quantities, and therefore also order-of-magnitude error estimates for the 

solutions given above, can be obtained from the Reynolds-stress transport equations 
[25]. The equation for O(pU'U')/OX contains, in particular, terms proportional to 
pU'U' c3U/OX. Ahead of the shock wave pU'U' is expected to be of the same order as 

pU'V', of order u~. Relative changes at the shock wave have been estimated [26] to 
be proportional to the shock-wave strength and are therefore small. Thus, p U 'U '  = 

O(u~) downstream of the shock also; since OU/~X = O(e -1/2) for X = O(dI2uO, the 
product is O(u~E-al~). Other terms involving velocity correlations are likewise at most 
O(u~-~2). Neglected terms in the expansion of Eqn. (3.1) and the vorticity equation 

are also of this order, and can easily be shown to be small in comparison with any of 
the terms retained. Similarly, the derivative of the entropy along a mean streamline 
contains terms proportional to pU'V' ~U/O Y, etc., and therefore is small enough to 
be neglected in the derivations above. At the shock wave the entropy jump for 
Y = O(S) contains a constant term of order c a and functions o f y  which are of order 
e~u,, ~u~,. . . .  It can then be shown that these changes are also sufficiently small that 
fliP and PT-  flay- ~ remain constant along a mean streamline to the order considered 
here. Finally, the changes in Reynolds stresses become important in a sublayer where 
the perturbation in ry is no longer negligible in comparison with the perturbation in 
pUUx. For X = 0(d/2u,), since ~- = O(u~) and Ux = 0(~-1/2), the sublayer is defined 
by Y = O(u~dI2). As will be shown in detail in Part II, the relative change in ~ is O(e), 
and the new term in U which contributes to a displacement effect is O(eu O. Frona the 

continuity equation it follows that the corresponding term in V is O(e2u~). Thus, as 
y ~ 0, the largest term in the outer solution for V which satisfies a nonzero boundary 
condition is O(e2u~), smaller than any of the terms retained above. All of the neglected 
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terms arising from these effects are smaller than the terms retained by at least a factor 
of order e. 

4. Geometric Effects and Comparison with Experiment 

The theory of the preceding section leads to a limiting form for the pressure 
distribution as u~ --> 0 and u~/E --+ O, for unseparated flow. In the flow past an airfoil 
at supercritical speed, with a shock wave terminating a region of supersonic flow, the 
additional effect of surface curvature can also be important in changing the pressure 
distribution and delaying separation, as discussed below and in Part II. The boundary 
layer might remain attached for Me up to about 1.25, depending on the profile shape; 
Re may be about 5 x 107 or perhaps as high as 108; and the flow ahead of the shock 
wave experiences a favorable pressure gradient, with magnitude which depends on the 
airfoil shape, so that the profile parameter II is smaller than 0.5 (e.g., Ref. [30]). For 
a combination of parameters which is favorable with regard to requirements of the 
present theory, with Me = 1.26, Re = 108, and II = 0, the relative position of the 
sonic line is given by 3./5 = 0.10. This value would increase as Me or Re decreases 
or as II increases, as seen from Eqn. (2.14). Experimental results, however, are not yet 
available with detailed local pressure measurements for values of the parameters which 
correspond to such airfoil flows and which meet the requirements of the theory. For 
all available data, either the flow is separated or the values of the parameters are such 
that the sonic line is not close to the wall. Nonetheless, a comparison with data from 
Refs. [1] and [2] has been carried out, and the agreement seems favorable provided 
that corrections for geometric effects are included. 

A wall having convex longitudinal curvature is described locally by Y ~ - �89 2, 

where K << 1 if the radius of curvature is large in comparison with the reference length 
used in the definitions of X and Y. A local solution for the inviscid external flow near 
the foot of a normal shock wave shows a discontinuity in streamline curvature [27, 28]. 
Ahead of the shock wave Py > 0 to provide the required acceleration toward the wall; 
if the flow is irrotational, it follows that Uy < 0. The shock-wave relations give 
Uy > 0 and Py < 0 downstream; therefore also Vx > 0, whereas the tangency 
condition at the wall requires Vx < 0 as Y---~ 0. The term in the complex velocity 
which satisfies the required conditions as X, Y-+ 0 has the derivative 

boU(x c~ - iV(x e) ,,~ - ( 4 / ~ r ) K l n Z  + iK + O(K)  (4.1) 

for 0 < a r g Z  _< ~rr, where Z = b y l X  + i Y  and, as before, b~(c) ~ (~, + l)e. The 
largest omitted term is of order Kand  is real; the value depends on the flow description 
for Z = O(1), and is known for symmetric two-dimensional or axisymmetric nozzle 
flows [29]. 

