6137-10-M

THE UNIVERSITY OF
ENGINEE Rt [ =iy

THE FORMULATION OF SOME ELECTRONIC WARFARE

PROBLEMS AS PROBLEMS IN MODERN CONTROL THEORY

Technical Memorandum No. 95

by J. A. Colligan

Approved by: 7,//5;“\4/&'0{ /5//%0 A

~T. W. Butler; Jr.

COOLEY ELECTRONICS LABORATORY

University of Michigan
Ann Arbor, Michigan

Contract No. DA 36-039 AMC-03733(E)
U. S. Army Electronics Command
Fort Monmouth, New Jersey

August 1965



=T\ fyy‘\

UMRB 93—



TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

ABSTRACT

1.

2.

INTRODUCTION

THE MATHEMATICAL FORMULATION OF THE OPTIMAL
CONTROL PROBLEM

JAMMING PROBLEMS

3.1 The Problem of Jamming a Radar System Having a Non-scanning
Transmitting Antenna

3.2 A Parametric Amplifier Jamming Problem

3.3 A General Jamming Problem for Linear Systems

SYSTEM ORGANIZATION

COMMUNICATIONS SYSTEMS WITH FEEDBACK

5.1 Systems With Channels Having Constant Delay

5.2 System With Channels Having Time- Varying Delay

5.3 Communication Through a Channel With Unknown Statistics

DIRECTION-FINDING SYSTEMS

CONCLUSIONS

REFERENCES

DISTRIBUTION LIST

iii

50
56
57
58



Figure

10

11
12

13

14

LIST OF ILLUSTRATIONS

Title
Block diagram of the general system.
Block diagram of discrete-time control system.
Radar operation notation.

Coordinate systems used to describe the operation of the
radar system.

The parametric amplifier.

Interacting systems.

Composite system.

Block diagram of feedback communications system.
Time-varying delay in communication channels.

Block diagram of feedback communications system with
noise of unknown distribution in forward channel.

Block diagram of a direction-finding system.
Linear antenna array with incident plane wave.

Direction-finding system using an adder as a signal
processor.

Effective antenna gain pattern.

iv

10

12

23

29

31

317

44

47

51

51

54

95



ABSTRACT

This memorandum considers several electronic warfare problems which can be
treated using the techniques of modern control theory. It is shown that these electronic
warfare problems, which deal with jamming techniques, systems organization, communi-
cations systems and direction-finding systems, can be formulated as discrete-time
optimal control problems. In some cases the formulations allow solutions to be obtained

immediately. The formulation itself yields new insight in other instances where solutions

have not yet been attempted.



1. INTRODUCTION

Many electronic warfare problems can be treated using the techniques of modern
control theory. This memorandum illustrates several such problems which can be formulated
as discrete-time optimal control problems. 1 The use of the discrete-time formulation is not
a serious restriction on the class of physical problems which can be considered, as will be
shown in Section 2; the reasons for using the discrete-time formulation are also presented
there.

The systems considered are assumed to have the form illustrated by the block
diagram in Fig. 1. Because of the presence of noise in the plant, the state2 of the plant is
random at each of the sampling instants. The measurement device is used to feed back to the
controller some known function (called an observation) of the state of the plant. This obser-
vation is also subject to random noise.

The controller operates in the following way: It is given in advance a sequence of
desired plant states for a finite time interval. The plant input is then determined by the con-
troller at each instant of time in such a way that the state of the plant is in some sense
"close' to the desired state. The mathematical definition of ''close' will be given in Section 2
in terms of a quadratic form in the plant error. The effect of the noise on the plant state
measurement is to reduce the amount of information concerning the plant state which is fed
back to the controller. However, the information that is fed back is used to minimize the
cost of controlling the plant. Using this information the controller chooses that control which

makes the plant state at the next instant of time ''close' to the desired state. Of course,

1A discrete-time optimal control problem, as intended here, is an optimal control problem
in which the plant is described at discrete instants of time by a difference equation in the
plant state, the plant input, and the plant noise.

2See Tou, Ref. 2, for a discussion of state variables and the formulation of problems in
terms of state variables.



since random processes are involved, "'close' will be defined with the aid of some averaging
operation.

The feedback of the observations to the controller gives rise to closed loop
operation of the system. The value of this closed loop operation lies in the possibility of
better control of the plant in the sense that the actual outputs can usually be made to appfoach
more closely the desired outputs than if the system were to operate open loop.

. The mathematical formulation of the optimal control problem is given in the next
section. Section 3 considers several jamming problems of interest in electronic warfare,
such as the jamming of a tracking radar system which has a conical-scan receiving antenna
and a transmitting antenna which does not scan. Section 4 considers a problem in systems
organization. This problem deals with the efficient operation of a large computing system
which services programs having different priority levels. The three problems considered
in Section 5 deal with communications systems in which some of the received information is
fed back to the transmitter. In the third of these, an interesting approach to noisy communi-
cations system operation is presented. The problem treated in Section 6 is concerned with

the design of direction-finding systems.

Plant Observation
noise noise
' P Ob ti
Controller Plant input Plant lant output Measurement servation
Device

Fig. 1 Block diagram of the general system.



2. THE MATHEMATICAL FORMULATION OF THE

OPTIMAL CONTROL PROBLEM

It will be helpful to refer to the block diagram given in Fig. 2 in connection with
the following description of the optimal control problem: the dynamic operation of the plant

is assumed to be governed by the difference equation

x(k + 1) = f(k, x(k), uk), wk)) , k=0,...,N-1 (1)
where

k is an integer index for N equally spaced instants of time (dependence on
time is denoted using k rather than tk),
the plant is to be controlled in the time interval [O, N- 1],
x is an (n x 1) vector representing the state of the plant, 3
u is an (r x 1) input or control vector,
w is an (n x 1) random disturbance or noise vector, 4
f is an (n x 1) vector function called the state transition function.
The initial state x(0) is in general considered to be a random vector with a known probability

distribution. The probability distribution of the plant noise w(k) is also known for each k

in the interval [0, N-1]. We assume here that the plant noise vectors at different sampling

instants are independent. 5 Thus the joint distribution of the plant noise sequence

3 . . . .
All vectors and matrices considered in this memorandum are assumed to have components
which are real numbers unless otherwise stated.

4 . . .
A random vector is here defined as one whose components are random variables.

5
A method for extending this problem to include dependent noise will be mentioned in
Section 5.



w(0),...,w(N-1) equals the product of the individual distributions. 6

The plant is to be controlled by selecting inputs during the interval [0, N-1] in
such a way that the state x(k) is (in a sense to be given explicitly below) '"close" to some
known desired state d(k), for k=1,...,N. The sequence of desired states d(1),...,d(N) is
assumed to be known at time k = 0. From Eq. 1 it is clear that for u(k) to be chosen so- that
x(k + 1) is "close" to d(k + 1), it is desirable that x(k) be known. In the case of open-loop
control, x(k) is random due to the random noise w(k - 1) and/or the random initial state
x(0). 1t is possible to estimate x(k) using the given distribution of the plant noise and the
given distribution of the initial state.

Closed-loop control is often preferable for physical systems. Ideally, the plant
state itself should be fed back to the controller. Unfortunately, it often happens that the plant
state cannot be measured directly. In such cases some function of the plant state (called an
observation), which may also include measurement noise, must be used instead. Nonetheless,
closed-loop operation using these observations is usually superior to open-loop control.

We assume for the optimal control problem being considered here that obser-
vations are made at each discrete-time instant during the control interval, [0, N-1]. The

observations are given by

yk) = gk, x(k), v(k)) , k=0,...,N-1 (2)

6It should be remarked at this point that the discrete-time formulation of this optimal control
problem does not restrict the class of physical systems which can be treated. The analogous

continuous-time formulation considers plants described by differential equations of the form

g—f = Flt, x(t), u(t), w(t)] , (1a)

where F satisfies certain conditions which guarantee the existence and uniqueness of solu-
tions (Refs. 1,2). The discrete-time representation of Eq. la can be shown to have the
form of Eq. 1 (Ref. 1). The discrete-time formulation in Eq. 1 can be shown to approach
Eq. la for many physical systems by making the discrete time intervals (i. e., the sampling
intervals) sufficiently small.
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Plant y Measurement
Device
Controller

Fig. 2 Block diagram of discrete-time control system,
where
y is a (p x 1) observation vector,
v is a (p x 1) measurement random noise vector, and
g is a (p x 1) vector function describing the observation.
The probability distribution of v(k) , k=0,...,N-1, is given. We assume that the observations
can be stored by the controller for use at a later time. 7 We assume that the measurement
noise vectors at different sampling instants are independent; thus the joint distribution of
v(0),...,v(N-1) is simply the product of the individual distributions.
In order to complete the formulation of the optimal control problem it is necessary
to define what is meant by the requirement that x(1),...,x(N) be "close" to d(1),...,d(N).
Note first that the observations y(0),...,y(k) are available to the controller at time k. Thus
the input at the kth instant can be chosen conditional to the observations y(0), ..., y(k) for the
interval [0, N-1]. The optimal input sequence is then defined to be that sequence of controls
u(k) (for k = 0,...,N - 1) chosen conditional to the observations y(0),...,y(k) which mini-

mizes the expected value of the cost function

éh(k PN ML 3)

N-1
I x0] = kZ:O[le(k + 1) -dx + DI Q

7It should be noted that taking observations at discrete instants of time rather than continuously
is not a serious limitation. I a digital computer is to be used to process the observations
only a finite number of observations can be used anyway. This will be the case in several of
the problems to be treated in this memorandum. The case of discrete observations can in
many cases be made to approach the continuous case by making the discrete time intervals
sufficiently small.



