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Abstract 

Cab-1 is a complex genetic locus in tomato consisting of four clustered genes encoding chlorophyll a/b-binding 
polypeptide. Southern blot analysis of total tomato DNA with genomic clones corresponding to the Cab-1 
locus has revealed the presence of  a repetitive element in the 3 kb spacer regions between two of these genes. 
This repetitive element, named CR1, has been characterized via sequencing, genetic mapping and hybridization 
to related solanaceous species. Results indicate that there are as many as 30 copies of this element in the tomato 
genome and that most, if not all, are found at independent loci. Sites corresponding to 12 of  the repeats have 
been located on different regions of chromosomes 2, 4, 5, 7, 10 and 11. A 1.6 kb PstI-EcoRI fragment from 
the Cab-1 locus containing the element was sequenced and found to be 75°7o AT-rich. No open reading frames 
larger than 150 bp were detected. Several imperfect inverted repeats flanked by direct repeats could be found 
at the ends of the element. This arrangement is reminiscent of known transposons. Southern hybridization 
analysis indicates that multiple copies of CRI exist in all species of the genus Lycopersicon as well as in Solanum 
lycopersicoides and S. tuberosum (potato), but not in eggplant, pepper, petunia, Datura or tobacco. Melt-off 
experiments indicate that members of the CR1 family in the tomato genome are more closely related to one 
another than to homologous members in the genomes of S. lycopersicoides or S. tuberosum, suggesting some 
type of concerted evolution. 

Introduction 

It is well established that most of the DNA of eu- 
karyotes is noncoding and often repetitive. The 
repetitive DNA of animals ranges from highly 
repeated tandem arrays (satellite DNA) to highly 
repeated interspersed sequences such as the Alu [18] 
and L1 (Kpn) [1] families. Tandemly repeated DNA 
is thought to fluctuate in amount  primarily through 
the process of unequal exchange. In contrast, inter- 

spersed families are believed to be transcribed and 
their amplification and dispersion may occur 
through an RNA intermediate [30]. 

In plants, much attention has been given to the 
study of highly repeated sequences which may occur 
as satellite DNA localized to heterochromatic areas, 
such as centromeres, telomeres or knobs [27, 11, 19], 
or interspersed throughout the chromosomes [14]. 
The study of  these highly repeated sequences in 
related species has not only advanced our under- 
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standing of  the evolution of  this class of  DNA but 
also of  the species which contain those sequences 
[22, 34, 2, 20, 13, 11, 9, 21]. 

Unlike the case with highly repeated DNA, little 
information is available about the organization of  
low copy repeat sequences in plants. It is not known 
if members of  this class of  DNA exist in tandem cop- 
ies or whether they follow rules of  evolutionary 
change similar to those of  highly repeated se- 
quences. Because of  their low copy number it is 
difficult to study their chromosomal distribution by 
in situ hybridization. Sequence divergence and 
mechanisms of  turnover have not been established 
for this class and their taxonomic distribution has 
not been studied. 

Recently, we reported results from studies of the 
organization of  nuclear genes encoding the chlo- 
rophyll a/b-binding (CAB) polypeptides of  pho- 
tosystem II in the thylakoid membranes of chlo- 
roplasts [28, 35]. The PSII CAB polypeptides are en- 
coded by approximately 10 genes organized in 5 dis- 
tinct chromosomal loci. Two of  these loci, Cab-1 and 
Cab-3, are complex, each possessing at least four 
CAB genes [28, 35]. We have now examined the inter- 
genic spacer regions in these two complex loci. While 
most spacer regions are single copy, we have discov- 
ered a repetitive element in the Cab-1 locus which is 
a member of  an interspersed, repeat family referred 
to as the CRI family. The nucleotide sequence, 
genomic organization and phylogenetic distribution 
of  the CR1 family is described in this paper. 

Methods 

Isolation of DNA and Southern blot analysis. DNA 
was isolated by a modified procedure of Murray and 
Thompson [25] as reported in Bernatzky and Tanks- 
ley [4]. The nylon membrane employed for Southern 
analysis was either Zetabind (AMF Cuono) or 
GeneScreen Plus (NEN). Blotting and hybridization 
were according to Bernatzky and Tanksley [5]. 
Hybridization solutions contained 5% high-Mr dex- 
tran sulfate and 5x  SSC and were carried out at 
68 °C. Final washes were at 68 °C and contained I x 
SSC and 0.1% SDS. 

