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Interaction Between a Normal Shock Wave and a Turbulent 
Boundary Layer at High Transonic Speeds. 
Part II: Wall Shear Stress 
By M. S. Liou 1) and T. C. Adamson, Jr., Dept of Aerospace Engineering, The 
University of Michigan, Ann Arbor, Michigan, USA. 

1. Introduction 

When a shock wave impinges upon a wall, it penetrates the boundary layer along 
the surface and both the shock wave and the boundary layer are changed from their 
undisturbed states. If  the boundary layer remains unseparated, these mutually induced 
changes take place in a small interaction region. For a turbulent boundary layer, it has 
been established [1-8] that an asymptotic description of the interaction region requires 
a three layer structure. In the outermost layer, comprising most of the boundary layer, 
pressure forces are much larger than forces resulting from Reynolds or viscous stresses 
so the governing equations are those for an inviscid flow. For the limit process to be 
considered, the solutions for this inviscid flow region are those given in Part I of this 
paper [9], hereafter referred to as (I). Immediately adjacent to the wall is the wall 
layer, in which viscous and Reynolds stresses dominate to lowest order. Between these 
two layers is the Reynolds stress sublayer [1] (referred to as the blending layer in 
reference [2]) in which momentum transfer toward the wall is carried out by turbulent 
means (Reynolds stresses); the dominant terms in the equation of motion are the 
Reynolds stress, pressure gradient, and inertia terms. 

This paper is concerned with the analysis of the flow in the two inner layers, the 
Reynolds stress sublayer and the wall layer, the goal being the calculation of the shear 
stress at the wall in the interaction region. As indicated above, the limit processes 
considered are those used in (I). Thus, if E is equal to the nondimensional difference 
between the velocity and the critical sound speed in the flow external to the boundary 
layer, and u~ is the nondimensional friction velocity, we consider limit processes such 
that u~ << ~ << 1. In previous analyses for E << u~ (Reference [1]) and ~ = O(u 0 
(Reference [2]) it was found that it was not possible to formulate an asymptotic 
criterion for shock induced separation. Here, it will be shown that even for E >> u~ 
there is no apparent asymptotic separation criterion. However, example calculations 
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will be used to show that the equation derived for the wall shear stress may be used 
to predict conditions for incipient separation with reasonable accuracy. 

It is worthwhile reiterating the fact pointed out in (I) that for an unseparated 
boundary layer the solutions in the inviscid and inner layers are uncoupled. Because 
the inner layers are so thin, the change in pressure across them is negligible to the order 
retained and so the solution for the pressure found in the inviscid layer in the limit as 
the wall is approached is indeed the wall pressure. With this pressure distribution 
known, then, solutions in the inner layers may be found, leading to a relation for the 
wall shear stress. Thus, the unseparated flow case is a weak interaction problem. This 
is not the case for a laminar boundary layer and occurs for the turbulent boundary 
layer because the wall layer is so thin that the upstream influence of the interaction 
causes negligible lifting of the fluid from the wall; that is, to the order retained the V 
component of the velocity is zero, in the inviscid layer, as the wall is approached. This 
point will be discussed again later. 

In order to complete the formulation of the problem in the inner layers, it is 
necessary to specify a closure condition. Here, we use a mixing length model, including 
the van Driest damping factor, to write an eddy viscosity [10]. Such a closure model 
appears to give satisfactory results as long as the flow is unseparated [11 ] and has the 
virtue of simplicity; when the flow is separated, use of such a model gives results which 
have the correct trends but which do not agree well with experiment. 

2. Solutions in the Inner Layers 

As in (I), transonic flow over a fiat plate with a turbulent boundary layer is 
considered, with a normal shock wave intersecting the boundary layer; an adiabatic 
wall is assumed as are conditions such that the total enthalpy may be taken to be 
uniform throughout the flowfield. Nondimensional Cartesian coordinates X and Y are 
measured parallel and perpendicular to the wall respectively, with the origin at the 
point where the normal shock wave intersects the boundary layer. Lengths are made 
dimensionless with respect to the distance from the leading edge of the flat plate to the 
shock impingement point, L, and Cartesian velocity components U and V with respect 
to the critical sound speed in the flow upstream of the shock wave and external to the 
boundary layer (hereafter referred to as the external flow), ~*. The overbars indicate 
dimensional quantities. The mean temperature, T, density, p, pressure, P, and viscosity 
coefficient, ~, are referred to their critical values in the external flow, e.g., T*, fi*, etc. 
We write the Reynolds number, Re, in the usual fashion and for convenience define 
a Reynolds number parameter, Re*, as follows: 

Re \ T / e  

[fi* g~*L'~ (lb) 
R e * =  ~ - - ~ ]  e 
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The term (p' V')/p is included in V, where the primes denote fluctuating quantities and 
the bracket denotes the average value. The friction velocity, u,  is made dimensionless 
with respect to ~*, and is defined in terms of the external flow density as follows: 

u ~ -  1 ~--~ ~'w~ I 2 = - -  = ~U2 clu (2) 
4 *2 Pe Pe 

where ~--~ is the shear stress at the wall in the undisturbed flow at _~ = L, and where 
cf~ is the corresponding skin friction coefficient defined as shown. Finally, the external 
flow velocity and Mach number are written in terms of a parameter, ~, as 

u ,  = 1 + ,  (3a) 

u~ (3b) 
M]  = 1 -  ( Z - ~ - ~ ) ( U 2 -  1) 

where for transonic flow, E << 1. As in (I), the problem considered here is one for which 
Uz << E << l. 