The quantity ||z “é is defined as the quadratic form [z ”é = 2'Qz, where z is any (m x 1)
vector and Q is any (m x m) matrix. 8 The matrices Q1 and Q2 are assumed to be positive
semi-definite at each sampling instant. J N[ x(0)] is then non-negative and has zero as a
lower bound for its expected value.

The matrix Q1 is a weighting function for the plant error. For example, thé
frequently used quadratic error function is obtained by letting Ql(k) = I, k=1,...,N, where
I is the identity matrix. The more general plant-error term is used in the present cost
function to allow for cases in which more emphasis is placed on some components of the state
vector than on others. For example, rocket position is of primary importance in an intercept
problem; here Q1 should weight the position coordinates more heavily than the other com-
ponents of the state vector.

The term | u(k) ”éz(k) is included in the cost function for two reasons:

1) For many physical systems the actual energy input to the
plant during the kth discrete-time interval can be expressed
as a quadratic form in u(k). For example, if u(k) is a scalar
representing the voltage applied to a resistive network, then
[u(k)] 2 is proportional to the energy input to the network during
the kth discrete-time interval.

2) It is true that in some cases the energy input to the plant cannot
be described by a quadratic form. However, it is also true that
the inputs to any physical system must be bounded in magnitude.
If the weighting matrices Qz(k) are positive definite for k=0,...,N-1
they will have the effect of bounding the inputs. To see this, one
need only note that the optimal input sequence is to be chosen to
minimize the expected value of a sum of nonnegative terms.
Minimizing this cost function (which includes the inputs) will tend

to make the inputs small and therefore bounded.

8The notation z' represents the transpose of z.



The expectation of JN[X(O)] is to be taken with respect to the given distributions of
the plant noise, the observation noise, and the initial state. The cost function is written
JN[ x(0)] to emphasize its dependence on the initial state of the plant and on the length of the
control interval [0, N-1].

The above formulation describes a fairly broad class of optimal control problems.
The general solution to this class of non-linear problems has not been obtained. However,
special cases can be solved. Moreover, when the plant is linear and the disturbances are
gaussian, a very convenient solution is known. It is therefore worthwhile to give the
mathematical formulation of the optimal control problem for this special case. The notation
will be made to correspond as closely as possible to that used above for the general problem.

The operation of the plant is described by the linear difference equation

x(k + 1) = &(k) x(k) + AK) uk) + w(k) , (4)

where
x is an (n x 1) plant state vector,
u is an (r x 1) input or control vector,
w is an (n x 1) gaussian random vector,
® is an (n x n) plant state transition matrix, and
A is an (n x r) plant input distribution matrix of maximum rank.

It is assumed that the observations y(k) take the form
y(k) = M) x(k) + v(k) , (5)

where
y is a (p x 1) observation vector,
M is a (p x n) plant state observation matrix, and
v is a (p x 1) gaussian random measurement noise vector.
The gaussian random vectors w(k) and v(k) are assumed to have known mean values w(k) and

v(k) and known covariance matrices W(k) and V(k), respectively. We assume that the plant



noise (and the measurement noise) at different sampling instants are independent. The initial
state x(0) is assumed to be a gaussian random vector with known mean x(0) and covariance
matrix X. The cost function is taken to be the quadratic type given in Eq. 3.

As stated, this particular case of the optimal control problem has been solved in

detail. If d(k) =0 for k = 1,...,N, Tou (Ref. 3) and Gunckel and Franklin (Ref. 4) have .
shown that the optimal input sequence u(k), k =0,...,N - 1 is given by
uk) = -Ck) x(k | k) , (6)

where x(k | k) is the expected value of x(k) conditional to the observations y(0),..., y(k). The
feedback matrix C(k) is uniquely determined by the matrices, &, A, Ql’ Q2, M, W, V, and
X;9 it does not depend on the observations of the plant state. Thus the C(k) can be computed
in advance. Then, using Kalman's filtering technique to compute x(k | k), the optimal control

can be computed (Refs. 3, 5).

Admittedly, this linear problem is a rather special case. However, it does
include a fairly broad class of electronic warfare problems, as we shall show below. The
first electronic warfare problem to be considered in Section 3 is a nonlinear problem. The

other problems can be treated in terms of the linear problem introduced in the previous

paragraph.

9For uniqueness it is necessary that either Q1 or Q2 be positive definite at each sampling
instant.



3. JAMMING PROBLEMS

3.1 The Problem of Jamming a Radar System Having a Non-scanning Transmitting Antenna

An important problem in modern electronic warfare is the determination of
techniques for jamming various types of radar detection systems. There are many different
types of radar systems presently being used for military purposes. The particular radar
system to be considered here is a tracking radar with a conical-scan receiving antenna and a
transmitting antenna which does not scan.

Conventional jamming techniques rely on the jammer's knowing the scanning
frequency and phase of the receiving antenna. If the transmitting and receiving antennas of a
radar system are scanning at the same frequency, then the illumination intensity of the fixed
target will be periodic at this frequency. In this case the necessary frequency and phase
information is available to the jammer. In the radar system considered here the transmitting
antenna does not scan. Thus, the receiving antenna scanning frequency and phase are not
readily available to the jammer. 10

It is interesting to consider this radar system in detail to determine possible
jamming procedures. This problem is most conveniently formulated as a continuous-time
problem; the transition to the discrete-time formulation can be made if desired. We do not
claim to have a complete solution to the problem at this time. However, the mere formu-
lation as an optimal control problem yields important insight into possible methods of
solution, as we shall show below.

We now describe the operation of the radar system. The antennas for the
receiver and the transmitter are assumed to have the voltage gain pattern indicated in

Fig. 3(a); the gain pattern is assumed to be symmetric about the antenna axis. The receiver

lolt should be noted that this is also true if the transmitting antenna scans but at a different

frequency than the receiving antenna. Our problem is really a special case of this in which
the transmitter does not scan at all. We assume that the jammer is located at the target.



antenna scans conically about the transmitter axis as indicated in Fig. 3(b). The squint angle,
¥, is assumed to be constant. The target axis is defined by the line segment joining the
target to the radar antennas as indicated in Fig. 3(c). The receiving and transmitting

antennas are assumed to be at the same location.

Locus of tip of
receiving antenna

axis
Antenna axis
Antenna gain pattern /
Transmitting /y
antenna axis /
Receiving antenna
axis
(a) Antenna gain pattern (b) Receiving antenna scan

Receiving antenna
gain pattern

. Transmitting
Transmitting x Target antenna axis X Target
antenna axis — -

Receiving

antenna axis

Target axis Target axis

(c) The target axis (d) Receiving antenna scan
causes modulation appearing
on the received signal

Fig. 3. Radar operation notation
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The transmitting antenna is positioned by an error-signal-driven servo system.
The error signal for the servo is derived from the modulation on the radar signal reflected
from the target. This modulation is the result of the conical scan of the receiving antenna,
as can be seen from Fig. 3(d). It is also clear from this figure, and from the symmetry of
the antenna gain pattern, that the modulation will go to zero as the transmitter axis
approaches the target axis. Thus, when these two axes coincide, there will be no error
signal and the transmitter antenna will be locked onto the target.
Before proceeding to the mathematical description of the operation of the radar
system, it is desirable to state several assumptions which will be made:
1) The transmitter operates at a constant power level,
2) The radar cross-section of any given target is constant as a
function of viewing angle and time,
3) The relative velocity between the radar transmitting antenna and
the target is small enough that the distance between the two can
be taken to be constant during the time interval considered. We
denote this fixed distance by r.
These three assumptions allow us to conclude that the level of the signal refelcted from the
target is constant when the transmitting antenna is not moving. 12 The actual transmitter
power level, radar cross-section of the target, and radar-to-target distance will be para-
meters entering into the problem, as discussed below. These assumptions are quite plausible
for those cases in which the radar encounters a given target for a relatively short period of
time. We now proceed to the mathematical formulation of this problem. The description
of the operation of the unjammed radar system will be somewhat lengthy. This description is
necessary in order to make clear exactly how the radar system operates in order that the
effects of the jamming signal are immediately apparent. The reader should keep in mind that
our primary interest here is in developing techniques for jamming such a radar system.

