76 Kurze Mitteilungen — Brief Reports - Communications bréves ZAME

On the Motion of a Projectile in the Atmosphere

By Vi-CrENG Liu, Ann Arbor, Michigan, USA1)

Abstract

The equation of rectilinear motion of a projectile which moves in an atmos-
phere, of which the density decreases exponentially with the altitude, is solved.
It is found that the velocity of the projectile can be expressed explicitly in terms
of confluent hypergeometric functions. This theory is applied to treat two
specific problems: (1) the flight analysis of a sounding rocket during the free-
flight period and (2) the calculation of ambient temperature from the trajectory
of a spherical projectile.

1. Introduction

The theory of flight of a ballistic projectile in a resisting medium dates back
to NEwToN. In the meantime, various approximations for the flight parameters
which are involved in the equation of motion have been used[1]%). The most
important ones are the aerodynamic-drag coefficient of the projectile and the
ambient-air density. The former is usually considered as functions of Mach
number, the latter as functions of the altitude.

The theory of flight of a sounding rocket during the free-flight period deals
essentially with the same problem as that of a ballistic projectile. The only
difference is that the air-density factor is more critical because of the extreme
altitude attained by the former; hence, a more realistic approximation to the
ambient-air density is necessary. In view of the multiplicity of parameters in-
volved, the equation of motion of the projectile (or rocket) is generally {reated
either by a laborious method of step-wise integration or by the analog computer
technique.

A rtecent experiment [2], in which a falling sphere is used as an ambient-
temperature probe in the upper-atmosphere measurements, stimulates new
interest to the trajectory problem. Measured trajectory data of a spherical pro-
jectile are used to determine the ambient-air density, from which the ambient-air
temperature can be derived.

In this note, new approximations to the aerodynamic-drag coefficient and
ambient-air density, which are believed to be more accurate than previous repre-
sentations [1], are introduced. Particle drag, which is caused by the presence of
aerosols in the atmosphere, is allowed in the present analysis. This, of course,
warrants consideration only in some special cases.

It is found that the projectile velocity is expressible explicitly in terms of
confluent hypergeometric functions. The significance of this result, which is
believed to be new, is twofold: (1) In treating ‘direct’ problems, for instance,
like the trajectory analysis of a sounding rocket, the present theory can be used
to save the labor of step-wise integration if tabulation of the particular confluent
hypergeometric function is available. (2) In the case of an ‘indirect’ problem
such as the computation of the ambient temperature from a falling-sphere
trajectory, it can be applied with advantage because of the elimination of the
numerical differentiation process which is involved in the original theory [2].

1) High Altitude Engineering Laboratory, University of Michigan.
2y Numbers in brackets refir to References, page 81.
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2. Significant Forces

The word ‘projectile’ is used here referring to any axially symmetric body
in free flight. We restrict our discussion to the case with negligible spin and yaw.

The force system acting on a projectile includes: (1) the gravity m g; (2) the
buoyancy p g V, where V represents the volume displaced by the projectile, and
o the ambient-air density; (3) the aerodynamic drag D; (4) particle drag d, which
is caused by the presence of aerosols in the atmosphere; and (5) the inertial force
(mi + Am) dv/dt, where Am, MUNK’s apparent additional mass, is equal to one
half the mass of air displaced by a spherical projectile; and dv/ds, the projectile
acceleration. :

The buoyancy and the inertial force of the apparent additional mass are
significant only for projectiles of the balloon type. Though, under sea-level
conditions, the particle drag due to water droplets, for instance, may be insigni-
ficant when compared with the aerodynamic drag, it is conceivable, however,
that in the cumulus clouds at high altitudes, the drag due to water droplets may
become significant. While the water-droplet content depends primarily on the
ambient temperature, the ambijent-air density decreases with the altitude expo-
nentially.

It is not intended here for us to become involved in detailed computation of
the particle drag. Rather, we shall investigate its effect on the projectile motion
since the particle-drag term in the equation of motion follows a functional
dependence upon the altitude, which is, in general, different from that of the
aerodynamic drag. As a first approximation, the particle drag is prescribed as
d= Cy0 4 v?2, according to the Newtonian concept of drag. The particles are
assumed to be mass points at rest; hence, C,; should depend only on the position
and shape of the projectile and be independent of its size 4 und velocity v. The
particle concentration is represented by o.