In both inner layers to be considered here, the characteristic thickness of the 
region is small compared to its characteristic length. As a result, normal Reynolds and 
viscous stress terms may be neglected compared to the corresponding shear stress 
terms and the transverse pressure gradient is negligible, to the order retained in the 
analysis. The solutions to which these inner layer solutions must match in a direction 
normal to the wall are those solutions found in (I), expanded in the limit as 
y = Y/3 --> O, where 3 = ~/L is of the order of the boundary layer thickness. In the 
limit as x = X/A ---> -o% where A = A/L is of the order of the extent of the inter- 
action region, the solutions must match with the corresponding relations in the 
undisturbed boundary layer. It is seen, then, that the flow problem in the inner layers 
of the interaction region is formulated as a boundary layer problem with a known 
pressure gradient. This also helps explain why an additional layer (Reynolds stress 
sublayer) is necessary in the turbulent boundary layer case. That is, in either the 
laminar or turbulent interaction, there is an outer layer in the interaction region where 
pressure forces dominate over shear forces, and inviscid flow equations hold to lower 
orders. Obviously, then, solutions in the outer layer do not satisfy the no-slip condition 
at the wall and a new boundary layer must be considered at the wall. In laminar flow, 
a boundary layer is described asymptotically by a single layer and so only one so called 
viscous sublayer is needed in the laminar interaction. However, a turbulent boundary 
layer has a two-layer asymptotic structure; as a result, two inner layers are needed to 
describe this boundary layer in the interaction region. The Reynolds stress sublayer is 
the equivalent of the velocity defect layer, as will be seen. 

With the above remarks in mind, it is possible to write a simplified set of governing 
equations in which only those terms needed in either of the two layers considered here 
are retained. They are as follows: 

e(pU___~) + e(p V) = 0 (4a) 
~X ~Y 
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 4b, _ _ _ _  + ~ p•2D y2 + tz OU 
Re* 

~P 
~---~= 0 (4c) 

T +  ( ~ - - ' ~ )  U2- - -~ '+  1 2  (4d) 

P = pT = P ( X )  (4e) 

D = f l - e x p (  YRe* (4f) 

where 7 is the ratio of specific heats, D is the damping factor, and ~ = 0.41 is the 
von Kfirm~n constant. Since terms of order u~ will be retained in the solutions, it 
should be pointed out that terms such as (p'  U') /p in the continuity equation (4a), and 
( p ' T ' )  in the equation of state, (4e), which are of order u~, are not included because 
perturbations from the undisturbed flow values of each of these terms would be of 
higher than second order. Since the undisturbed flow solutions are considered known 
to second order, and we are interested only in the perturbations from the undisturbed 
flow, it is not necessary to include the terms in question. As mentioned previously, it 
is assumed that the wall is adiabatic, and turbulent and laminar Prandtl numbers are 
unity, so that the stagnation enthalpy is constant, as in Eqn. (4d). 

As shown in (I), for the case E/u~ >> 1 the distance from the wall to the sonic line 
is exponentially small compared to the thickness of the boundary layer. Since the 
extent of the upstream influence of the interaction region is ordered by the thickness 
of the subsonic region, the upstream influence is confined to a region, hereafter referred 
to as the inner region, which is exponentially small in the x direction compared to the 
main part of the interaction region, hereafter referred to as the outer region. That is, 
in the x direction, the interaction region actually consists of two regions, one thin 
compared to the other; in the y direction, each of these regions is subdivided into the 
three layers mentioned previously. Following the procedure employed in (I), the 
solutions in the outer region will be shown here in some detail. Because the upstream 
influence is confined to the inner region, the flow entering the shock wave in the outer 
region is simply the undisturbed flow at the point in question. Inner-region solutions, 
which are found using precisely the same methods employed in the outer region, are 

given in Reference [12]. 

Reynolds Stress Sublayer 

In the Reynolds stress sublayer, which is intermediate to the outer inviscid flow 
layer and the wall layer, inertia terms are balanced by both the pressure gradient and 
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Reynolds stress terms in the equation of motion in the flow direction. The extent of 
the outer interaction region is X = O(A), where, as shown in (I), 

A = bob 8 = O(uO (5a, b) 

bo = (y + 1)1/2E1/2(1 - (2y + 1)~/4 + . . . )  (5c) 

If  the dimensionless (referred to L) thickness of the layer is taken to be Y = O(~), say, 
then since the Reynolds stress = O(u~) and from (I), aP/OX = O(u,/A), the fact that 
the pressure gradient and Reynolds stress terms in Eqn. (4b) must be of the same order 
indicates that ~ = O(u,A). Here, for convenience, we define ~, )3 and x as follows: 

= u,A (6a) 

Y = ~})3 X = Ax (6b, c) 

The solutions to which those in the Reynolds stress sublayer must match as)3 --~ 
are those in the outer inviscid flow layer, written in the limit as II/8 = y ~ O. The 
equations for the U component of velocity and the pressure (Eqns. (3.9), (3.12), (3.19), 
(3.21) and (4.2) of (I)) are summarized here for convenience. Thus, 

~7(x, 0) = (1 + ,)-1 + ud(1 + 2r~ +. . . )Uol(y) 

+ (1 + (y - 1), + . . . ) u l (x ) ]  + . . .  

- K8 4 X l n  (Co 3x) + . . -  (7a) 
~g 

ew(x) = P(x, o) 
P~ P~ 

- -  = 1 + y ( 2 E + ( 2  7 -  1)E 2 + . - - )  

- uw(1 + (27 - 1)~ + - . . ) u ~ ( x )  + .... 