Referring to Fig. 4(a) we let the (u, v, w) coordinates denote the usual

12That is, when the time constant of the transmitting antenna positioning servo is much

larger than the receiving antenna scanning period, the level of the reflected signal can be
considered constant during several scanning periods of the receiving antenna.

11



Transmitter
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’l/ -
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v
w
Target
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\ Transmitter

, Antenna Axis

(b)

Fig. 4. Coordinate systems used to describe the
operation of the radar system.
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Transmitter
axis

Target axis

Receiver axis
at timet =0

Fig. 4(c) Phase reference for receiving antenna scan.

a3

y /4.__. Receiver antenna axis
I
I
|

at timet =0
Transmitter axis ———-\7
with 8 =0 /

EO

Fig. 4(d). Orientation of uv plane.
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3-dimensional Cartesian coordinate system with its origin located at the transmitting
13 . .

antenna. The directions of the transmitter antenna axis and the target axis can be

described by unit vectors. We let the azimuth angle 6§ A represent the angle which the

o
projection of the transmitter antenna axis into the uv-plane makes with v-axis. The positive

direction for azimuth angle is that indicated in Fig. 4(a). We let the elevation angle 6 E
o

denote the angle between the w-axis and the transmitter antenna axis. The azimuth and

elevation angles 6 A and 6 E for the target are similarly defined as indicated Fig. 4(a).

We let So and S denote the unit vectors in the direction of the transmitter axis and

the target axis, respectively. Then, using the notation of Fig. 4(a), we have

-sineE sin QA -sinGE sin 9A
o o
[So]uvw = sin0Eo cos GAO [S]uvw =|sinfg cosd, | ,
cos 6 cos 0
L % ] | E ] (1)

where the uvw subscripts are used to emphasize that these vectors represent the transmitter
axis and the target axis directions in the uvw-coordinate system.

Since the target is fixed, the angles BA and GE will be constant. The transmitter

antenna positioning servo is designed to vary the elevation angle 6 E and the azimuth angle
o

0 in such a way that the transmitter axis aligns with the target axis. A detailed description

A
o)

of the operation of the transmitter antenna positioning servo will be given below. However,
before giving this description it is desirable to introduce a second coordinate system whose
orientation will change as the transmitter axis changes. This second coordinate system will

provide more insight into the effects of jamming on the operation of the radar system.

1
3The (u, v, w) coordinate system is assumed to remain fixed throughout this discussion.

The orientation of the (u, v, w) coordinate system is assumed to be such that the uv-plane
coincides with the plane of the antenna platform. Let the phase reference axis for the
receiver scan be the direction of the projection of the receiving antenna onto the uv-plane

at time zero if the transmitting antenna is aligned with the positive w-axis. The uv-plane
is oriented by taking the positive v-axis along the phase reference axis of the receiver scan.
(See Fig. 4(d) ).

14



Let us consider the (x, y, z) coordinate system with its origin coinciding with the
origin of the uvw coordinate system as indicated in Fig. 4(b). The z-axis coincides with the
transmitter axis and the xy-plane is normal to the transmitter axis with the x-axis lying in the
uv-plane. 14 The projection of the target axis onto the xy-plane will make an azimuth angle
7 with the positive x-axis. (The direction of positive azimuth is that indicated in Fig. 4(b).)
The elevation angle in this (x, y, z) coordinate system is given by . Note that although the
target is assumed to be stationary in the fixed (u, v, w) coordinate system its position in the
(x, y, z) coordinate system will change as the transmitter axis moves. In particular, the
target axis will coincide with the transmitter axis when y/ equals zero. In terms of the

elevation and azimuth angles y and 7 the direction of the target is given by the unit vector

siny cos7n
[s] = [siny sinn
cos ¥ (8)

where the xyz subscript again is used to emphasize that the xyz coordinates are used as a
basis.

It is now desirable to obtain a relation between variations in 6 A and 6 E and the
o o
variations in n and . The angles 6 A and 6 E represent the azimuth and elevation angles of
o o)
the transmitter axis in the fixed (u, v, w) coordinate system. These angles are known by and

controlled by the transmitting positioning servo. The angles n and ¢ are not known by the

transmitter servo. However, we show that the angles n and ¢ vary with changes in 6 A and
o
0 E in such a way that ¢ goes to zero. Moreover, we can show that the motion of the unit
o
vector in the transmitter axis direction takes place along a great circle of the unit sphere

centered at the origin. The relations between changes in 6 A and 0 E and changes in y and 7
o o
can be derived in the following way:

14The x and y axis are assumed to be normal to each other so that the (x,y,z) coordinate sys-

tem is uniquely determined by the orientation of the transmitter axis. The (x,y,z) coordi-
nate system is assumed to be a right-handed coordinate system.

15



Let us refer again to Fig. 4(a). If we rotate the uv-plane through an angle 6 A
o
about the w-axis and then rotate the wv'-plane though an angle 6 E about the u'-axis (where
o
radians) then the uvw
Ay
coordinates of any point will be transformed into the xyz coordinates of the same point. We

the prime indicates the axis after it has been rotated through 6

let Re denote the rotation of the uv-plane through 6 A radians and let R 0 denote the
A

o} E
o) o)

rotation of the wv'-plane through 6 E radians. Then we have the following equation involving
o
the direction of the target:

o ) (9)

The two rotations can be represented in matrix form in the following way:

cos GA sin 9A 0 1 0 0
o o
RGA = -sin GA cos GA 0 Re = 0 cosf)E -sin@E
o o E o) o)
o (o)
i 0 0 1 0 sinGE cos 9E
- L o o_]

(10)

I we substitute Eqs. (7), (8), and (10) into Eq. (9) and carry out the indicated

multiplications,we get

siny cosn = -cos9A sinGEsineA + sin()A sinGEcoseA ,
o o
(11a)
siny sinn = sinGA cost‘)E sinOEsineA
o o
+coseA coseE sinGEcos()A- sin9E cosGE,
o} o] o} (11b)
cos Y = sin()A sinGE sin@Esin(-)A
o o
+cos6A siné)E sineEcoseA+cos6E cos@E.
o o o (11c)

16



We now differentiate Eq. 11c with respect to time to get

do

A
—sinzp%% = [cos QA sinGE sineEsinBA - sin6A sinf)E sinBEcos GA]—dt——O—
o o o o
+ [sin@A cos §  sinf psing,
o o}
dé Eo
+ cos BA cos 9E smBEcos eA - sm8E cos GE] at
o} o o
If we substitute Eqs. 1la and 11b and simplify, we have
da de
d cos 7 sin 8 AO sin 7 —EO— (12)
dt E0 dt dt ’
Similarly, we can obtain the equation
deA dg E
dn - . . o _ o
3 [cotzpsmnsmGE + coseE] T cot Y cos 7 = (13)

0 (o]

by differentiating Eq. 11b with respect to time and substituting Eqs. 11a, 1lc, and 12.

do A do E
Note that Eqs. 12 and 13 give relations for dy and dn in terms of 9 and 0
: g I* o a dt
The transmitting antenna positioning servo controls 6 A and 6 E in the following way. The

o} o
radar signal reflected from the target will be received by the receiving antenna as it scans.

We denote the received waveform after the RF has been removed as the video signal. The
video signal will be periodic with frequency Wgs where wg is the scanning frequency of the
receiving antenna. The phase of the receiving antenna scan is given by a where a is taken
to be the angle determined by the projection of the receiving antenna onto the xy-plane at time

zero. (See Fig. 4(c) ). The video signal is given by15

15Recall that at this point of the discussion we are assuming that there is no jamming signal

present.

17



e = KjW,r) + Kyly,r) coslwgt + ag - m) (19

where K1 (¢, r) is the average value of e and Kz(w,r) is the coefficient of the modulation due
to the receiving antenna scan. K1 and K2 depend on r (distance between radar antennas -and
target) because the transmitter power level is constant. Note that K1 and K2 also depend on
Y. K2 approaches zero as Y/ goes to zero since the modulation on the video signal goes to
zero with y; K1 will increase as Y/ decreases since the average value of e, increases as Y
decreases. The functions K1 and K2 also depend on such parameters as 1) the squint angle
¥, 2) the transmitter power level, 3) the radar cross-section of the target, and 4) the
voltage gain pattern of the antennas.