Terms U (c) and V (c~, of order K~- 1/2u~ In u~ and Ku~ respectively when Z = O(uO, 

are now added to the expansions of U and V given by Eqns. (3.9) and (3.10). The 
rotational part of U is unchanged, and reformulation of the boundary-value problem 
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Figure 3 
Pressure at wall with longitudinal curvature: Me = 1.322, Re = 9.6 x 105, K ~ 0.2. 

for the perturbation potential shows that r is unchanged, whereas now r depends on 
K, through nonlinear terms in the potential equation; that is, r = r y; e, K). The 
new terms in r contribute a change in U which is O(Ku~), smaller than terms retained 
previously provided that K = o(1). Thus, to the order considered here, for u,/E -+ 0, 
a curvature correction is simply added to the earlier results. The new term in the 
pressure, written in terms of x and y, is 

p(c)=2 8 2x ln S + x ln (x2 + Y2) + 2 y - 2y t a n -  l y + (4.2) 

where the constant A is determined only if a solution is known for the external flow 
at larger distances. 

An early careful and comprehensive experimental study was carried out by 
Ackeret, Feldmann, and Rott [1]. In Figures 3 and 4, predicted pressures are compared 
with their experimental results for Me = 1.32, corresponding to e = 0.247, and 
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Figure 4 
Pressure outside boundary layer, at Y/g ~ 3.6, for curved wall: M~ = 1.322, Re = 9.6 x 105, 
K ~ 0.2. 
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Re = 9.6 x 10 ~, based on distance to the shock wave. Equations (2.9), (2.11) and 
(2.14) are used for approximate evaluation of other parameters. One more experimental 
value is needed; 3. is chosen since it is easily read from the measured velocity profile 
and since only In 3. enters the equations, so that an error has small effects on other 
quantities. For ~, = 0.0055, the calculations give u~ = 0.051, 3 = 0.021, and II = 0.28. 
This value of II seems plausible (e.g., Ref. [30]) because of the observed small favorable 
pressure gradient ahead of the shock wave. An adverse gradient of about the same 
magnitude is evident downstream, and is estimated here by P[-1 ~P/~X ~ O. 12, where 
Pt is the upstream stagnation pressure. For the 'uncorrected' curve in Figure 3, the 
flow is imagined to be the same as a one-dimensional channel flow with this pressure 
gradient. In Eqn. (4.2) a corresponding term is added, and the term proportional to 
K ~Ax is neglected. The local curvature of the plate can be inferred from measured 
pressures immediately behind the shock wave. It is estimated that Pi- 1 c~P/~ Y ~ O. 15; 

since Py ~ - T V x ,  it follows that K ~ 0.2. With the kind of assistance of Prof. Z. 
Plaskowski of the Institut ftir Aerodynamik, ETH Zfirich, the author was able to 
measure ordinates of the plate actually used in the experiments; values in an appro- 
priate neighborhood confirm the estimate K ~ 0.2. The origin x = 0 is chosen at the 
estimated position of the shock wave at the edge of the boundary layer, found using 
measured pressures outside the boundary layer together with Eqn. (3.24). 

The comparison in Figures 3 and 4 shows that the curvature effect is comparable 
in importance with the boundary-layer displacement effect; addition of the curvature 
term leads to a more pronounced 'shoulder' in the predicted wall pressure distribution. 
The longitudinal pressure gradient due to tunnel divergence is also seen to be impor- 
tant. At the plate for typical values of x, say 4 < x < 14, the prediction gives about 
75 percent of the pressure drop below the value for a one-dimensional flow; outside 
the boundary layer, at Y/3 ~ 3.6, the agreement is somewhat better. It is found that 
the velocity in Eqn. (3.21) is closely approximated by (const.)/x for x < 2, so that 
Eqn. (3.25) for the pressure is adequate here, with the correction (4.2). Modest changes 
in the assumed values of the parameters do not have a major effect on the comparison; 
for example, at a given X, ml /x  does not depend strongly on II because 3 increases if 
II decreases. The upstream exponential decay predicted by Eqn. (3.33) is also shown 
in Figure 3, in the form Ap/p,  ~ u, exp {k(x* - x*)}, with x* taken equal to - 14 for 
approximate agreement with experiment. A major difficulty with this comparison is 
that the upstream sonic line lies at about y -- ~,/3 = 0.26, and the shock wave ends 
at a still larger distance from the wall, so that the inner region for x* = O(1), y* = O(1) 
is not negligibly small. At a higher Reynolds number and therefore a lower u,, the 
shock wave would extend closer to the wall, and the size of the region in Figure 3 
where no prediction is given would be smaller. A second serious difficulty arises because 
the flow probably was separated. The authors of Ref. [1] stated that reversed flow 
could not be ascertained at any point; however, the velocity profiles shown seem 
inconclusive, since measurements were not possible very close to the wall. Calculations 
based on the theory of Part II of the present paper, for the parameter values given in 
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Ref. [1], suggest that  the flow was in fact separated,  with a very thin separat ion bubble 
having length equal to  a few boundary- layer  thicknesses. The  effect o f  such a bubble  