+ K8 47x In (Co 3x) + . . .  (7b) 
q.g 

= 4 x [  "~ Uol(r/)d• 
U l ( X )  (7c) g 2o (x 2 + ~2) 

where Pe = 1 - yc + O(E 3) is the dimensionless pressure in the external flow. The 
function Uol(y) describes the variation of the velocity from its value in the external 
flow in the velocity defect layer in the undisturbed flow. That is, if U~ represents this 
velocity component, it may be expanded as 

u.  = u. + U, Uol(y) (8) 

and uoz(y) is the variable part of the velocity distribution in the velocity defect layer 
in the corresponding incompressible boundary layer [13]. The form given by Coles [14] 
is used here 

uol(y)  = K - Z [ l n y -  It(1 + cosrry)] 0 < y _ <  1 
(9) 

= 0  y > l  
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where II is Coles' profile parameter. The last terms in Eqns. (7a) and (7b) are due to 
the curvature of the wall, i.e., for a wall with convex curvature described locally by 

Y = - � 8 9  2 + . . .  (10) 

where K << 1 and K ~ 0 as u,--> 0 and E--~ 0 such that K/E--+ O. The value of the 
constant Co is found from the solution for the flow field external to the boundary layer. 

If Eqn. (7a) is written in terms of the Reynolds stress sublayer variable, fi, the 
result is 

U(x, 0) = (1 + E)-~ + u,[(1 + 2yE + . . . ) ( ! l n ~  + ~o~(.9) + - - . )  

+ (l + (y - 1)e +- - . )ua (x) l  + . . .  

- K 8  4 x  In (Co 8x)  + . . .  (11)  
qT 

where 

fi01(J~) = K-l(ln Y - 2II) (12) 

Thus, Eqn. (11) is the equation to which U(x, f~) must match as ~ ---> oo. As mentioned 
previously, aP/a Y = 0 to the order retained here. This is easily derived from the 
equation of motion in the Y direction (e.g., see Reference [12]). Hence, the pressure 
as written in Eqn. (7b) holds throughout both the Reynolds stress sublayer and the 
thinner wall layer. 

In view of the form of Eqns. (11) and (12), the general expansions for U and V 
are written as follows: 

U(x, y) = (1 + ~)-1 + u, ln g + ~ol(Y) + ~(x,  p) 

+ eu~- In ~ ( x ,  ~) + e u ~ ( x ,  ~) + . . .  

+ K3~c(x, 33; 8) + --. (t3a) 

V(x, r = ~lv~(x, if') + . . .  (13b) 

The corresponding expressions for the temperature, T(x, ~), and density, p(x, ~), are 
found by substituting Eqn. (13a) in the energy equation, (4d), and substituting the 
resulting expression for the temperature and Eqn. (7b) in the equation of state, Eqn. 
(4e). If the expansions for U, V, P, and p and stretched variables x and ~ are substituted 
into Eqn. (4b), the governing equations for ~ ,  ~ ,  and ~1 are found. Thus, 

a ~  l a/3x ~ [ ~  ~ul'~ 2] (14a) 
a x  = a x  + t \ l  + 4- y! ] 



Vol. 31, 1980 Normal Shock Wave and a Turbulent Boundary Layer II 233 

bx = ~ t 2Ky --@f] (14b) 

ax + Y ax = - ~  a--x- + ~ t 2 v  --~-] (14c) 

ea,o 1 ae,o a {2.p aalo~ 
a--7 = - ~  a--7 + ~ \ --~--~ ! (14d) 

where from Eqn. (7b), P~, Pn ,  and fil~ are defined as follows 

/~(x) = -yu , (x )  (lSa) 

/s~(x) = - 7 ( 2 7 ' -  1)ul(x) (15b) 

~6~(x; 3) = 4yx In (Co 8x) (15c) 
7g 

It should be noted that both ~/~c and file really denote two terms, one of order In 3 and 
one of order 1. They are written as one here for convenience. Also, it is found [12] 
that ~1 = O(Eu~), thus confirming the result used in Part I that, to the order considered 
here, V(x, 0) = 0 in the outer inviscid flow layer. 

Insofar as ~/l(x, P) is concerned, it is seen from Eqn. (11) that z/~ --> uffx) asp --~ oo. 
It will be shown later that the same functional dependence must hold as 33 -+ 0. Since 
/~1 = ffffx), the solution which satisfies both matching conditions and the governing 
equation, (14a), is 

al = fq(x) = P l ( x )  _ u ~ ( x )  (16) 
7' 

This result has been used in deriving Eqns. (14b) and (14c). It is easily shown [1, 12] 
that the solutions to Eqns. (14b)-(14d) may be written as follows 

~'~ B~,(~) exp -2K( ~) a,, = 2y + Jo (T--- ~:) / _  d~: (17a) 

- (* ~*~(~) -2~ (  ~:) z~n = --Yul Yl-fizl + 2y~o, + Jo (x 7 ~-) exp / _  de (17b) 

/ ~  + (~ (Bz~(f) In 8 + Bz~(~:)) exp / - -  d~: (17c) 
~ = - - 7  Jo ( x -  ~) 2,,( ~) 

where the B~(~:) are functions to be found by matching. As p ~ ~ ,  the integral terms 
in each of equations (17) go to zero exponentially and it is seen that the remaining 
terms match with their counterparts in Eqn. (11). As x - +  0, for p = constant, the 
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solutions satisfy the shock wave jump conditions to the relevant order, as they should. 
As 3~ -+ 0, one finds [1] the following asymptotic behavior for the integrals 

fo~ B~(~:)exp((x- ~:) 2K(~-  ~)}d~~-B~(x)ln(-~K) +g~(x)+... (lga) 

g,(x) = lim [ ( . - b  BLO_ d~ + B,(x) In b] - y~B,(x) (lSb) 
0-okJo (x-#)  

where 7e = Euler's constant = 0.57721. 
The solutions for U may thus be found from Eqns. (13a), (16), and (17). Since, 

as mentioned previously, one can find the density and temperature in terms of the 
velocity, using the energy equation and the equations of state, it is seen that a complete 
analytical solution may be found for the Reynolds stress sublayer in the outer region, 
valid to terms of order ~u~. It should be noted that the continuity equation could be 
used to find the term of order v~ in V; since it is not used anywhere in this analysis, 
the solution for V is not included. Finally, it is of interest to write the solution for U 
in the limit as )~ ---> 0 for later use in matching with the wall layer solution. Thus, 