Preparation and screening of L. esculentum genom- 

ic library. Lambda clone preparation and isolation 
of  sequences from L. esculentum (cv. T5) that were 
homologous to CAB cDNA fragments are reported 
elsewhere [28]. Fragments were subcloned into either 
pUC 9 or pUC 18. Plasmid DNA was isolated ac- 
cording to Birnboim and Doly [7]. 

Genomic reconstructions. Slot blot procedures to es- 
timate copy number were according to Rivin [29]. 
Hybridization conditions were the same as for the 
Southern blots. 

Genetic mapping. DNA fragments that were visual- 
ized by Southern analysis were mapped by the meth- 
od of  restriction fragment length polymorphism in 
an F2 progeny from a cross between L. esculentum 
(cv. VF36) and L. pennellii as outlined by Bernatzky 
and Tanksley [6]. Linkage analysis was performed 
with 200 previously mapped DNA markers and 18 
isozyme markers [6, 33]. 

DNA sequencing. DNA sequencing was according 
to Maxam and Gilbert [24]. 

Results 

Location of repeated sequences in relation to the 
Cab-1 and Cab-3 gene clusters 

In order to determine the complexity of the non- 
coding regions in the Cab-1 and Cab-3 gene clusters, 
fragments of  the lambda clones were subcloned and 
used as probes against Southern blots of total toma- 
to DNA digested with EcoRI. These blots were 
washed at low stringency (1 x SSC, 68 °C). Figure l 
illustrates the hybridization pattern obtained for 
some of  these subclones. The majority of the DNA 
that surrounds the coding sequences was found to be 
unique (single copy). However, one segment from 
the Cab-3 cluster and two from the Cab-1 cluster 
were determined to contain repeated sequences. 

The Cab-3 repeat (8A0.9) is located within a 
900 bp SstI-EcoRI fragment that also contained a 
truncated Cab coding sequence ([28], Fig. 1). This 
repeat is 2.2 kb 3'  to the Cab-3 gene cluster. As a 
probe this sequence produced a smear of  hybridizing 
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Fig. 1. Regions of the Cab-I and Cab-3 loci investigated by Southern analysis. Boxes indicate coding regions and arrows, direction of 
transcription [28]. Lines above the loci refer to sequences tested on Southern blots. Sample autoradiographs are shown below for those 
regions marked with numbers. Each lane contained 3 t~g total tomato DNA digested with EcoRI and separated on 0,9~/0 agarose. Fragment 
sizes in kb are shown at the right. 

f ragments  showing very few discrete bands .  

The hybr id iza t ion  pat terns  were much more dis- 

crete for the two repeat regions in or a round  the Cab- 

1 locus. A moderately  repeated sequence (3B4) was 

found  on  a 3.8 kb EcoRI fragment  that  is approxi- 

mately 3.5 kb 3 '  to the first coding sequence of  the 

gene cluster. This clone hybridized to > 50 frag- 

ments  on  a Sou the rn  blot.  The second Cab-1 repeat, 
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termed CR1, is confined to a 1.65 kb EcoRI-PstI 
fragment located in the 3 kb spacer region between 
the second (Cab-lB) and third (Cab-lC) genes. Upon 
probing restricted genomic DNA, CR1 was found to 

hybridize to 2 0 - 3 0  fragments (Fig. 1). 
The CR1 repeat was chosen for further study be- 

cause of  the discrete hybridization pattern observed 
on genomic Southerns and because it was the only 
repeat found in the intergenic spacer regions in the 
CAB gene clusters. In order to delimit the length of  
this repeat, subclones were made of  both ends of  the 
1.65 kb fragment and used as probes on Southern 
blots. A 270 bp DraI-EcoRI fragment at the 3 '-end 
as well as a 200 bp Sau 3A fragment that ends 40 bp 
from the 5 ' -end gave hybridization patterns that 
were similar to the entire CR1 clone (Fig. 1). This sets 
the minimum length of the repeating unit at 1.1 kb. 
Probing with flanking sequences beyond these sub- 
clones did not produce a discernable repeated pat- 
tern, indicating that the ends of the repeating unit 
may lie within these 5 ' -  and 3'-fragments. 