3. Approximate Representation of the Aerodynamic-Drag Coefficient

It can be demonstrated with a dimensional analysis that the aerodynamic-
drag coefficient, defined as Cp = D/(p V'? 4/2), for geometrically similar projec-
tiles depends primarily upon the Mach number and Reynolds number. For
‘projectiles moving at high speeds, the dependence of Cp on the Reynolds number
is much less significant than that on the Mach number except in cases for which
the Reynolds numbers are low, such as those at the high altitudes. In those
cases, however, the aerodynamic-drag force is usually negligible as compared to
the gravity.

For a specific projectile, the variation of Cp with Mach number M, in general,
shows distinctly different characteristics in the three Mach number ranges:
(1) subsonic, (2) transonic, and (3) supersonic. Qualitatively speaking, Cp(M)
starts with roughly constant values (for different projectiles) then increases
gradually as transonic range is approached. During the transonic range it in-
creases until the supersonic range begins. Cp(M) in the supersonic range decreases
with a gradient which is very large at first and gradually diminishes to a small
value.

Reliable values of Cp still rely mostly on measurements from model tests.
Theoretical consideration may, however, serve as a guide to the choice of empiri-
cal functions for prescribing Cp.
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Consider separately the compressibility effect in the subsonic flow for slender
and round bodies. In the former case, to account for the compressibility effect on
the pressure coefficient, either the Prandtl-Glauert factor (1 — M2)~¥2 or a
modified version of it (for instance, the Karman-Tsien formula or GOETHERT'S
generalized Prandtl-Glaunert formula) can be used. These factors, when expanded
in a power series of M, can be expressed in the form

Co+ Cy M2 . (3.1)

after neglecting higher-order terms. In the latter case, as an index of the compressi-
bility on the drag coefficient of a round body, the impact-pressure coefficient
at the stagnation point can be shown to be

M2

o (3.2)

Cp=1+

It has also been shown by measurements that the compressibility effect on the
skin-friction coefficient and the ccefficient of drag due to interference between
body and fins can be considered as proportional to the powers of the Prandtl-
Glauert factor,

A large fraction of the drag force on a projectile in the supersonic flow are
attributed to the frontal shock wave and the base pressure. For a typical body
like a cylinder with a nose cone, the drag coefficient can be shown to be approxi-

mately of the form
Co+ C; M2, (3.3)

The validity of the above expression is expected to extend to the hypersonic
range [3]. Relatively less is known concerning the theory of drag in a transonic
flow, which is a mixture of subsonic and supersonic flows. 1t is therefore sug-

gested to use
Cp=Cy+ Cy M? 4 Cy M~ (3.4)

as a general expression for approximating the drag coefficient of a projectile in

the following analysis. C,, C,, and C; in (3.4) are empirical constants to be
prescribed for each Mach-number range.

4. Equation of Rectilinear Motion of a Projectile

Consider a nonspinning projectile which ascends at zero angle of yaw in a
stationary atmosphere. By collecting terms of forces which have been discussed
in Section 2, we obtain the equation governing the rectilinear motion of a
projectile along the vertical axis y.

é‘—(co+ C, M2+ Cy M~2) A g v? l
L 2 | i (+.1)
+2-Cdon —ogV+mg+ (m+ Am)v}ﬁzo'

For an isothermal atmosphere with temperature T in altitude interval (y — ¥,),
the ambient-air density can be expressed as o = g, exp [— (v — ¥,)/H] where H,
the scale height, is defined as AT /m, g (¢ = BoLTZMANN’S constant; m; = mean
molecular mass of air).
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To simplify equation (4.1), we introduce

Z =M= H)y 192 5 =exp— y_yo», and = 0, %, 4.2
where y is the ratio of specific heats of air, and obtain
az >
@ e Cazrt (c0a+é)z+(c3a—a+;), (4.3)

where
a=A g, Hm+ 4dm)y=r, f=CzA0H (m+ dm)~1, l

(4.4)
d=2¢9, Vy l(m+4dm)=t, e=2my?! (m+Am)‘1.f

Equation (4.3) is nonlinear and of the Riccati type. It can be transformed
through use of the substitution

u = exp [~/oc C, 7 dx] (4.5)
into a linear equation
2,
d*u (mCOﬁ—ﬁ) au
x

&
e vd;—,LocCZ(ocC:,—ﬁ%r;)u:O. (4.6)

Equation (4.6), which has a regular sihgularity at ¥ = 0 and an irregular
singularity at x = oo, can be converted into the canonical form

dg -
with
E—20x, Q%= “f" FwCy(6—aCy, zp:uexp[[)——%acﬂ]ﬂm
) (4.8)
b=—f, e~ (59Ch-aCe—paja.