[ ' 1 U = (1 + E) -~ + u~ K-~ lng  + ~o~(.~) + u~(x) 

+ ) 

+ Kb[-4--~Xln(Cobx) - (Bzc(x)ln~ + B~e(x))ln ( fi-~K) + g,~(x)ln3 

+ g~o(x) + , . . ]  + . . .  (19) 
J 

Wall Layer 
At the wall, Reynolds stresses are zero and the skin friction is, of course, due 

entirely to viscous stress. Immediately adjacent to the wall, then, is a layer in which, 
as the wall is approached, momentum transfer is accomplished less and less by 
turbulent means and more and more by molecular mechanisms. In this layer, Reynolds 
and viscous stresses are of the same order. The flow entering the interaction region in 
this layer has a velocity U = O(uO and this order holds in .the interaction region as 
well. If  the thickness of the layer is taken to be Y = O(~), then by equating the orders 
of the Reynolds and viscous stress terms in Eqn. (4b), one can show that ~ = 
O[(Re* u0-1]. Here, in order to write ~ in terms of familiar quantities, we set 

= A(Re* u0 -1 (20a) 
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= - -  Ue ~ = O(1) (20b) 

With these orders for Y and U, and since in the interaction region X = O(A) and 
OP/OX = O(u,/A), it is seen that, even though a pressure gradient exists, the only terms 
in Eqn. (4b) are the Reynolds and viscous stress terms, to the order retained. The 
resulting equation is easily integrated to give 

- T  - ~  = u~p~% (21a) 

%(x) = -Twiggy, (21b) 

r = ( 2 1 c )  

where, as indicated in Eqn. (21b), the shear stress at the wall, ~-w(x), is made dimen- 
sionless with its value in the undisturbed boundary layer at X = L, so that as 
x = X/A--> -0% % - +  1. Equation (21a) is essentially the same equation used in 
References [1] and [2]; the only difference lies in the closure conditions used. 

With the orders mentioned above for U, P, X, and Y, and for p = O(1), it is easy 
to show [12] that V = O(u~g/A) and to corroborate Eqn. (4c) to the order retained. 
Since U = O(uO, then from the energy equation, (4d), it is seen that T = Tw + O(u~) 
and from the equation of state, Eqn. (4e), then, that variations in p in the Ydirection 
are also O(u~). Hence, to order u~, p = p~ and as pointed out previously by Melnik 
and Grossman [2] and Adamson and Feo [1], the fact that p~ r Pe leads to the result 
that limit process expansions in the wall layer do not match with corresponding 
expansions from the Reynolds stress sublayer; thus, this difficulty arises only in 
compressible flow. The difficulty may be overcome by taking advantage of the range 
of  validity of Eqn. (21a). That is, in any intermediate limit g << Y << 3, Eqn. (21a) is 
still the governing equation; it is necessary to retain additional terms only for Y = O(~). 
Hence Eqn. (21a) may be used to derive solutions which will match with those found 
using limit process expansions in either limit, Y = O(~) or g = O(g). Although the 
methods of solution used by Adamson and Feo and Melnik and Grossman are 
equivalent, the latter's method is more straightforward and will be used here. 

It is clear both from physical arguments, and from consideration of Eqn. (21a) 
that as Y increases such that 9 >> 1, the viscous terms become negligible compared to 
the Reynolds stress terms; this is borne out by using the solution to be derived to 
compare the two terms. Also, for y >> 1, the damping factor D is represented by unity 
plus exponentially small terms (Eqn. (5)). Finally, the density may be written in terms 
of the velocity and pressure, in general, by using Eqns. (4e) and (4d). Since P = P(x) 
to the order retained, Eqn. (21a) may be integrated to give, 

U(x.p) = Vsin ~T.] I, Pw/P~J [,~ ~ + B(x) (22a) 

2 ~  + 1  
r = 1 ( 2 2 b )  
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where Tw = (~, + 1)/2 is the temperature at the wall and Tw/Te can be found in terms 
of Ue from the energy equation, (4d). B(x)  is a function of integration which should be 
evaluated by matching Eqn. (22a) with the limit process expansion solution valid in 
the wall layer 07 = O(1)); that is, it should be found as a result of integration from 
the wall to the y value in question, using the boundary conditions at the wall. However, 
it is only necessary to evaluate B(x)  to lowest order here, and this may be done by 
noting if there were no shock wave, then B(x)  = C, the constant from the undisturbed 
flow wall layer solution (Eqn. (2.8), in (I). Here, then, B(x)  is written in terms of an 
asymptotic expansion 

B(x)  = C + ~o(uJBl(x) + . . .  (23) 

where ,~(u0 -~ 0 as u~ --~ 0. 
Since Eqn. (22a) must match with Eqn. (19), in the limit as )7 -+ o% ~3 --~ 0, it is 

seen that rw must have an expansion of the following form 

~w(X) = t + ale + a2e ~ + " "  + u~rl(x) + Eu~-In rlz(x) 
K 

+ eu, r l t (x)  + ' "  + KSrle(x) + . . .  (24) 