CR1 copy number estimation 

The copy number of the CR1 sequence in the tomato 
genome was estimated by slot blot reconstruction 
analysis, under low stringency conditions (final wash 

a t  1 × SSC 65 °C) [29]. Quantities of  the cloned se- 
quence that correspond to 1, 10, 30 and 60 copies of  
the sequence along with a standard amount  of  toma- 
to DNA were applied to a slot blot and hybridized to 
isolated CR1 insert. Hybridization signals were 
produced that correspond to 10-12 copies of the se- 
quence in the tomato genome. A densitometric scan 
of  the EcoRI Southern blot also suggests a minimum 
of  10 copies since the 2.6 kb EcoRI genomic frag- 
ment on which CR1 resides comprised 10°70 of the 
total signal (Fig. 1). However, a total of  30 EcoRI re- 
striction fragments were found to hybridize with 
varying intensity on genomic Southerns, suggesting 
that there may be as many as 30 related copies of the 
sequence in the genome hybridizing with different 
degrees of efficiency (Fig. 1). 

CR1 in other solanaceous taxa 

The location of  a CR1 repeat within a cluster of  a 

conserved and universal plant gene (CAB) raises the 
possibility that the repeat sequence might itself be 
conserved. We therefore investigated the occurrence 
of the CR1 repeat in other related taxa. Southerns 
were made with DNA from several varieties of  culti- 
vated L. esculentum as well as a number of acces- 
sions of  each of the wild species of tomato. In all 
cases the repeat was found to be present in a similar 
number of  EcoRl fragments (see representative ex- 
amples in Fig. 2A). Other genera of the Solanaceae 
family were also analyzed. One accession each of  
Solarium lycopersicoides, S. tuberosum, S. melonge- 
na, Capsicum annuum, C. chinense, Petunia hybri- 
da, Datura innoxia and Nicotiana tabacum were 
tested. Six ~g of DNA was loaded for these genera 
as compared to 1.5 tzg for the tomato species. Only 
S. lycopersicoides and S. tuberosum hybridized to 
the CR1 element after washing at 68°C with l x  
SSC, 0.1°70 SDS (Fig. 2B). It was noted with interest 
that the third member of the Solanum genus, S. 
melongena, did not hybridize to the CR1 fragment. 
As a control, the same filter was hybridized to a CAB 
coding sequence and good signals were obtained for 
all species (Fig. 2C). The hybridization signals from 
the repeat sequence were weaker for the two Sola- 
num species than for tomato. At higher stringency 
(0.2 x SSC, 68°C), nearly all of  the signal was 
washed off  the Solanum species while the signal 
from the two tomato species was similar to that ob- 
served at lower stringency (Fig. 2D). This indicates 
that the repeat family members in tomato are more 
closely related as a group to the CR1 than any of the 
repeats in the Solanum species. 

Chromosomal mapping of CR1 insertion sites 

Because of  the relatively small number of hybridiz- 
ing fragments on Southern blots it was possible to 
explore the genomic organization of this repeated 
family by the segregation of  restriction fragments. 
CR1 fragments were mapped relative to DNA and 
isozyme markers of  known position on the 12 chro- 
mosomes of tomato. An F2 population from an in- 
terspecific cross of  L. esculentum and L. pennellii 
had been previously used for such mapping and was 
segregating for more than 200 molecular markers [6, 
33]. The following restriction enzymes were chosen 
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Fig. 2. Southern analysis of  tomato cultivars and other species of  the Solanaceae. DNA from each was digested with EcoRI and probed 
with CR1. 