One of the fundamental solutions of (4.7) is the confluent hypergeometric
function [4]

pla, b, &) = Fy(a, b, & =2

(4.9)
where *
@p=a(@+ 1) (a+n-1) (nzl),
i (@)g=1.
The other one is
gt F(l4+a—b 2—b;8 (4.10)

provided b is not an integer. The general solution of (4.7) with nonintegral » may
be written as

® = B,Fa,b; & + CE-Y F(L+a—b 2~ b;¢), (4.11)

where B and C are arbitrary constants. Confluent hypergeometric functions have
been fairly extensively tabulated ([5], (6], [7]).
In view of (4.2), (4.5), (4.8), and (4.11), we obtain

Uzz_Z_ViH_%[i*i_Co,_i @] (4.12)
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Because of the term (d®/d&)/®, one of the arbitrary constants of @ as given in
equation (4.11) will be eliminated in equation (4.12) for v2. Since equation (4.3)
is of the first order, there is only one constant of integration. This is consistent
with the physical aspect of the problem. The constant of integration is to be
determined by the use of the boundary condition of the projectile trajectory.

Consider the restriction on b in (4.11). Since b = — f, where f is defined as
Cyq A o H (m-+ Am)~1, which, in general, is less than unity, the limitation on the
values of & is not significant as far as the present analysis is concerned. The
only notable exception is the case b = 0, which corresponds to the problem when
the particle drag is null.

Equation (4.7) with b = 0 has been studied by BaTeman [8]. The solution of
(4. 7) for this particular case is known as BATEMAN's k-function. The general
solution of equation (4.7), when b = 0, is bounded in the neighborhood of £ = 08).

It is to be noted that when C, = 0, equation (4. 3) becomes a linear equation
of the first order, which can be integrated immediately in terms of elementary
functions [9].

It is also to be noted that the equation of motion of a projectile with the
assumption Cp~ M1 (a satisfactory approximation for the wave drag of airfoil
sections in hypersonic flows) and = 0 is again a linear equation of the first
order if v and ¢ are used as a dependent and an independent variable, respec-
tively {10].

It is interesting to note that the function ¢ in equation (4. 7) can be expressed
in terms of Bessel functions provided that the condition 2 C, e = C; § is fulfilled.
Other special cases of the confluent hypergeometric function will be obtained
for the solution ¢ when values of the parameters b and ¢ in equation (4.7) fulfill
appropriate restrictions in each individual case.

" 5. Engineering Applications
The result of the present analysis may be applied to the following problems:
5.1. Flight Analysis of a Sounding Rocket

A rocket which carries sounding instruments to high altitudes for measuring
the upper atmosphere is called a sounding rocket. It is usually launched verti-
cally upward to gain the utmost peak altitude. In view of the simplicity of the
designed trajectory, it is generally equipped with the least guidance. As a first
approximation, it is plausible to assume that a sounding rocket with normal
performance moves rectilinearly at zero angle of yaw. Hence, the present analy-
sis can be applied in the free-flight period.

For a solid-propellant rocket, which usually has large jet-propulsive thrust
of a short duration, we can estimate the burnout velocity and altitude by neg-
lecting the asrodynamic drag in comparison to the forward thrust. The classical
method is to integrate the equation of motion of a rocket with mass m as a

function of time ¢:
cm (
i

@

dt+g):o, (5.1)

where C is the constant exhaust velocity. This leads to

v, = — cmi;j: — gl — 1), (5.2)

3) This is pointed out to the author by Professor RoBerT C. I. BARTELS.
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%
— "y — i . 2
5, = —c/ (InWO) dt— 5 ¢ (4~ ) (5.3)

where subscripts 0 and b denote initial and burnout condition, respectively. The
above calculations can be improved through an iterative process in regard to the
aerodynamic-drag correction.