That is, as j T ~  0% such that u,~ -1 ln~ = O(1), 

u, ln)7 = u, lng  + u~ln~ + u, ln33 (25) 

where, as shown in (I) (Eqn. (2.9)) 

and the expansion for % shown in Eqn. (24) follows to insure the indicated matching. 
Thus, if Eqns. (7b), (23), (24), (25), and (26) are substituted into Eqn. (22a) and the 
resulting equation is compared with Eqn. (19) term by term, the unknown parameters 
and functions in Eqns. (24) and (19) may be found. The resulting solution for %, the 
shear stress at the wall in the outer interaction region, and the corresponding values 
for the B~ and g~ (calculated once the B~ are known using Eqn. (18b)) in Eqn. (19) are 

,~,(x) = 1 + a ~  + al(al - 1)E~ + . . . .  u~-~ ul(x) 
2 

( - 2n~-~(2~, - a0\~, + ~ 
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+ K-~(27 + 1 - - ~ ) ( 7 - ~ ) ( l n x - T e + l n 2 K ) } + . . .  

2alx  , 
+ K 3 T m  (Co ~x) + �9 .. (27a) 

a ~ = - 4 2 ~ @ - ~  (sin-t  1 ) -~  + 27 (27b) 

B l z  = g l l  = 0 (27c) 

(27d) 

gll -- Bll(ln x - 7e) (27e) 

where u~(x) is given in Eqn. (7c). Equation (27a), then, is the solution for rw(x) in the 
interaction region, including the effects of curvature in the external flow field. It has, 
in most respects, the same form as the equation derived by Melnik and Grossman [2], 
differing mainly in the order of the various terms, the inclusion of specific analytical 
solutions at each order of approximation, and the inclusion of the curvature terms. 

In order to make numerical calculations for a given Reynolds number, Re, and 
external flow Mach number, Me = 1 + (y + 1)e/2 + . . . ,  it is necessary to provide 
relations for u~ and 3 in terms of Re and E. One of the required equations is Eqn. (26), 
with Eqns. (20) for 8; the other is given in (I), (Eqns. (2.11), (2.12)). This equation, 
with the values of the integrals as given by Cebeci and Smith [10] is repeated here for 
completeness. 

Ue (1 + II) 
[u , '~2 f  2 Uo (1 U~'~ -1/2 

+ \ ~ ]  ~.il + II) sin -1 (UdF)  --U - p2] 

( 1 ) [2 + (U,/U) 2] (2 + 3.178711 + ~II2)} 
+�89 (1 + F ) )  2 [1--(U,/F) 2] 

(28) 

where Te/Tw = 1 - (UdI ' )  2 from the energy equation, (4d). Finally, it is necessary to 
write an equation for the viscosity, ~(T), to be used in Eqns. (20). Here, t~ = T" was 
used, with calculations being performed for n = �88 

Finally, it should be noted that although the solutions presented here are found 
to orders of approximation such that pressure gradient and inertia terms were not 
retained in the equation of motion in the wall layer, higher order solutions involving 
these terms have been investigated [12]. It was found that the first terms to involve the 
pressure gradient were of order ~/A in U and of order $/u~A in rw. Thus, they give very 
small corrections to the solutions presented. 
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3. Numerical Calculations and Separation Criterion 

The variation of 7w with x for various values of external flow Mach number (and 
thus ~) and Reynolds numbers representative of modern aircraft are shown in Figure 1. 
The numerical computations were carried out using Eqn. (27a) for tz = T 3/~, ~, = 1.4, 

II = �89 C = 5 and K = 0; these values seem to be suitable for flow over a flat plate. 

The curves show the general features found experimentally in the interaction region. 

That is, ~-~o(x) goes through a minimum, say (~'w)~i~; as M~ increases, (~-~)~, decreases, 
while as Re increases ( % ) ~  increases. Thus, the effect of increasing Me and therefore 

the strength of the shock wave is to decrease the value of r~ everywhere in the inter- 
action region and hence to force the flow toward separation; increasing Re gives the 

opposite effect. It should be noted that r ~ 1 as x ~ 0 because the solution shown 
in Eqn. (27a) is for the outer interaction region. A solution for ~'w valid in the inner 
region can be written in terms of the solutions for the pressure perturbations in the 

inner inviscid flow region [12]. The solution is found in precisely the same manner as 
that illustrated here for the outer region and results in a solution similar to that given 
in Eqn. (27a). Finally, a composite solution for rw could be written, using the solutions 

valid in the inner and outer regions. Because of the limit processes considered in this 
work (~ >> u~), this composite solution would show only a small variation in % for 

x < 0. However, since analytical solutions cannot be obtained for the pressure in the 

inner region, no solution for r~ in the inner region has been included here. 
It is not possible to compare the solution for ~-~ with experimental results for a 

completely two-dimensional unseparated flow because none are available. In those 
cases where the flow was apparently unseparated (e.g., References [15, 16]), % was not 

measured, and in more recent work, where ~w has been measured (e.g., References 
[17-19]) the flow is separated. In separated flow, the shock wave takes on a lambda 

configuration near the boundary layer and a relatively strong pressure gradient 
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510 I I I 000.0 10.(3 15.0 20.0 
x 

Figure l 
�9 ~ vs. x for various values of Me and Re, for flow over a fiat plate. (Eqn. (27a) with II = 0.5, K = 0). 
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develops in the Y direction in the flow external to the boundary layer [18]; the flow 
picture is quite different from the unseparated flow case considered here. 