(A) L. esculentum cultivars include 1) VF36, 2) New Yorker, 3) Spring Set VE Wild accessions are 4) L. esculentum var. cerasiforme 
LAI511, 5) L. esculentum var. cerasiforme LA1455, 6) L. pimpinellifolium LA1579, 7) L. pennellii LA1940 and 8) L. peruvianum LA371. 
Each lane contained 3 ~tg DNA. 
(B) 1) L. esculentum cv. VF36, 2) L. pennellii LA716, 3) Solarium lycopersicoides, 4) S. tuberosum (potato) cv. Katadin, 5) S. melongena 
(eggplant) cv. Black Beauty, 6) Capsicum annuum (pepper) CA133, 7) C. chinense CA4, 8) Datura innoxia, 9) Petunia hybrida cv. Mitchell, 
10) Nicotiana tabacum. Lanes 1 and 2 contained 1.5 #g DNA. The autoradiograph is overexposed for the tomato species. 

(C) Same filter as in (B) but stripped of  the CR1 probe and hybridized to a CAB coding sequence. 
(D) Lanes 1 and 2 are 6/~g of  S. tuberosum and S. lycopersicoides respectively, and lanes 3 and 4 are 1.5 ~.g of L. pennellii and L. 

esculentura. Each was digested with EcoRI and probed with CR1. At the left the filter was washed at a final stringency of 1 x SSC, 0.1% 
SDS at 68°C and at the right the final wash was at 0.2× SSC, 0.1O7o SDS at 68°C. 
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to identify restriction fragment length polymor- 
phisms necessary for genetic mapping: DraI, BstNI, 
PstI and MspI. Forty-six progeny DNA were digest- 
ed with each of these enzymes and probed with the 
CR1 insert. A sample of the DraI-digested progeny 
is shown in Fig. 3. 

The segregation of 16 fragments generated from 
the 4 enzymes were scored and analyzed for linkage 
with the previously mapped markers. Seven of the 
mapped fragments were derived from the L. esculen- 
tum parent and nine from L. pennellii. Five of the 
sixteen fragments mapped to the Cab-I locus while 
twelve others mapped to positions on chromosomes 
2, 4, 5, 6, 7, 10 and 11 (Fig. 4). Two pairs of loci 
(CR1C and CR1D on chromosome 5 and CR1E and 

CR1K on chromosome 7) mapped close to one an- 
other and each showed only one recombinant be- 
tween them. Two other loci, CRIB (DraI L. esculen- 
tum fragment) and CRIM (BstNI L. pennellii 
fragment) are possibly allelic since they map close to 
one another on chromosome 11 and there were no 
progeny plants in which both fragments were absent. 
Overall the genetic analysis indicates that members 
of this repeat family are distributed on different 
chromosomes throughout the genome of tomato. 

Sequence analysis of CR1 

Having established the dispersed nature of this small 

Fig. 3. Sample of  F2 progeny from a cross between L. esculentum and L. pennellii. 3/~g DNA from each was digested with Dral. CRI 
related fragments that were segregating and that map  to specific chromosomal  locations are shown at the right. Fragment size scale is shown 

at the left. 
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repetitive family, the cloned CR1 fragment was se- 
quenced to possibly gain insight into how the se- 
quence has become distributed throughout the ge- 
nome. 

The sequence of  the CR1 clone is shown in Fig. 
5. There is no evidence that more than one copy of 
the repeat sequence is contained on the CR1 clone. 
Adenine and thymine nucleotides are in abundance, 
constituting 75% of  the sequence. There is a direct 
duplication of  21 base pairs (90% homology)  at 
nucleotides 471 and 492. This may have resulted from 
recombination within a misaligned Cab-1 gene clus- 
ter during meiosis. 

The sequence was analyzed for inverted repeats 
that are characteristic of  the termini of  transposable 
elements (see [26] for review). As previously dis- 
cussed, the ends of  the repeat unit are expected to lie 
within the terminal 5' and 3' subclones and the 