would give a more  gradual  pressure rise in the region of  greatest disagreement in 

Figure 3. Finally, a slight unsteadiness in the shock wave posit ion would also contr ibute 

to a decrease in the measured pressure gradient.  

For  a compar i son  of  predicted pressures with the data  of  Ref. [2], a correct ion 

for  flow in a circular pipe should be added. Cylindrical coordinates x + and r + are 

defined by 

X 3 Y 3 
x+ = b o ~ = ~ x '  r + = 1 - ~ =  1 - ~ y  (4.3) 

where R is the ratio of  the local pipe radius to the reference length, and Yis measured 

inward f rom the wall, so that  r + = 0 at the axis. Solutions are to be found for  e --~ 0, 

u~[e ~ 0 with x +, r + fixed. The wall shape is given by r + = 1 + e2f(X/R) w i t h f  = 0 

at X / R  = 0. Velocity components  U +, V + in the x +, r + directions can be written with 

the local curvature and boundary- layer  effects shown separately: 

3 
U + =- U(~ r + ; e) + KU(I~(x +, r +) + �89 -~ + u~ -~ U(2)(x +, r +) + . . .  

(4.4) 

+) V + = V(~  + Kbo(~)V(l)(x+,r +) + u~-~bo(e)V(2~(x+,r + . . .  

(4.5) 

where now K = E2f"(O) is the wall curvature at the foot  o f  the shock wave, made  

nondimensional  with the reciprocal o f  the pipe radius. The  terms U (~ and V ~~ are the 

terms which would be present if  the effects of  the shock wave were ignored [29]. Terms  

propor t iona l  to K contain the local curvature  effect, and  terms propor t iona l  to u ~ / R  

contain the local boundary- layer  displacement effect. The latter is described in terms 

of  a ring source of  radius r + = 1 located at x + = 0 and having volume strength per 
unit  length equal to mlu~3 + �9 -. ; numerical  solutions for u~/~ = O(1) given by Melnik 

and Gros sman  [6] also include this effect. For  x + -~  0% the fluid added  at the source 
gives an increase of  �89 in U +, shown explicitly in Eqn. (4.4). 

The local solut ions for  X / R  = O(e 112) are found in terms of  a s t ream function 

defined by ~b(~/er + = r + U ~~ 6~b(~ + = - r  + V ~~ where i = 1, 2. The  largest terms 
in Eqn. (3.1), combined with the irrotat ionali ty condition, lead finally to 

~b(O(x +, r +) = ~ a~ ~ e-a,X+r +Jl(h,r +) (4.6) 
g = l  

where J~(),,) = 0 for n = 1, 2, 3 ..... so that  the wall boundary  condit ion ~b(~ +, 1) = 0 
is satisfied; also ~b ~" -+  0 as x + ~ 0% and boundary  values are to be specified at 
x + = 0. To  the order  required, the shock-polar  equat ion reduces to the Prandt l  
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relation, and so ~b (~ = r +2(1 - r +2)/4 at x + = 0. The  condit ion that  the ring source 

gives no te rm o f  order  u ~ / R  in U + at x + = 0 implies $(~) = - m z r + 2 / 4  at x + = 0. 

Compar i son  with the wall boundary  condit ion shows that  ~b (2~ is discontinuous at the 

foot  o f  the shock wave x + = 0, r + = 1; the value obtained as x + -+  0, r + --> 1 

depends on the direction o f  approach .  The coefficients a~  ~ can be found f rom the 
solutions of  Messiter and  A d a m s o n  [29] or by direct calculation, and the coefficients 

a~ ~ are found directly: 

4 t'/21 
a~) = a,aJo(A,) a~=' - 2A,Jo(A,) (4.7) 

f o r n  = 1 , 2 , 3  . . . .  