Although experimental results for truly two-dimensional flow are not available 
for comparison, there is one set of measurements in a tube in which the flow is approx- 
imately two-dimensional [20]. Thus, if R is the dimensionless (with respect to L) radius 
of the tube, 3/R "~ 0.04 to 0.08; in addition, the changes in the core flow (external to 
the boundary layer) due to the rapid increase in the boundary layer displacement 
thickness through the interaction region give corrections which are asymptotically of 
higher order than those retained in Eqn. (27a). In presenting the tube data, Gadd fitted 
power law velocity profiles to the measured profiles and inferred values of g (dimen- 
sional boundary layer thickness) immediately upstream of the interaction. Using 
equations derived using power law profiles, he also gave Reynolds numbers associated 
with the tunnel stagnation pressure and Mach number for each test. Skin friction 
measurements were derived from Stanton tube measurements. In determining the flow 
parameters to be used in calculating ~w for comparison with each of Gadd's experi- 
ments, it was decided to use Gadd's values of 3, Re, Me, and stagnation pressure,/st~ 
as being a self-consistent set of data to calculate the necessary e, u,, 8, and IT for use 
in ~'w. Thus, it is easy to show that if/x = T ~, 

Re 3 /~te Me ( Ue2~ -~-1/2 ~ j  
= p,-~ [1 + (~, - 1~2)Me2] y/'~'-I, 1 - F2 ] ~w (29) 

Here, 6~ and ~w are the dimensional speed of sound and kinematic viscosity respec- 
tively, evaluated at the wall temperature (atmospheric temperature, taken to be 59 ~ 
and in the case of ~w, at atmospheric sea level density; Pat refers to atmospheric 
pressure. Using the given values of Me, Pte, 3, and ~w, Eqns. (3), (26) (with Eqn. (20) 
for g), (28) and (29) were used to calculate the equivalent ~, u~, 3, and 17. From Eqn. 
(2), then, the corresponding ct~ could be calculated. The ratio of the calculated cr~ to 
the value inferred from the Stanton tube measurements ranged from 1.05 to 1.29 in 
four cases reported by Gadd (Figs. 25 to 28, Reference [20]). For this reason and 
because of uncertainties in the calibration of the Stanton tube, it was decided to 
compare values of cl/ci,~, which is equal to ~'w as given in Eqn. (27a). The results of 
this comparison are shown in Figure 2, for the case Me = 1.15, Re = 7 x 106 (Fig. 25, 
Reference [20]). The remaining parameters are given under Figure 2. The point 
X'/3 = 0, defined by Gadd as the position at which P~/Pt~ = 0.528, was found by 
using Eqn. (7b). It is seen that the measured upstream influence is not small. That is, 
cr/cr~ is not small for X'/3 < - 1, say, as required for this theory, so that even if the 
solution for ~'w for x < 0 were available, it is not expected that it would give good 
agreement. In fact, using the above mentioned parameters, 3,/3 = 0.5, where 3, is the 
dimensionless distance to the sonic line in the undisturbed boundary layer; evidently 
the values for Re, e, and II do not form a good combination for comparison with the 
theory. On the other hand, a slight unsteadiness in the position of the shock wave 
could have contributed to the slow variation of the measured cf/ce~, upstream of and 
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in the neighborhood of the minimum. Nevertheless, the value and the position of the 
minimum of cAc~ are predicted quite accurately. Downstream of the minimum the 
comparison is fairly good; in this regard, however, it is interesting to note that the 
negative curvature seen on the calculated curve but not on this particular experimental 
curve, is a feature found in other experimental results which could not be used here 
because small separation bubbles existed. 

It is of interest at this point to consider the problem of predicting conditions under 
which the interaction brings the flow to the point of incipient separation. First, it is 
seen from Eqn. (27a) that there is no asymptotic condition for incipient separation; 
that is, unlike the laminar case, in which Es -- O(Re -1~5) is the asymptotic criterion 
[21], there is no relation between E and Re which holds in the limit as Re ~ oo as a 
condition for separation. This is an important difference between the two flows, and 
it is of interest to investigate the reason for its occurrence. The effect of the interaction, 
through the induced adverse pressure gradient, is to slow the fluid. In the boundary 
layer, then, the stream tubes must become wider and, due to the constraint of the wall, 
the V velocity component increases at points away from the wall, causing the outer 
flow to lift away from the wall also. In the laminar case, the thickening of  streamtubes 
is greatest in the viscous sublayer. The resulting V component of velocity is large 
enough that the flow external to the boundary layer is affected to lowest order so that 
the external and boundary layer flows must be considered simultaneously, i.e., a strong 
interaction results [21, 22]. No matter how large Re becomes, this strong interaction 
occurs, with the thickness of the viscous sublayer and boundary layer decreasing as 
Re increases, according to their asymptotic dependence on Re. The sublayer momen- 
tum flux and viscous stresses decrease and the strength of the shock wave necessary 
to cause enough displacement of the fluid to result in separation decreases as Re 
increases. In the turbulent case, even for e >> u~, the interaction is a weak interaction 
to lowest order because the wall layer is so thin. Thus, until separation occurs, the 
outward displacement of the fluid in the wall layer due to the interaction is too small 
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to cause any effect in the lowest order solutions in the flow external to the boundary 

layer. A strong interaction does not occur until a separation bubble exists. Since there 
is no mechanism through which variations in the wall layer and external flows can 
interact, before a separation bubble is formed, it appears that no asymptotic criterion 
exists for incipient separation. However, it may be that such a criterion will result from 

an asymptotic solution for the separated flow problem in the limit as the size of the 
bubble shrinks to zero. 