I0 20 30 40 50 60 

CTGCAGTTAA TTTTCCATTA TCACGTACAG TGGTGTAGAG TGATCATTAT CACTAATGTC 

70 80 90 I00 ii0 120 

TCTTCATGAC CATGAGATTA ACTAACAAAA GTCTATTCAT GGATCTATGT TAAAAGAAGA 

A 
130 140 150 160 170 180 

AAAAACGATG GTCGGTACTG GCGCTAGTTG CTTTGGATTC TTTGAAAAAT GTCAACAAGT 

190 200 210 220 230 240 

OTGTTTGGAA TTATCAGCAT AAACATGAAC GTCAAAACTT AAAAGTTGAA TTACCATTTT 
. . . . .  ) ) ---~ > 

B C 
250 260 270 280 290 300 

AGCCTTATAC TAAATTAAAA TATTATAAAT TAATTAATTA ATTAAATATT AAATATGCTT 

310 320 330 340 350 360 

AAATTGTTAA TTAAGTTATG ATGACTTGTC ATAACCATGG CATGAGGCAT AGCATATGAT 

P 
370 380 390 400 410 420 

CACTTATTGT TAAAATAATG TAGGAGAATG AATAGTTGTA AAAATAATTA ATTATAAAGT 

430 440 450 460 470 480 

TATTACGAAA ACGTATTAGA GAAATTTTTC ATTTCTCTAT CTGATCAGTT TTAGGTGTAA 

490 500 510 520 530 540 

TTTTGTCATA ATGTGTATTA ATACCACACC TCCACTATCT CATCATTAAT ATTCACACCT 

550 560 570 580 590 600 

TCATAATCTT TCCACACTCT CAACAAGTTG ATGGCACTTC TTGGATCACT TAATTTGTAA 

610 620 630 640 650 660 

TGTTTTTATC TTCTATTAGC ATTTTCCTAT ATTATATATT ATACTTTCTC ATGTAATCAA 

670 680 690 700 710 720 

GTTATATTTA TTTTTTTTAT ATGAGTTTGT TATGCTCAAT GTTTTATTTA TCTTTATTGA 

730 740 750 760 770 780 

ACTCATCTAA ATTGTTGAAT ATTTCAACTA CAATAAATTT TTTAAATTTG ACTTTTTTTT 

790 800 810 820 830 840 

ATGAAGATAC ATTAAGAAAT GACGTTAATA TTTCATAGTG ATGATGCAGT AAGTCAAGCA 

850 860 870 880 890 900 

ACACAGATTG AACTGTTTCA AGTGGTATCA ATTTTGAGGT AATAAATCAT TTTTCCTTAT 

910 920 930 940 950 960 

ATGCAATTAA TTATTTTTGT GTAAGTTGAT ATGTTATTAA TAAAATTTTG GTTTGATTTT 

970 980 990 i000 i010 1020 

TAAATAAAAA TTATTTTATA CAAGTTGAGA CGATACACTT AATTGCATTA TCCAAAAAAG 

1030 1040 1050 1060 1070 10RO 

GAATCTTTTA CACAAGGACA AGAAGAAAGA CTTCTGCTTT ATCACTGCAT TTCATGACAA 

1090 ll00 iii0 ll20 ll30 ll40 

TCAATGCAAT ATCCTACCAG ACAAAAAGTT G~TATAATTT TGTACAAGTGAATCCAACTC 

i150 ll60 ll70 1180 i190 1200 

ACTAACAAAAAAATTAAAGAAAGAAAAAAA ATGAACATGA AGAGAATAAAAATGAAGATA 
) 