For  calculation o f  the pressure distribution and the shock-wave shape, it is 

convenient  to introduce the corresponding velocity potential  4,( 2~, which satisfies 

0~(2~/8x + = U ~ and 8(;2)/8r + = V ~2~, and which has a logari thmic singularity at 

x § = 0, r + = 1. With the help of  the asymptot ic  fo rm forJo(A ,r  +), one can show the 
singular par t  explicitly: 

ml ~(2)(x +, r +) = 
2 

/1 Jo(A~r +_) ( - 1 ) "  _ _  . ;  _ 

,=lz" ~ Jo(~.) ~(n + �88 +)1/2 

2~'(r +)1j2 ~ + 2 t an -1  g - 4g (4.8) 

where In ~ = -0 r /4 ){x  § + i(1 - r+)}, and ~ indicates that  the real par t  is to be 

taken.  As x § ~ 0 and  r § ~ 1, the largest term in the complex velocity U (s) - i V  (2~ 

is due to a two-dimensional  source of  strength ml,  in agreement  with Eqn. (3.22). The 

change in the boundary- layer  displacement  effect is then found by subtracting the 

source term f rom U (2) - i V  (2) and adding the constant  term which remains as x + --> oo. 

I f  the numerically small contr ibut ion of  the infinite series is omitted, the corresponding 
correct ion to the wall pressure is 

Ap~ ~ m ~ (  e -5'~+/4 1 ) 
p~ = - 7 u , - ~ -  1 + 1 - e - ~ +  ~rx ~ (4.9) 

As x + = X/(boR)  ~ O, AP~/P~ approaches  a constant  value -18-,/mlu~3/R, which 
implies an addit ional  second-order  correction to the boundary- layer  solution found in 
Section 3 for X = 0(15o3). The shock-wave shape is found directly f rom the potent ial ;  
in part icular,  as r + --> 1 the displacement  o f  the shock f rom its intersection with the 
axis is found by adding the per turbat ion  potent ial  f rom Section 3 to that  found here, 
and  subtracting the c o m m o n  term propor t iona l  to In Y. The result is 

AXs = - (4r r~)-1(7  + l ) l /2~l /2mlu~ In (R/~)  + O(u~3~ -1/2) (4.10) 
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Pressure  at  wall of  c i rcular  pipe:  Me = 1.12, Re  ~ 6 x 106, 8/R ~ 0.055. 

In Figure 5 a comparison is made with pressures measured in a circular pipe by 
Gadd [2], for Me = 1.12 and �9 = 0.097. The length of an equivalent flat-plate boundary 
layer is not a given quantity; instead, Gadd's estimated value for boundary-layer 
thickness is used here, along with the estimate ~,/8 = 0.45 found from the measured 
velocity profile. The sonic line is therefore still further from the wall than in the 
Ackeret experiment. Other approximate values are calculated as u, = 0.04, 3 = 0.02, 
and II = 0.1 ; the Reynolds number corresponding to these values is Re = 6 x 106. 
A pressure gradient due to small divergence of the test section is estimated downstream 
by PE 1 ~P /~X  = 0.06. The effect of finite pipe radius is seen to be about as large as 
the boundary-layer displacement effect. The upstream exponential decay is also shown, 
with x* again taken equal to -14 .  Again there is a relatively large region where no 
prediction is made and where numerical solution of the transonic small-disturbance 
equations is required. Such a solution was obtained by Melnik and Grossman [4] for 
this case and is also shown in Figure 5. For large x the analytical and numerical 
solutions differ by an amount about equal to the correction for the change in pipe 

cross-section area. 

5. Concluding Remarks 

The interaction of a turbulent boundary layer with a weak normal shock wave 
has been described here and elsewhere [3, 4, 8] in terms of rational approximations 
based on systematic asymptotic expansion procedures. The interaction is characterized 
by two small parameters, a nondimensional friction velocity u, and a nondimensional 
shock-wave strength e, and limiting forms of the local solutions can be studied as 
u~---> 0 and �9 0. For the case uj~---> co [3], analytical solutions indicated that 
separation does not occur; solutions for u j e  held fixed [4], with the first approximation 
described by the transonic small-disturbance equations, gave the same result. If, 
finally, uje--> 0, it appeared that analytical solutions would be possible and that 
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perhaps the onset of separation could be discussed. Solutions for the pressure have 
been obtained here and will be used in Part I1 for the calculation of wall shear stress 
and a discussion of incipient separation. 

The largest terms in the pressure, of order u~, are derived quite easily, and a 
number of higher-order effects have been added. Corrections of order ~u~ give, e.g., a 
35~ change if Me = 1.25. A partial solution for terms of order u~ shows that these 
terms likewise are significant, typically giving changes of 25~ to 50~ for Re = I0 ~ or 
107. Corrections of order Ku~ and u ~ / R ,  obtained in analytical form for a walt with 
longitudinal curvature and for a circular pipe respectively, are found to be numerically 
important for the tests of Refs. [1] and [2]. 