Although the solution for ~-w(x) does not give an asymptotic criterion for separa- 
tion, there remains the possibility that conditions for incipient separation can be found 

simply by assuming that Eqn. (27a) is an accurate solution for "rw(x) at values of Me 
and Re near separation. It is clear from Figures 1 and 2 that the solution shows the 
correct form with a minimum value, and it is possible to calculate the corresponding 

values of Re and Me (i.e., E) for which (~-w)min = 0, the condition for incipient separa- 
tion. It must be emphasized that Eqn. (27a) is not being used in an asymptotic sense 

in such a calculation; thus in order for -rw to go to zero, one or more terms in the 

expansion must become as large as the first term. Instead, we consider Eqn. (27a) as 
being a good approximation to r~(x) in a numerical sense as long as c a and u~ (the 
orders of the first terms neglected) are small compared to one. 

To illustrate the use of Eqn. (27a) for ~-~(x) to predict conditions for separation, 
we choose the remainder of Gadd's tube flow experiments in which c r was measured 
[20]. That is, Gadd presented four plots of c s vs. X'/3 (Figs. 25-28, Reference [20]), 
the first of which is shown in Figure 2. In each case he also performed oil-flow experi- 

ments, which indicated that in one case (used in Fig. 2) the flow was not separated, but 
that in the three other cases, separation did occur. Although the plotted values of c r 

did not indicate the occurrence of separation in these three cases, it should be noted 
that the values of c s were inferred from measurements from a Stanton tube aligned 

facing the flow; thus, accurate reverse flow measurements could not be made. Calcu- 
lations of ~'w were made for each of these cases, using the same method for calculating 
the necessary parameters, as mentioned in the discussion of Figure 2. The resulting 

values for (7~)min = (Cs/CI~,)m~n for each case are as follows: 

(1) Me = 1.27 Re = 107 (~-~)m~n = -0 .080  
(2) Me = 1.26 Re = 1.27 x 107 (~'~)m~n = -0 .020  
(3) Me = 1.34 Re = 1.93 x 107 (~-~)m~ = -0 .344  

Thus these calculated results indicate that in all three cases the flow is separated, in 
agreement with the oil-flow experiments. In case (2), the extent of the region where 
~'w < 0, i.e., the extent of the separation bubble, appears to be very small; the flow is 
barely separated. 

If  we denote by Mes the Mach number of the external flow at incipient separation, 
Eqn. (27a) may be used, with the condition that (-r~)~i~ = 0, to find Me~ as a function 
of Re. A typical result is shown in Figure 3 for K = 0 and 17 = �89 i.e., for conditions 
associated with flow along a fiat plate. It is seen that according to this prediction, Mes 
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Figure 3 
Me~ (Mach number  at incipient separation) vs. Re for flow over a flat plate, calculated using Eqn. 
(27a) with (~'w)=~ = 0, I I  = 0.5, K = 0. 

increases as Re increases. This result is in agreement with measurements made by 
Roshko and Thomke [23] for supersonic ramp flow at high Reynolds numbers. The 
magnitude of the increase in Mes over a large range of Re, however, is small enough 
that this result could help explain the conclusion that there was little or no variation 
with Re, reached by Settles, Bogdonoff, and Vas [24]. 

The effects of curvature on Mes, as predicted by Eqn. (27a) can also be compared 
with experimental results. Evidently, the only data available are those presented in 
Figure 37 of Reference [20], reproduced here as Figure 4. The value of the coordinate 
along the abscissa, t, is given as t ~_ 2.6~/R where R is the radius of curvature; in view 
of Eqn. (10), then, one can write t = 2.63K. Although there is no dependence on 
Reynolds number shown, it is assumed here that the range of Reynolds numbers is 106 
to 107 and calculated results are given for both values. Finally, on an airfoil with 
supercritical flow, the flow is accelerating up to the shock wave; since II depends on 
the pressure gradient in the undisturbed flow upstream of the interaction, the value of 
II on an airfoil will be different for different curvatures. For zero pressure gradient 
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Figure 4 
Effect of  curvature parameter ,  t, on Mach number  for incipient separation, M~, f rom Reference 
[20]. Triangles and circles correspond to different airfoils. Present calculations shown as follows: 
a t t  = 0 , ( l l ) R e  = 106,II = 0.5, K = 0 ; ( x ) R e  = 107,II = 0.5, K =  0. A t t  = 0.015, ( I )  Re = 10 ~, 
I I  = 0, K = 0.21; ( x )  Re = 10%II  = 0, K = 0.28. 
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II "~ 0.5, whereas for highly accelerating flow II is smaller and can become negative 

[25]. Therefore, at t = 0, II ~ 0.5, (K = 0) and at t = 0.015, it was decided to use a 
value of II for moderately accelerated flows, l-I = 0. The values of M~s at t = 0 can 
be found from Figure 3. Those at t = 0.015, for which K = 0.021 at Re = 106 and 

K = 0.028 at Re = 107, where calculated, again using Eqn. (27a). The results are 
shown in Figure 4. It is seen that at the conditions associated with flow over a flat plate 

(t = 0) the calculated Me~ compares well with the value given by the line drawn 
through the experimental data. On the other hand, at higher curvature (t = 0.015) the 
calculated values are considerably less than those found experimentally. In Reference 

[20] there was some discussion of the fact that criteria for separation might have been 
too stringent in the curved surface cases so that, for example, the point through which 
the drawn line passes at M~s = 1.31 perhaps should have been at M~s = 1.29. If this 
were the case and if negative values of l-I were called for, the agreement at t = 0.015 
would be much better. 