If we now pass eo(t) through a quadrature-axis phase detector we get two output

signals of the form

%Kz(w,r) cosn = <e0(t) , COS (wst + as)> R

%Kz(xp,r) sinn = <eo(t), sin(wst + as)> ,

where the triangular brackets represent the mixing and time averaging operation of the phase
detector. The reference signals for the phase detector, cos (wst + as) and sin (wst + a),
can be derived from the receiver antenna scan. The phase detector outputs are then fed into

the transmitter antenna positioning servo. It is assumed that the positioning servo varies

BA and 6 g in the following way

o o
do
A 1
Tg = -3 Kz(\[/,r) cos n/ sin 6 Eo = —<e0(t), cos(wst + as)>/sin QEO (15)
do
E 1
—~ = 3K, 1) sing = <e (), sin(wt + a)> (16)

18



The factor sin 4 in the denominator of Eq. 15 is due to the fact that, as 6 E

E
o} 0
becomes small, a very small change in the direction of the transmitter axis results in a
very large change in GA . Note that the positioning servo holds GA and 6 E constant when
o} o o}
do Ao do Eo
Y = 0, since Kz(O,r) = 0. If we substitute these relations for I and I into Egs. 12

and 13, we have

aw 1

5 = KW (17)
d 1
TT‘Z = 5 Ky(¥,r1) cosncotBEo . (18)

Equations 17 and 18 describe the motion of the target in the (x, y, z) coordinate system. 16
Note that the transmitter axis is moved into coincidence with the target axis (y approaches
Zero).

We have said nothing thus far concerning the effects of jamming signals on the
operation of the radar system. The above discussion gives a detailed mathematical descrip-
tion of the operation of the transmitting-antenna positioning servo when no jamming signal is
present. The effects of a jamming signal on the operation of the transmitter positioning

servo can now be clearly shown. The video signal will now have the form
e(t) = eo(t) + el(t) "
where eo(t) is given by Eq. 14 and el(t) is the component of the video signal due to the jam-

ming signal. 17 Note that el(t) will differ from the modulation e].(t) on the signal transmitted

by the jammer due to the modulation caused by the receiver antenna scan. The relation

16Recall that this coordinate system rotates as the transmitter axis is rotated as described

above. This results in the somewhat complicated expression for Eq. 18.
17The RF of the jamming signal is assumed to be of the same frequency as that of the radar
transmitter. Moreover, we assume that the jammer is located at the target.
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between the two is given by

e t) = Kgr)[K(W,r) + Ky,r) cos(wt + o - n)] e(t)

where K3(r) depends on the power level of the jammer. 18
Instead of having eo(t) as its input (as when no jamming signal was present) the

phase detector now has eo(t) + el(t) fed into it. The transmitter servo will still vary QA
0

and 9 E according to Eqgs. 15 and 16,but with eo(t) replaced by eo(t) + el(t). Thus the
o
jamming signal el(t) causes Eqgs. 17 and 18 to take the form

%—f = -%Kz(w,r) - cosn<e1(t), cos(wst + ozs)> - sinn<e1(t), sin(wst + as)> ,

(17a)

d 1 .
TTZ =3 K2(¢/,r) cos 7 cot GE + [coty sing + cot BE ] <el(t), cos(wst + as)>

(0] o

- coty cos n <e1(t), sin(wst + OIS)> (18a)

In order to illustrate more clearly the effect of a jamming signal on the motion
of the transmitter axis, we consider a specific example. 19 Let the jamming signal be an RF
signal modulated by a sinusoid of the form ej(t) = sin(wt + @). The component of the video

signal due to jamming will then be given by
e;() = Kym[K,(W,r) + Ky(y,r) cos(w t + e, - n)] sin(wt + )

By substituting this expression for el(t) in Egqs. 17a and 18a it can be shown that the jamming

signal will cause the transmitting antenna of the radar system to ''wobble' at a frequency

181t should be kept in mind that the jamming signal travels only a distance r while the signal

from the radar system itself must travel twice as far.
19It should be kept in mind that the jammer does not know the receiving antenna scanning
frequency wg or phase as in advance although he will usually know the frequency range in

which ws lies.
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w - W if this difference frequency is sufficiently small to pass through the radar's video
filter and through the phase detector. This wobble will give rise to varying illumination of
the target. Thus, by observing the transmitter antenna wobble at the difference frequency
w-w, the jammer can learn something about wg

The operation of the radar jamming system has thus become closed-loop with the
path from radar to jammer being the wobbling target illumination and the path from jammer
to radar being the jamming signal. The effects of noise on the observations (as well as on the
operation of the radar system) have been neglected until now. If the presence of noise is
taken into account the above radar-jammer system becomes a closed-loop system subject to
random disturbances. The optimal control of such a system is a classic problem in modern
control theory. That jamming signal must be selected which on a statistical basis '"'controls"
the tracking radar system in an optimal manner. It is important that this control be optimal,
for only limited feedback (e.g. small wobbles) and limited time are available to the jammer.

It should be emphasized that it has not been shown that the overall optimal
jamming signal will necessarily have the sinusoidal modulation considered here. The
sinusoidal form does, however, allow a clear description of the effect of a jamming signal on
the operation of the radar system. The difficulties arising in this non-linear problem prevent
us from giving a complete solution at this time. We now consider an analogous jamming

problem for a linear system.
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3.2 A Parametric Amplifier Jamming Problem

It is possible to use parametric amplifiers as triggering devices in various
electronic systems. One possible application is as a trigger for an electronic fuze of a
warhead. We consider here the problem of jamming the parametric amplifier when it is
used as a triggering device.

The parametric amplifier is indicated schematically in Fig. 5. The operation of

the parametric amplifier is described by the differential equation

(n) (n-1)
d'"z d Z dz
WO —m AW e g ez = el

where
el(t) is a scalar input signal, and
z(t) is the scalar output of the amplifier.
The time-varying coefficients in Eq. 19 account for the effect of the pumping signal, ep(t),
indicated in Fig. 5. Thus, the pumping signal is not considered as an input in the usual
sense.
It is desirable to write Eq. 19 in vector-matrix form. We denote the output z by

Xy and the input e by u. Then, if an(t) # 0, we have

dx1 .
at T T2

dx2 .

a -~ 73

dxn—l _

a = *n>

dXn 1 1

—E = —W [ao(t)x1 + al(t)xz + ... + an_l(t)xn] + W U(t)

(20)
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ep(t)

l

e (t) Amplifier — 2(t)

Fig. 5. The parametric amplifier.

This system of equations can be rewritten in the form

dx

r i A(t) x(t) + B(t) u(t) , (21)
where
B 1 0 ] %, ]
— 1
0 1 0
A(t) = : ’ ) ) B(t) = L x o=

0 0 0 1 0

—ao(t) -al(t) -az(t) -a 1(t) 1
_an(ﬂ a [0 a® " Tam | t_ E‘n‘(ﬁ n|

The transition to the discrete-time formulation is straightforward for this linear
problem. This discrete-time formulation is given in order that the optimal control problem

correspond to the general formulation given in Section 2. If we let

@(k) = ¢(tk + 1’ tk) ’
and
tk +1
A(k) = j{ ¢(tk + 1 T) B(T)dT ’
k
dot, t)
where ¢(t, to) is the n x n matrix satisfying —x = A(t) ¢(t,t0) and ¢(t,t) =1 for all t,

then Eq. 21 can be written as
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x(k + 1) = &k) x(k) + A(k) u(k) . (22)

The initial state x(0) is assumed to be a random vector with known probability distribution.
We assume that the parametric amplifier is to be used as a triggering device.
The jamming problem is then to "control" the amplifier in such a way that it does not trigger
at the proper time. That is, the jamming signal is to be chosen so that the amplifier triggers
either too soon or too late to be effective. Thus there are two cases to consider. It will be
shown that the two jamming problems differ only in the definition of the cost function.
The parametric amplifier is assumed to trigger at time k if the output Xl(k) is
greater than or equal to some desired value d. To make the amplifier trigger early, one
might use the cost function defined by

N

(o]
I [x(0)] =
No * kg

1

lag + D xg0 + 1)-al? + qy00[um)?]

0 (23)
where 9 and q, are positive numbers at each sampling instant. The time N0 is that discrete-
time instant before which the amplifier is to be triggered. Jamming is to cease at time N0
whether or not triggering has occurred. The relative magnitudes of 9, and 4 will be deter-
mined by how important it is to pre-trigger the amplifier as compared to minimizing jam-
ming signal energy.