5.2. Ambient Temperature Computation from Trajectory Daia of a Falling Spheve

The idea of using a free-falling sphere, of which the trajectory can be accu-
rately measured, to probe the upper atmosphere for the purpose of measuring
the ambient temperature was originally conceived by Jones[2]. This was
carried out by incorporating a miniature Doppler receiver-transmitter in an
inflated sphere, which was released from a sounding rocket near its peak altitude.
The sphere trajectory is determined by a DOVAP system [11], which consists of
a transmitter and an array of receivers on the ground.

In an alternative scheme, as proposed by the author, the ground stations of
transmitters and receivers are replaced by a mobile station which has a trans-
mitter and a receiver just like those used in the DOVAP system except in
miniature sizes. The mobile station is incorporated in a body, with negligible
drag-to-weight ratio, which is to be released simultaneously with the sphere from
the rocket. With this scheme, the velocity of the sphere, relative to an apparently
null-drag trajectory or pseudo-vacuum trajectory, is obtained from Doppler
cycles which are to be telemetered from the mobile station and recorded along a
time scale. It is assumed that both the mobile station and the sphere fall verti-
cally with no relative tumble.

One serious drawback of the falling sphere method is the need of numerical
differentiation of the velocity data in the process of computing ambient-air
density according to the original theory [2]. As it is known, numerical differen-
tiation is a notoriously inaccurate process because it exaggerates the irregulari-
ties of the numerical function whose derivatives are to be determined. This
process can be avoided if the present theory of projectile trajectory is applied in
step-wise calculation of the scale height H, which is proportional to the ambient-
air temperature 7.
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Zusammenfassung

Die Bewegungsgleichung eines vertikal ansteigenden Geschosses wird geldst
fiir den Fall, dass die Dichte der Atmosphére exponentiell mit der Héhe abnimmt.
Die Geschwindigkeit des Projektils kann dabei in konfluenten hypergeometri-
schen Funktionen ausgedriickt werden, Die Theorie wird hierauf auf zwei spezi-
fische Probleme angewendet: 1. Fluganalyse einer Vertikalrakete wihrend der
Zeit des schubfreien Fluges und 2. Berechnung der Umgebungstemperatur der
Bahn eines sphirischen Projektils.

(Received: July 30, 1956.)
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Numerische Behandlung von Differentialgleichungen. Von L. CoLrartz.
Zweite, neubearbeitete Auflage (Springer-Verlag, Berlin 1955 [Grundlehren der
mathematischen Wissenschaften, Band 60]). 526 S., 118 Abb.; DM 56.—/59.60.

Die zweite Auflage des Handbuches iiber numerische Losungsmethoden fiir
Differentialgleichungen unterscheidet sich von der ersten Auflage vor allem
durch Aufnahme der in der Zwischenzeit gewonnenen neuen Erkenntnisse, ins-
besondere der Instabilititsphdnomene bei numerischer Integration. Ausserdem
wurde die Einteilung des Werkes etwas veridndert, indem alle mathematischen
Grundlagen im 1. Kapitel zusammengefasst sind. Es folgen wie frither: II. An-
fangswertprobleme; III. Randwertprobleme bei gewthnlichen Differentialglei-
chungen; I'V. Anfangs- und Anfangsrandwertaufgaben bei partiellen Differential-
gleichungen; V. Elliptische partielle Differentialgleichungen; VI. Integral- und
Funktionalgleichungen. H. Rutishauser

Mécanique vibratoire. Par RoBERT Mazet (Librairie polytechnique Ch.
Béranger, Paris 1955). 280 pp., 159 fig.; relié fr.fr. 4975,—.

De nombreux ouvrages ont été publiés sur la Mécanique vibratoire. Celui de
M. MazeT, professeur & la Faculté des Sciences de Poitiers, reproduit les legons
données par cet auteur a I’Ecole nationale supérieure de 1’Aéronaitique, de
1950 2 1954.

11 s’agit avant tout de 'étude des systémes mécaniques dits «linéaires», dont
Pévolution reléve, avec une précision suffisante, d’équations différentielles