In the solutions for these higher-order terms, the dependence on the parameters 
is of course shown explicitly, and the relative importance of different effects is therefore 
apparent. It is not, however, possible to obtain analytical solutions in the asymptot- 
ically small inner region which accounts for the upstream influence. For values of the 
parameters corresponding to actual transonic flight conditions, it is possible for this 
region to be relatively small. Experimental results, however, are not available in this 
parameter range; for existing data, either the flow is separated or the sonic line is not 
close to the wall. Nonetheless, some comparisons with such data were attempted, and 
the agreement seems fairly good downstream from the inner region. The predicted 
pressures remain somewhat higher than the experimental values, and the correction 
terms calculated thus far are large enough to suggest that additional higher-order 
terms would be likely to give still further improvement. 

An essential feature of the asymptotic flow descriptions in terms of u~ and E is the 
two-layer structure of the undisturbed profile, expressed by the law of the wake and 
the law of the wall. It is this property which permits the calculation of interaction 
pressures without knowledge of changes in shear stresses close to the wall. In other 
studies [31, 32] which were not based on use of this profile, derivation of a sublayer 
solution was necessary before the calculation of the pressure could be completed; these 
studies also introduced a linearized formulation for the main part of the boundary 
layer. In the present asymptotic description for u~/E --~ O, sublayer effects do not appear 
even among the second-order terms in the pressure. Linear equations appear naturally 
as a consequence of the limiting case considered, and the procedure for adding higher- 
order terms is clear, at least up to the small order of magnitude at which changes in 
the Reynolds stresses must be taken into account. In the formulations for u~/e held 
fixed [4] and for u~/e --~ ~ [3], again the flow details near the wall do not influence the 
pressure. 

Asymptotic flow descriptions based on the two-layer undisturbed profile are 
therefore now available for the entire range 0 < u~/E < c~, with numerical solutions 
obtained as u~ ~ 0 and ~ ~ 0 if u~/E is fixed and analytical solutions if u~/E ~ ~ or 
u~/e ~ O. For accurate calculations in parameter ranges of practical interest, some 
further extensions appear to be needed. In the present case, as u~/E ~ O, the necessary 
condition that the sonic line be close to the wall is met for a relatively narrow range 
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of the parameters. The solutions for wall pressure would be more useful if a simple 
curve fit were introduced for the inner region, say by means of a straight line tangent 
to the source solution downstream and to the exponential solution upstream. The 
choice x* ~ - 14 in the exponential term was made for agreement with experiment in 
Figure 3; the results shown in Figure 5 suggest that the magnitude is too large and 
that perhaps a more suitable tentative value would be x* = -10.  The present solu- 
tions also suggest that terms of higher order than those retained in Ref. [4] are likely 
to be important for u,/E = O(1). In this case the curvature correction would no longer 
have a simple form, but would have to be incorporated in the numerical solution 
through the use of modified boundary conditions. Moreover, it appears that certain 
terms of order u~, and possibly still other higher-order corrections, will be essential for 
numerical accuracy in the wall shear (Part II) as well as in the pressure. Finally, the 
local interaction influences the potential flow at larger distances; the manner of 
introducing corrections in the external flow deserves further study. 
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Summary 

Asymptotic solutions are derived for the pressure distribution in the interaction of a weak 
normal shock wave with a turbulent boundary layer. The undisturbed boundary layer is character- 
ized by the law of the wall and the law of the wake for compressible flow. In the limiting case 
considered, for 'high' transonic speeds, the sonic line is very close to the wall. Comparisons with 
experiment are shown, with corrections included for the effect of longitudinal wall curvature and 
for the boundary-layer displacement effect in a circular pipe. 
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Zusammenfassung 

Asymptotische L6sungen ftir den Druckverlauf bei der Wechselwirkung zwischen einem 
schwachen normalen Stoss und einer turbulente Grenzschicht werden hergeleitet. Das Wandgesetz 
und Geschwindigkeitsdefekt-Gesetz ftir kompressible Str6mung kennzeichnen die ungest6rte 
Grenzschicht. Der Grenzfall hoher transsonischen Str6mung, in dem die Schallinie in der Nfihe 
der Wand liegt, wird untersucht. Die theoretischen Ergebnisse werden mit Experimenten verglichen. 
Dabei wird die Wandkrtimmung und im Fall der Rohrstr6mung die Verdr~tngungsdicke 
berficksichtigt. 
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