The jamming signal energy will not be directly proportional to [ (u(k)] 2 since u(k)
is the sum of the jamming signal plus the input el(t) to the unjammed system. In many cases
the magnitude of the jamming signal is much greater than the input to the unjammed system.
In such cases, [u(k)] 2 will approximate the energy of the jamming signal, so that our inter-
pretation of the quadratic cost function as minimizing the sum of input energy and system
error will remain true. Any jamming signal which minimizes the expected value of the
quadratic form given by Eq. 23 will tend to force the amplifier output Xy towards the
triggering value d.

Although the cost function defined by Eq. 23 may lead to a convenient mathematical

solution of the jamming problem, the value of such a solution is somewhat questionable. In
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particular, a control sequence which minimizes the expected value of JNO[x(O)] (which has
ql(k +1) {xl(k +1)- d]2 as one of its summands) may not force X close enough to d at any
one sampling instant to trigger the amplifier. Such a jamming sequence would be of little
practical value. Therefore, it is desirable to define a more suitable cost function despite
the increased mathematical difficulty likely to be encountered in solving for the optimal jam-
ming sequence.

Let the energy of the input (jamming) sequence be limited by some constant UO;

that is,

N -1

Q 2
kZ=O [w)]” < U, . 2

Any input sequence which satisfies this energy constraint is said to be an admissible input

sequence. We define a new cost function by

o] min
Iy [xO@] = "7y Cilxy0), ) (25)
o o)
where
o d - Xl(k) for Xl(k) < d
C (%, (0, @) =
0 otherwise .
The optimal jamming sequence is then defined to be any admissible input sequence which
minimizes the expected value of J?\I [x(0)]. Clearly, an optimal jamming sequence will in
)
this case force the output Xl(k) as close to the triggering value d (for at least one k=1, ... ,NO)

as the energy constraint U0 on the jamming sequence will allow.
Suppose now that delayed triggering of the amplifier is desirable, rather than pre-

triggering. Let N1 be the discrete time instant to which trigger delay is sought. We can then
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define a cost function analogous to the quadratic type (Eq. 23) which was defined for the pre-

triggering case.

Nl-l

Iy [x(0)] = {a,0c + 1) [x,( + 1) - d]* + qy() [u)]*} (26)
1
k=0
where ql(k + 1) is positive and qz(k) is negative for k = 0,... ,Nl-l. To prevent triggering
before time N1 it is desirable to keep the output away from the triggering level. The opti-
mal jamming signal is therefore defined as that which maximizes the expected value of
JNl[x(O)]. The negative coefficient qz(k) causes the optimal jamming signal to minimize

the input energy consistent with keeping x, away from the triggering level.

1
Again, the use of the quadratic type cost function (Eq. 26) may lead to a con-

venient mathematical solution of the delayed-triggering jamming problem. However, it may

also happen that the jamming sequence that maximizes JNl[X(O)] forces the output to exceed

the triggering level at some sampling instant k < N_ and thus trigger the amplifier. It is

1
therefore desirable to define a more practical cost function. By analogy with the second

cost function defined for the pre-triggering case (Eq. 25), we introduce the cost function

N[0T = omin (ol dl} (27)
2,0, N

where Co[xl(k), d] is defined as before. The admissible jamming sequences are again
assumed to be those satisfying the inequality (24). In contrast with the optimal jamming se-
quence for Eq. 25, the optimal jamming sequence is here defined to be an admissible sequence
which maximizes the expected value of Jg]l[x(o)]. In this case it is clear that the optimal
jamming signal will force the output as far below the triggering level at each instant as is
allowed by the energy limit UO'
So far we have said nothing concerning what type of observations of the state of
the amplifier will be available to the jammer. It can easily happen that no meaningful ob-
servation will be available; consequently, open-loop control must be used. On the other

hand, there are cases in which the jammer can observe a signal derived from the amplifier

state (e.g., an active as opposed to passive detection system). In these cases closed-loop
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control can be employed. In any event, it is important that the jammer use all available

information in an optimal manner.

3.3 A General Jamming Problem for Linear Systems

At this point we formulate a rather general type of jamming problem for linear
systems. The problem deals with the interaction of two given linear systems. The formu-

lation can be extended to include more than two interacting systems.

System Number One has been designed to determine some of the state variables
of System Number Two. System Number One will be called the detection system and System
Number Two will be called the target. We assume that the target is '""located" when the de-
tection system has determined some ''desired' state variableSZO of the target within some

acceptable degree of accuracy.

The target has as one of its objectives the deceiving of the detection system as
to the true value of some of the state variables (e.g. position, velocity, etc.) of the target.
To this end, the target is assumed to include a jammer which sends to the detection system
a Jamming signal e(k) based on the state of the target and on observations made of the state
of the detection system. Both systems are assumed to be subject to random noise.

We now give the mathematical formulation of this problem; a solution of this
linear problem will yield insight into various methods for solving nonlinear problems such
as the radar problem considered above.

The "motion" of the state of each system will be described by a linear difference
equation. The state of each system includes the electrical and mechanical coordinates of the
system. Letting x and z represent the state of the detection system and the target, respec-

tively, we can write the state transition equations

x(k + 1)

]

<I>x(k) x(k) + Ax(k) ux(k) + wx(k) .

z(k + 1) @Z(k) z(k) + Az(k) uz(k) + wz(k) s (26a)

0It is assumed that the detection system knows what the '"desired'' state variables of the
target are. These may be, for example, the position and velocity coordinates of the
target.
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where
x is an (n x 1) state vector,
z is an (m x 1) state vector,
<I>x, <I>Z are (n x n) and (m x m) state transition matrices,
u, u, are (p x 1) and (q x 1) control or input vectors,

W, W, are (n x 1) and (m x 1) random noise vectors, and

AX, Az are (n x p) and (n x q) control distribution matrices.

The probability distributions of wo and w, are assumed to be known: the distributions of wo
(and of wZ) are assumed to be independent at different sampling instants.
It is assumed that the state of each system is observed by the other system.

The observations are assumed to have the form

y e = M (k) x(K) + v, (K) ,
v, &) = M, (k) z(k) + v (k) , (27a)
where
Yy ¥, are (p1 x 1) and (q1 x 1) state observation vectors for
the detection system and target, respectively,
Mx’ Mz are (p1 x n) and (q1 X m) observation matrices, and

vV_, V_ are (p1 x 1) and (q1 x 1) measurement noise vectors,

respectively.

The probability distributions of Ve (and of vz) are assumed to be known and to be independent
at different sampling instants.

The interaction between the target and the detection system is assumed to be as
shown in Fig. 6. Since it is desirable from the standpoint of the target that the behavior of
the target depend to some extent on what the detection system knows about the target, we
take yx(k), the observation of the state of the detection system at time k, as the input uz(k)
to the target's control system. This same information is also fed into the target's jammer

to help it to jam the detection system more effectively.
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wx(k) vx(k) Wz(k) v_(k)
ux(k) Deteition l Target ' yz(k)
system M_(k) — system — M (k)
x(k) X yx(k) = z(k) z
u, (k)
Controller
(jammer)
e(k)
+

+
U,
Fig. 6. Interacting systems.

The jamming signal e(k) is also taken to be a function of the state of the target.
Note that e(k) will therefore depend indirectly on the state of the detection system, as can
be seen from the discussion in the previous paragraph. The jamming signal is to be used
to prevent the detection system from locating the target. The input ux(k) to the detection
system is taken to be the sum of the observation yz(k) and the jamming signal e(k). Thus
the detection system is "partially controlled" by the jamming signal and "partially controlled"
by the observations Y,

The two interacting systems can also be described by a single composite system.
The dynamic operation of this composite system is most easily obtained in the following way:

We substitute yx(k) for uz(k) and yz(k) + e(k) for ux(k) in Eq. 26a to obtain

x(k + 1) @ (k) x(k) + Ax(k) [Mz(k) z(k) + vz(k)] + wx(k) + Ax(k) e(k)

K¢

z(k + 1)

1

CI)Z(k) z(k) + Az(k) [Mx(k) x(k) + vx(k)] + wz(k)

The operation of the composite system is then given by (see Fig. 7)

sk + 1) ®(k) s(k) + A(k) uk) + w(k) (26Db)

y(k) = M(k) s(k) + v(k) (27b)
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where

x(k) <I>x(k) Ax(k) Mz(k) Ak(k)
s(k) = , k) = ,  Ak) = , uk) = e(k)
z(K) Az(k) Mx(k) <I>Z(k) 0
Mx(k) 0 vx(k) wx(k) + Ax(k) vz(k)
M(k) = , vik) = ,  wk) =
0 I 0 w, (k) +a (k) v (k)

The optimal control problem will be formulated after we have explained the operation of this

composite system. Note that the jamming signal is the only input to the composite system.