DR 
1210 1220 1230 1240 1250 1260 

AAGAGAATCA ATGGTGTCTT ATAAGTTGAT GAACCACTGT AACTTCATTA TTTTTTGAAT 
> 

1270 1280 1290 1300 1310 1320 

TTACGAGGAA ATGAATTATT GATGAAATTT GTGAAATGTA CATATATACC TTTGGATCGC 

1330 1340 1350 1360 1370 1380 

TAACAAATAT GATTGAAAGT AGTATTTTTT CACGGTATAATAGCTAATTC TTGATATATA 

1390 1400 1410 1420 1430 1440 

TATTGTTTAA ATTTATTATT TGCACTACAA ACATTGTATA AAGTATTTTA GGATAAATGT 

1450 1460 1470 1480 1490 1500 

GCAACGCACG TTTTCGAAAA CTAGTGTTGT TATAAAATCC AAAAACCAAT ATCTTCACTT 
(-- 

1510 1520 1530 1540 1550 1560 

AATGTGAATT AGAACTTGTA AAATAACTAC ATTACTCCAT ATCACCATAT CTATTATGAT 

1570 1580 D t 1590 1600 1610 1620 
C ---7 

CTGACTCAAT CTTGCTTATG CTCATACCAT AATTTTTACA AGGGGATTCA AAATATGAAA 

( A' ""> ~ ~t .... > 
1630 1640 1650 

AAAAAAAAAA TAGACCCATA AAGAAGCAAG GGGAATTC 

Fig. 5. Nucleotide sequence of  the fragment that contains the 
CR1 repeat. This fragment was isolated from the Cab-I locus (re- 
gion 6 of  Fig. l). A -  D = sets of  inverted repeats flanked by direct 

repeats found at ends of  CR1 repeat element. DR = 21 bp direct 

repeat found in middle of  sequence. 



search for short repeats was confined to these areas 
( 0 - 3 0 0  bp at the 5 ' -end and 1300-1658 bp at the 

3 '-end).  Based on characteristics of  known plant 
transposons, a minimum length was set at 9 bp and 
a requirement of at least 80°7o homology. At these 
criteria 66 potential inverted repeats were found in 

the areas examined. Inverted terminal repeats of  
plant transposable elements are also known to be 
flanked by shorter direct repeats of  target DNA. 
Considering these additional criteria only 4 of  the 
potential inverted repeats were found to be flanked 
by direct perfect repeats of  3 - 6 bp (Fig. 5). It is pos- 
sible then that one of  these pairs of  terminal repeats 
represents the remnants of a transposable element. 
However, no open reading frames longer than 150 bp 
were found within the CR1 sequence, suggesting that 
if this were a transposable element it has been si- 
lenced and that its sequence has accumulated many 
base changes. 

Discussion 

We report here the isolation and characterization in 
tomato  of a low copy repeat sequence, CRI.  One 
copy of this element is located between two of the 
major  chlorophyll a/b-binding coding sequences in 
the Cab-1 gene cluster on chromosome 2. Recon- 
struction experiments and Southern analysis suggest 
that there are as many as 30 copies of  this repeat in 

the genome of tomato. There are no additional 
members of  the CR1 repeat family associated with 
other CAB coding sequences of  the Cab-1 or Cab-3 
clusters based on hybridization of the repeat with 

lambda clones that contain these clusters. The other 
11 mapped members are also not tightly linked with 
the other CAB loci - Cab-2, Cab-4, or Cab-5. 
Although three of  the repeat members were on chro- 
mosome 7, along with Cab-4, they all showed recom- 
bination with the Cab-4 locus. 

The CR1 element is not unique to the genus 
Lycopersicon. This sequence hybridized with similar 
complexity to Solanum lycopersicoides and S. 
tuberosum (potato). These Solarium species are 
closely related to the Lycopersicon genus and so the 
presence of the repeat in these species is not surpris- 
ing. The absence of  this sequence from Capsicum 
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(pepper) is noteworthy since a complex locus or- 

thologous to the tomato Cab-1 locus is present in 
pepper and has been genetically mapped (Tanksley 
et al., in preparation). This locus forms part  of  a con- 
served linkage block of markers that exhibit the 
same linear order as tomato. This evidence suggests, 
but does not prove, that the CR1 repeat has trans- 

posed into the Cab-1 gene cluster some time after the 

divergence of tomato and pepper. 
The Solanum species hybridized with less intensi- 

ty to the CRI repeat than did tomato. However, this 
difference in intensity is hard to evaluate. The South- 

ern blots contained four times as much DNA for the 
Solanum species than for tomato but little is known 
about the genome size of  S. lycopersicoides and S. 
tuberosum. Nonetheless, it is significant that under 
more stringent wash conditions (0.2 × SSC, 68 °C) 
the probe was removed from the DNA of Solanum 
species but was still hybridized to DNA of the toma- 
to species (Fig. 2B). This indicates that the majority 
of  the CR1 family members in tomato are more 

closely related to one another than they are to any 
of the sequences in the Solarium species. If  these se- 

quences were present before the separation of these 
genera from a common ancestor, then divergence of 
the sequence within a lineage should be as great as 
between lineages. Therefore some form of concerted 
evolution is acting on this family of  repeats. It is pos- 
sible that these sequences have continued to be 

duplicated and deleted since these species separated. 