The present results for criteria for shock induced incipient separation may be com- 

pared with theoretical predictions given by Bohning and Zierep [26], who postulated 

a two layer model for the interaction region and were able to calculate an equation for 
c~. Two comparisons were made, both for flat plates, at Re values of 106 and 5 x 106; 

these Re are in the range of results presented in Reference [26]. At Re = 106, the 
predicted values of M~ are 1.24 and 1.18 and at Re = 5 x 106 they are 1.26 and 1.30, 

where the Ms~ calculated by the present method is the first, in each case. Thus, although 
the two solutions give the same M~ at some Re between 106 and 5 x 106, Bohning 

and Zierep's solution shows a much greater variation of M~ with Re than that shown 
here. However, the present results appear to be in closer agreement with experimental 

measurements [23, 24] for a related problem. The present theory could not be com- 
pared with very recent analytical results given by Inger [27], who also used a two layer 
model, since conditions for incipient separation were not presented. 

Although there appears to be no asymptotic criterion for separation in the limit 
as Re ~ oe(u~ -+ 0) and E -+ 0, there remains the possibility that there exists a criterion 
involving a large Me as Re -+ oe. Thus, it is necessary to consider the behavior of % 
for e = O(1). Based on the present analysis, it is seen that for e = O(1), u~ << 1, the 
solution for ~-w(x) would be of the following form in the outer interaction region: 

%(x)  = "r~(e) + u~.%l(x; ~) + . . .  (30) 

where %~(E) is the value which ~-~(x) approaches far downstream of the shock wave. 
Since the lowest order solutions for the velocities would be of the same form in each 
of the layers as for e << 1, it is seen that, from matching solutions in the limit u~ -+ 0, 
one would obtain 

F s m \  tp - - -~ j  sin -1 = Ua (31) 

Here Pa and Ue are the values of P and U immediately downstream of the shock wave 
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in the inviscid flow external to the boundary layer respectively, and are thus the values 
which P and U approach as x ~ oo in the interaction region. If  the jump conditions 
across a shock wave are used to write Ua and Pa/Pe in terms of Ue and these expressions 
are substituted into Eqn. (31), one obtains an expression for ~w~ in terms of U~. Thus, 

T~d 

- 1 1 ]2  

L sm 
(32) 

If Ue = 1 + e is substituted into Eqn. (32) and the resulting equation expanded for 
E << 1, it is found that ~ = 1 + ale + al(al - 1)E2/2 + . . - ,  in agreement with the 

first three terms of Eqn. (27a). 
It is clear from Eqn. (32) that, since 1 _< Ue < r for 1 < Me < oo (see Eqn. (3b)), 

~'~o~ ~ 0 for any Me; instead ~w~ goes through a minimum value of 0.512 at Me = 2.55, 
for 7' = 1.4, and then begins to rise with increasing Me. Hence, there is apparently no 
limiting value for Mo~ as Re -+ ~ .  Moreover, since Ue --> F as Me --> o% it is clear 
that %d --> oo. Recalling the definition of ~-~(x), one can see that this limit means that 
for high Math  number flow the shear stress far downstream of the interaction must 
be large compared to that of the undisturbed flow. This apparent anomaly can be 
explained by considering Eqn. (21a). The density, in the first term, can be written as 
P / T t h r o u g h  the equation of state. Now, in the wall layer, the temperature differs from 
the constant temperature of the wall by only higher order terms. On the other hand, 
since 8P/O Y = 0 through the wall layer and Reynolds stress sublayer, P is the pressure 
from the inviscid flow layer and so varies from Pe to Pa. As Me --> 0% Pa/P~ --> oo and 
so from Eqn. (21a), %~--> oo also. In general, since the Reynolds shear stress, 
-p(U' V'), includes the density, this result appears to be independent of the specific 
closure condition as long as ( U ' V ' )  does not go to zero as Me --> 0% and is another 
significant departure from the laminar case. Experimental verification of the large 
values of ~'~o~ at high Mach numbers is given in measurements by Marvin et al. [28]. 

4. Concluding Remarks 

The use of asymptotic methods of analysis results in a relatively simple relation 
for the shear stress at the wall in the interaction region. This relation may be used to 
predict conditions for incipient separation. In order to obtain the proper variation of 
% vs. x, which includes a minimum in %, it is necessary to include terms of higher 
order than the first approximation; evidently this would be the case also if one were 

to calculate ~-~ for the case u~ = O(E) [2]. 
Although the range of parameters in available experiments does not allow for 

exhaustive testing of the theory, comparisons which could be made are encouraging; 
more accurate results should be obtained at the high Reynolds numbers associated 

with modern transonic aircraft. 
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Summary 

Asymptotic methods are used to calculate the shear stress at the wall for the interaction 
between a normal shock wave and a turbulent boundary layer on a flat plate. A mixing length model 
is used for the eddy viscosity. The shock wave is taken to be strong enough that the sonic line is 
deep in the boundary layer and the upstream influence is thus very small. It is shown that unlike 
the result found for laminar flow an asymptotic criterion for separation is not found; however, 
conditions for incipient separation are computed numerically using the derived solution for the 
shear stress at the wall. Results are compared with available experimental measurements. 

Zusammenfassung 

Die Schubspannung entlang einer ebenen Platte wird mit asymptotischen Methoden gerechnet 
ffir den Fall, dass ein senkrechter Stoss auf die turbulente Grenzschicht einwirkt. Ftir die Rechnung 
wird ein Mischweg-Modell beniJtzt. Der Stoss ist yon solcher Stfirke, dass die Schallinie tief in der 
Grenzschicht liegt, und so die Wirkung stromaufw~irts sehr klein ist. Im Gegensatz zu der laminaren 
Str6mung kann man in diesem Fall eine asymptotische Bedingung ftir Grenzschicht-Abl6sung 
nicht finden. Aber die Bedingungen ftir den Beginn der Abl6sung kann man yon der L6sung ftir 
die Schubspannung an der Wand numerisch erhalten. Die Ergebnisse der Theorie werden mit den 
vorhandenen experimentellen Messresultaten verglichen. 
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