The effect of using the observations as inputs has been incorporated into the transition ma-
trix ®.

Let us now explain what is happening in the detection part of the composite
system. Suppose for the moment that no jamming signal is present. Then, although there
is no input to the composite system, the state transition matrix & forces some of the state
variables (which we denote by sx) of the detection system towards the values of some of the
coordinates of the target's state (which we denote by sz). We assume here that Sy (and
therefore sz) is an r dimensional vector. The detection system is said to have ''located"

the target when s, comes within some small "distance" of S,

It is clear from this description of the detection system that the jammer should
try to force s, away from s, - A reasonable and mathematically convenient cost function is
therefore defined by

N-1

JN[s(O)] = kéo [“Sx(k +1) - sz(k +1)|° Q3(k +1) + A Juk))? Qz(k)] (28a)

where

Q3(k + 1) is a symmetric positive semidefinite (r x r) matrix,
Qz(k) is a symmetric positive definite (p x p) matrix,
A is a negative constant, and

[0,N] is the discrete-time interval during which jamming takes place.
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The optimal jamming signal is then defined to be any sequence u(0),...,u(N-1) which
maximizes the expected value of JN[s(O)] conditional to the observations available at each
sampling instant. Since A is negative, maximizing JN will result in an optimal jamming
signal which uses a minimum of energy21 consistent with the requirement that Sy be kept
away from s, -

Suppose that the Sy and s, represent the first r components of the state vectors

x and z, respectively. Then the state vector of the composite system is given by

s = [Slx . er Xeo1 o Xy sZl .. sZr Zoq e Zn]' The cost function can then be re-
written as
N-1
INSO] = 0 [Istk + 1DJ* Q (k= 1) + 1 ulk)| Qyk)] (28b)
where B 7
Q5(k) 0 -Q4(k) 0
0 0 0 0
0 0 0 0
_—Q3(k) 0 Q4(k) OJ

For the case in which v(k) and w(k) are independent Gaussian random vectors
this problem is closely related to the linear optimal control problem considered in the in-
troduction to this memorandum. The two problems differ primarily because of the negative
constant A appearing in Eq. 28b. The problem becomes more difficult, yet tractable, if we

allow arbitrary probability distributions for the noise vectors w(k) and v(k).

w(k) v(k)
Composite s(k) M(k) y(k) Controller 2(k)
System (Jammer)

Fig. 7. Composite system.

1 .
We assume here that Q (k) is so chosen that |ju(k)|? Qo (k) is proportional to the jamming
signal energy at each sampling instant. 2
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4. SYSTEM ORGANIZATION

Many of the high-speed digital computing systems presently in operation per-
form computation for users having different priority levels. In order that such a computing
system operate efficiently, it is necessary to specify a procedure for determining which
job should be serviced next when several jobs await servicing. We give here a formulation
of this problem within the framework of modern control theory.

Let each job be placed in one of n classes. The classification is to be made
according to 1) the computation time required for the job22 and 2) the cost rate of the job.
The cost rate of a job represents the charge per unit time to the computer system for the
time that the job must wait for servicing. The classification is to be made so that the jth
class contains all jobs having the same computation time and the same cost rate. Thus it
is possible to assign a rate to each class according to the cost rate of the jobs in the class,
with a higher réte being assigned to those classes containing jobs with a higher cost rate.

It is assumed that the arrival of jobs for servicing is random. The number of
jobs of class j arriving at the computer for servicing during the kth discrete-time interval
[k - 1,k] is assumed to be a random variable having Poisson distribution with mean value
mj(k). The probability density function for a random variable having Poisson distribution

with mean value m is given by

p(s) =

A very convenient description of the job servicing procedure can be given if we
define a state vector for the queue. (The queue is the collection of jobs waiting to be ser-

viced.) Let an (n + 1)-dimensional state vector x(k) have components defined by

2 . . .
We assume here that all computation times are known in advance. Although this assump-
tion does not apply to all computing systems, it is essential to the formulation of the opti-
mal control problem to be introduced below.
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x.(k) = number of jobs of class j waiting to be serviced

at time k(j = 1,...,n), and

Xn+1(k) = time remaining to finish the job presently being

serviced.

Let u(k) be an (n + 1)-dimensional input vector with components

1;"1 if a job of class j is taken for servicing at time k

uj(k) =
0 otherwise i=1,...,n
ﬂ—t]. if a job of class j is taken for servicing at time k
Yn+ l(k) 3
N 1 otherwise
The computation time vector T = (tl, . ,tn) represents the computation time required for

jobs according to their respective class. Using these definitions the dynamic operation of

the queue is described by
x(k +1) = x(k) - uk) + a(k) , (29)

where a(k) is an (n + 1)-dimensional vector-valued random variable representing the random
arrival of jobs at the queue. The component aj(k) is a Poisson random variable with mean
m.k), j =1,...,n. The (n+ 1)St component of a(k) is assumed to be identically zero.
There are several constraints on the computer which limit the choice of inputs,
u(k). It is assumed that the computer can take only one job for servicing at any time and
that no new job can be taken for servicing until the previous job is completed. Thus at most
one of the uj(k) can be equalto 1, j=1,...,n. If xn+1(k) # 0, then uj(k) =0,j=1,...,n,
since the previous job has not been completed. If uj(k) = 1 then the time until this job is
completed is given by tj ; thus we let a . 1(k) = -t].. One more obvious constraint is that
uj(k) cannot equal one if xj(k) = 0 since xj(k) = 0 implies that there are no jobs of class j
waiting to be serviced at time k. Thus it is clear that the constraints on the computer

operation considerably restrict the allowable inputs.

33



In order to complete this formulation as an optimal control problem it is neces-
sary to define a cost function. First let us define a diagonal ''rate matrix' R(k) with diagonal

elements representing the cost rate of the various classes of jobs. Thus, we let

-

1(k) 0

R(k) = (k) ,

-
r

()
0 0

- -

where ri(k) > rj(k) if at time k the ith class has higher priority than the jth class,

i, j=1,...,n. The rate ri(k) represents the charge to the computer for not servicing jobs

of the ith class which are inthe queue at time k. The cost function can then be taken as

N
IN[x(0)] = kzl |x(k)|* R(k) . (30)

The quadratic cost function used here discourages the computer from allowing a large num-
ber of jobs of any one class to accumulate in the queue. Such a cost function is desirable if
each class contains jobs from a single project. To see this observe that if many jobs from
one project are waiting to be serviced, people working on this project are likely to be idled.
It is clear from Eq. 29 that JN[x(O)] is a random variable. An optimal input sequence is
defined to be any sequence of allowable inputs which minimizes the expected value of JN[X(O)].
We assume that the state of the queue can be determined exactly at each discrete-

time instant. Thus the observation of the queue can be described by
yk) = x(k) . (31)

This problem appears to be very similar to the linear problem introduced in Section 2. The
cost function given by Eq. 30 is a special case of that given in Eq. 4 with Qz(k) = 0 and

d(k) = 0. Moreover, the observation matrix, M(k), is just the identity matrix, and v(k) = 0.

There are, however, very important differences between this problem and that

introduction in Section 2. In particular, for this problem we have that:

1) The random arrivals have a Poisson distribution. Thus
the well-developed theory of linear systems subject to

Gaussian noise cannot be used.
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2) In this problem the components of the state variables and
the input variables are restricted to integer values.
Therefore, any analytical techniques which require that
x and u be allowed to vary over a continuum of values
(e.g. differentiation with respect to x or u) are not

applicable.

Thus, techniques other than those used to solve the general linear problem must be used.
A complete solution to this problem is not known at present. However, the
solution of a closely related problem (one where the cost function is linear in x instead of
quadratic in x) is known (Refs. 6, 11) and easily implemented. Obviously, the soluble
problem is very meaningful in its own right. Moreover, it may be that its solution can be

used as a step in solving the quadratic cost function problem.

23 . . . . . .
In fact, with exception of u,,.1, all these variables are restricted to being nonnegative

integers.
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5. COMMUNICATIONS SYSTEMS WITH FEEDBACK

5.1 Systems With Channels Having Constant Delay

There is a class of communications systems in which part of the received in-
formation is fed back to the transmitter. Many satellite communications systems belong
to this class. In such systems the satellite will, upon receiving a signal from the ground,
return a signal to the ground station indicating that a certain message has been received.
This helps the ground station to determine whether or not the proper message was received.
We consider here feedback communications systems with constant-delay channels. This
restriction is not essential; however, it makes the initial formulation of the problem more
tractable. We allow the system to have different forward and feedback channels. Channels
having time-varying delay will be considered in the problem treated next.