Such a process would tend to make the sequence 
within a plant lineage more similar. 

An interesting result from the hybridization of  
this repeat to other genera of  the Solanaceae family 
is the lack of hybridization to Solanum melongena 
(eggplant). This result was also observed for the oth- 
er two CAB-associated repeat sequences, 8A0.9 and 
3B4. These two repeats also hybridized to S. lycoper- 
sicoides and S. tuberosum but did not hybridize to 
S. melongena or to the other species tested (data not 
shown). The CR1, 9A0.9 and 3B4 repeats are not 

related since they do not cross hybridize to one an- 
other. Therefore, despite their presence in or around 
CAB loci, they are independent repeats. The hybridi- 
zation experiments using each of  these repeats all 
suggest tomato  is more closely related to potato than 
either are to eggplant. It would be interesting to test 
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other Solarium species with these and other non- 
coding DNA sequences to determine if they can pro- 
vide useful information on the relationships within 
this large genus. 

The duplication and dispersion of  repeated se- 
quences in plants has been known for some time [14] 
but the mechanisms for such events are not well un- 
derstood. A model of  unequal exchange is generally 
applied to the amplification of tandemly repeated 
sequences. This is not a likely mechanism for the 
CRI repeats since it is not tandemly repeated at the 
Cab-1 locus. The majority of  other EcoRI fragments 
observed on Southern blots do not exceed the inten- 
sity of  the fragment that was cloned and therefore 
other integration sites about the genome probably 
also contain only a single copy of  the repeat. A 
mechanism of  duplication without unequal ex- 
change could result entirely from a process of 
replicative transposition or transposition followed 
by chromosome assortment~ I f the sizes of  the trans- 
posed segments are small then the duplications 
might not interfere with normal chromosome pair- 
ing. As discussed in Shapira and Finnerty [31] this 
type of  process has likely produced duplications in 
yeast and fungi. 

The data presented in this paper suggest that the 
CR1 sequence has been transposed into the Cab-1 lo- 
cus relatively recently. While it is possible that CR1 
is an active transposable element, the nucleotide se- 
quence does not provide strong evidence to support 
this. Neither strand shows significant open reading 
frames and the size of the element (ca. 1.5 kb) is 
shorter than most autonomous transposons that 
have been characterized in plants [26]. There are, 
however, inverted repeats (>  80°70 homology) with 
short direct flanking repeats at the end of  the ele- 
ment that are characteristic of  transposable ele- 
ments. Whether any of  these correspond to the true 
endpoints of  the repeat can be determined only when 
additional independent CR1 repeats are sequenced 
and compared with the one reported in this paper. 

Another class of  movable elements is represented 
by the highly repeated and dispersed sequences of  
animals and have been termed retrotransposons 
[30]. These sequences are transcribed into RNA 
which is proposed to be involved with their transpo- 
sition. At present we do not know if the CR1 se- 

quence is transcribed. However, the CR1 sequence 
data do not fit the consensus sequence of poly A se- 
quences at the 3'-ends of such elements. The CR1 
sequence contains A-rich sequences; however, they 
are not confined to one end of  the fragment. 

The pattern of  sequence dispersion found for the 
CR1 family is similar to that of  duplicated coding se- 
quences previously found in plants. A number of 
isozyme-coding genes have been found to be dupli- 
cated on different chromosomes in diploid plant 
species [16, 17, 32]. In tomato, a genetic study of  a 
number of cDNA clones has revealed that approxi- 
mately 40°70 of all coding regions are duplicated and 
that many of  the duplicate copies are on different 
chromosomes [6]. These duplications generally in- 
volve relatively short sequences since closely linked, 
flanking markers are usually not duplicated. It is 
possible that the process that led to the duplication 
and dispersal of  the CR1 repeat family is also 
responsible for dispersed gene duplications in toma- 
to and other plant species. 
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