The block diagram for systems of this class is given in Fig. 8. We assume
that the input signal u(k) is to be determined by the controller. In order to use the discrete-
time formulation for this problem, it is necessary for the input signal to be represented as
a sequence of discrete pulses. This representation can be made if the input signal is essen-
tially bandlimited so that it is determined by its sampled waveform (Ref. 12). We assume
that the input signal can be described by a finite sequence of samples. It is desirable to use
the discrete-time formulation of this problem because it permits a very clear description
of the effects of channel delay on the output of the receiver filter and on the information fed
back to the controller. This discrete-time formulation is also more suitable if solutions
are to be obtained using a digital computer. In order to describe channel delay, it is con-
venient to assume that the lengths of the discrete-time intervals are equal. The length of
the sampling interval is also to be inversely proportional to the bandwidth of the input signal

(Ref. 12).
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The operation of the communications systems can be described by a set of first-
order difference equations. It is convenient to give these equations, which describe the dy-

namic operation of the entire system, and then explain the operation of the several individual

subsystems. The system equations are
Xl(k + 1) = u(k) )
Xo(k + 1) = x,(k) equations characterizing the relations
among the signals at n points along the
> forward channel separated by equal
units of delay
Xn(k +1) = xn-l(k) + wn(k)
J
xn+1(k +1) = f[k,xn+1(k),xn(k)] receiver filter equation
X ok+1) = g[k,xn+2(k), xn+1(k)] feedback filter equation
N
Xn+3(k +1) = xn+2(k)
equations characterizing the relations
B among the signals at m points along the
feedback channel separated by equal
units of delay
Xn+m+2(k+ 1) = xn+m+1(k) J
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The initial state x(0) = [xl(O) - xn+m+2(0)]' is assumed to be a Gaussian random vector

with known mean and known covariance.

The Input Signal Channel

Due to u, voltages X{,.-,X are observed at n points along the
input channel Xpeo s X separated by equal units of delay. The effect
of the channel delay is, then, to make Xi(k) equal to the input signal
at time (k - i). The number of state variables required to describe
the channel is therefore proportional to the delay time of the channel
and is inversely proportional to the length of the discrete-time in-

tervals. 2

The scalar wn(k) is the sampling of zero-mean, Gaussian ran-
dom noise at the receiver input. The covariance of this noise is
assumed to be known. It is also assumed that the values of the noise

samples at different times are independent. 25

The Receiver Filter

The output of the receiver filter26 is defined by X1 This output
represents the actual received message. The desired receiver output

signals d(n + 1),...,d(n + N) are assumed to be specified in advance.

24

That is, the required number of state variables will be proportional to the product of
delay time and bandwidth of the channel.

25, . . . N .
This independent noise assumption is not essential to the treatment of this problem.

Dependent Gaussian noise can be obtained from the output of a linear filter excited by
independent Gaussian noise. Thus dependent noise can be handled in this problem by
viewing it as the output of a linear filter excited by independent noise (Ref. 5). This

would require that the dimension of the state vector be increased to include the linear
noise filter. The extension to include dependent noise adds little to the understanding
of this problem. We therefore consider only independent noise.

26For purposes of this discussion, this filter and the feedback filter are assumed to be of

first order. Thus Xn41 also describes the state of the filter. More general filters are
discussed later.
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The inputs u(0),...,u(N - 1) are to be chosen so that xn+1(k) is "close"

7
tod(k)fork=n+1,...,r1+N.2

The function, f[k,xn+1(k),xn(k)] , represents the dynamic opera-
tion of the receiver filter. The explicit form of this function will de-
pend on the particular type of filter being used. For example, a time-

varying linear filter can be represented by

f[k,xn+1(k),xn(k)] = rl(k) Xn+1(k) + rz(k) Xn(k) (33)

where rl(k) and rz(k) are the time-varying weighting coefficients of
the filter.

The receiver filter output at each time instant will be random
due to the random initial state, x(0), and the noise wn(k) at the input
to the receiver. It is therefore desirable to design the communica-
tions system to feed back part of the received information. This
information can be used to learn something about the effects of previous
inputs on the output of the receiver filter. This knowledge can then be

used to aid in the selection of succeeding inputs.

The Feedback Filter

The general form for the filter used to feed back information on
the receiver filter output is given by g[k,xmz(k), xm_l(k)]. For the

linear filter, this takes the form

glk, X, (), % 109)] = by(k) x_ (k) + by(k) x__ (k) (34)

n+2

. 28
where bl(k) and bz(k) are the weighting coefficients of the filter.

27It would not be realistic to try to control Xp4+1(k) for k < n since the channel delay makes
it impossible for an input to affect xj41 until (n + 1) discrete-time instants later.

28Note that the input to the feedback filter could also be taken as the input (rather than the
output) to the receiver filter as indicated by the dashed line in Fig. 8. The formulation
of the problem would proceed along the same line in either case except that x,(k) would

replace x,, 1(k) in Eq. 34.
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It should be noted that the output at each instant of a filter de-
scribed by Eq. 33 or Eq. 34 depends only on the previous output
sample and on the previous input to the filter input. The present
problem formulation can be extended to include systems having
filters whose outputs depend explicitly on the last p inputs, i.e.,
to pth-order systems. However, if the state transition equation
is to be expressed in terms of first-order difference equations,
it is then necessary to increase the dimension of the state vector
by (p - 1). The extension is not given here because it leads to
notational complexity which tends to obscure the underlying com-

munications problem.

The feedback channel:

The output X .9 of the feedback filter is returned to the con-
troller through the feedback channel. The state of this feedback

channel is described by the components x The

n+3’ " ¥n+m+2”
delay-time bandwidth product of the feedback channel determines

the number of components, m, required to describe the channel.

The input u at time k = 0 does not reach the receiver filter until time k = n.
However, the observations of the receiver filter output are being fed back to the controller

during this time. The observations are assumed to be described by

y(k) o(k) + v(k) (35)

= X
n+m+

where v(k) is the noise incurred in reception of the geedback signal. We assumed that v(k)
is an independent zero-mean Gaussian random variable. 29
We assume that the receiver filter and feedback filter are described by Egs. 33

and 34, respectively. Then Egqs. 32 and 35 can be rewritten in vector-matrix form as

29The remarks made (see Footnote 25) following the description of the input signal channel

also apply here.
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x(k + 1) = &) x(k) + A(K) uk) + w(k), (36)

yk) = M@K) x(k) + v(k) , (37)

_O 0 0 h
1 0 0 0

1 "0

1 0
a(k) = k) 1K)
bz(k) bl(k)

0 1 0

B 1 0]

A(k) = . M'(k) = . w(k) = 0

The sequence of input samples is to be chosen which will make the sequence of
receiver filter output samples xn+1(n +1),... ,xn+1(n + N) close, in some sense, to the
known desired output sequence d(n + 1),...,d(n + N). The input energy is assumed to be

proportional to [u(k)]2 . A reasonable and mathematically convenient cost function is there-
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fore defined as

JN[X(O)] = I:i: [xn+1(n+ 1+k) - dn+1+d)]® +x (k) [uk)]® , (38)
where A(k) > 0. The number N is equal to the number of samples required to specify the
continuous-time signal.

If (k) = 0, it is clear that minimizing the expected value of JN[X(O)] just mini-
mizes the mean square error of the receiver output filter. If A(k) is positive then the mini-
mization procedure weights the squared error and the input energy accordingly. The input
u(k) is to be chosen conditional to the delayed feedback-filter output signals, y(0),...,y(k),
in such a way that the expected value of JN[x(O)] is minimized. The amount of information
contained in these feedback signals depends on the filters used, on the relative distributions
of the receiver filter input noise, W and on the observation noise v. For example, if v=10
the observations can be used to determine the exact receiver filter output. Of course, the
delayed feedback prevents the receiver filter output at time k from being determined until
time k + m + 1.

The discrete-time formulation allows us to obtain solutions to this linear prob-
lem using a digital computer. The problem becomes considerably harder to solve when
nonlinear filters are used. The extension to channels having time-varying delay can be

made rather simply. We consider this problem next.

5.2 System With Channels Having Time- Varying Delay

Many communications systems have signal channels with time-varying delay.
This is usually true of satellite communications. The changing distance between satellite
and ground station (or between two satellites) gives rise to time-varying delay in radio
communication. We show here that linear systems having variable-delay channels can
also be described by Eqs. 36 and 37. However, in this case the matrices A and M will be
time-varying, and the number of variables required to specify the state of the forward
channel on the feedback channel will depend on the maximum delay of the respective channel.

The extension of the above formulation is immediate:
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Let Tl(t) and Tz(t) describe the continuous-time variation of the input-channel
delay and the feedback-channel delay, respectively. It will be convenient to assume that
the initial delays are n units of discrete time in the forward channel and m units of discrete
time in the feedback channel. We assume that both 8] and To VAry slowly so that the con-

tinuous change in delay of T (or 7,) during £ (or j) discrete time intervals can be replaced

9)
by a single discrete change in delay. The number £ (or j) will be inversely proportional to

the rate of change of ™ (or 7,) and the length of the discrete-time intervals. To facilitate

9)
this discussion we assume that all discrete-time intervals of of unit length. It is convenient
to assume that all discrete changes in delay also equal one unit of discrete time.

In order to facilitate the description of this problem, we consider a specific case.
Figure 9 illustrates the delay variations for a system in which the delay in both channels is

decreasing linearly with time. The delay in the feedback channel, 7,, is decreasing twice

9)
as fast as that in the input channel. We assume that at k = 0, the system is described by
Eq. 32. Then, assuming that the delay can be considered constant during the interval [0,j],
the matrices ®(k), A(k) and M(k) are the same as those given following Eq. 37.

We assume that, in this approximate model of the actual system, the discrete
changes in delay for the feedback channel are made at times jl’j2’ . ’jr and for the input
channel at times 21”22’ . ’ﬂs . It is reasonable to assume that these discrete changes in
delay will be made twice as often for the feedback channel since its delay decreases twice
as fast as that of the input channel.

Let us suppose that j1 < fll. Then at time j1 the observation matrix will be

given by
M(jl) = [00...010], (39)

since the observations will be fed back one discrete-time interval earlier due to the unit

decrease in the feedback channel delay. Thus, the observation will be given by
Y(]l) = xn+m+1 (]1) + V(]l) (40)

The unit decrease in delay allows the feedback signal to reach the controller one discrete-

time interval sooner. It must be noted that this change in delay also results in the loss of
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Fig. 9. Time varying delay in communication channels

the observation that would have otherwise been made at time jl. The effect of this informa-
tion loss will be discussed later.

Thus for j1 <k< 21 the system is described by
x(k +1) = &) x(k) + A(k) uk) + w(k)
y(k) = M(k) x(k) + v(k) (41)

where A(k) =[100 ... 0] and M(k) is given by Eq. 39. 30

At time 21, we must account for
the change in delay of the input channel. This can be taken care of in the model by letting
the input signal enter the channel at a point one unit closer (in time) to the receiver filter.

Thus for 21 <k < j2, the communications system is described by Eq. 41 with

A(k) = [010... 0] and M(k) given by Eq. 39. In this case we note that u(£1 - 1) and u(£ 1)

are added together at time ﬂl . Thus the input to the receiver filter at time ﬁl +n-1will

be a distorted sum of these two inputs.

30@(1() is the same as in the case of systems having constant-delay channels. '
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We continue in this way, accounting for the changes in feedback delay in M(k)
and for changes in delay in the input channel in A(k).

Other forms of delay variation in the two channels are treated in the same way.
The cost function and the optimum sequence of input signals can be defined just as for sys-
tems having constant-delay channels. Given a sequence, d(n + 1),...,d(n + N), of desired
receiver filter outputs, the optimum sequence of input signals is that which minimizes the

expected value of Eq. 38.

There are several problems peculiar to this formulation. The procedure used to
account for time varying feedback delay results in the loss of some of the signals in the feed-
back channel. Thus the amount of information available for estimating the receiver filter
output is reduced. Moreover, the varying delay in the input channel makes it more difficult
to control the output of the receiver filter. 31 The effect of these two difficulties will depend
on how much the delay in the two channels varies in the given problem. Thus the practical
significance of this formulation depends on the variable delay in the two channels. It might
be tempting at this point to conclude that a constant-delay system can be controlled more
effectively (in the sense of yielding lower expected cost) than a similar system with time-
varying delay. This temptation can be dismissed by comparing two systems. In the first
system, the delay in both channels is constant at n units of discrete time. The two channels
of the second system are assumed to have equal delays, each initially n units long and falling
off to zero delay in j discrete-time intervals. Then for N (the length of the sequence of de-
sired receiver filter outputs) much greater than j we would expect better control from the
system with decreasing delay. That is, as N gets large the effect of the loss of observations
during the early stages of control is offset by the improved control of the system after the
delay has decreased to zero.

In conclusion it should be noted that there are numerous extensions of this prob-

lem. We have restricted our consideration to linear systems subject to Gaussian noise. For

31This can be seen by noting that a discrete increase in delay will result in one instant of

time at which there is no input (except noise) to the receiver filter.
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some applications, consideration of nonlinear filters may be necessary. The particular pro-
cedure used here to account for time varying delay is not unique. It does, however, provide

a rather convenient formulation of the problem.

5.3 Communication Through a Channel With Unknown Statistics

It is sometimes desirable to transmit information through channels containing
noise whose probability distribution is not known (or is only partially known). The present
problem ié primarily concerned with a method for 1) learning something about the probability
distribution of the channel noise and 2) simultaneously communicating the desired informa-

tion to the receiver.

We allow the communications system to be multichanneled so that the receiver
output is in general vector valued, but assume channel delay is negligible. The operation
of the communications systerﬁ is described by a difference equation; in particular, the state

of the receiver is governed by
x(k + 1) = &(k) x(k) + A(k) [u(k) + w'(k)] (42)

where
x(k) is an (n x 1) vector representing the state of the receiver,
@(k) is an (n x n) matrix describing the receiver operation,
A(k) is an (n x r) input distribution matrix,
u(k) is an (r x 1) vector representing the signal transmitted to
the receiver, and

w'(k) is an (r x 1) input noise vector.
If we let w(k) = A(k) w'(k) then Eq. 42 can be rewritten as
x(k + 1) = &(k) x(k) + A(k) u(k) + w(k) . (43)

The initial state of the receiver, x(0), is assumed to be a random vector with known proba-
bility distribution. The output of the receiver filter, which we denote by y(k), is assumed

to be a linear function of the state of the filter. Thus we have that

y() = M, (k) x(k) , | (44)
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where Ml(k) is an (m1 X n) output matrix.

The function of the transmitter controller is to make the sequence of receiver
filter outputs y(1),...,y(N) close, in some sense, to a known desired output sequence
d(1),...,d(N). We assume that in order to help the transmitter-controller to control the
receiver filter output more effectively [i. e., to make y(k) close, in some sense, to d(k)],

some of the received information is fed back to the transmitter-controller (see Fig. 10).

w'(k)

Transmitter u(k)

Forward Channel Receiver receiver
Controller

output

Feedback
Filter
M(k)

Feedback Channel

Fig. 10. Block diagram of feedback communications
system with noise of unknown distribution
in forward channel.
The feedback channel is assumed to have sufficiently narrow bandwidth so that any noise in
the channel can be neglected. (This noiseless feedback channel cannot be used for the for-
ward channel because of its narrow bandwidth. )

We assume that the signal fed back (called an observation) is a linear function

of the output of the receiver filter. Thus the observation fed back at time k is given by

2(k) = My(k) y(k) , (45)
where

z(k) is a (p x 1) observation vector, and

Mz(k) isa(px ml) observation matrix.

Thus the description of the communications system given by Eqs. 42 and 46 is the same as

that for the general linear system given in Section 2.
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The observations z(k) are processed by the controller to provide aposteriori
information concerning the parameters of the noise distribution in the forward channel.
Observations will generally contribute information; thus, the transmitter-controller can
control the output of the receiver more effectively by taking more observations. However,
it is also true that making an observation available to the transmitter-controller requires
some energy. For example, suppose that we are transmitting information from a ground
station to a satellite. If the satellite is to provide an observation to the ground controller,
some energy will be required to transmit this observation to the ground station. Thus, it
may be desirable to limit the number of observations taken.

If it is known a priori that the parameters of the noise distribution vary slowly
with time,32 we can limit our observations to the initial instants of signal transmission.
These observations can then be used to estimate the parameters of the noise distribution
for the entire transmission time interval. For example, if the signal to be transmitted
requires one-hundred sampling intervals, it may be desirable to estimate the parameters
of the noise distribution on the basis of observations made at the first ten sampling instants.
No observations would be maed during the last ninety sampling intervals, and the variation
in the parameters of the noise probability distribution during this time would be neglected.
With these remarks in mind we can now define a reasonable cost function for this communi-

cations problem.

Let the desired sequence of receiver outputs be denoted by d(1),...,d(N). Let
a(k) be a vector of parameters describing the distribution of the noise in the forward channel.
We assume that the noise parameter vector has some known a priori distribution and that the
noise parameters vary slowly with time. This last assumption allows us to restrict our con-

sideration to the cases in which all observations are made at the initial sampling instants.

32Slowly is here taken to mean that the parameters of the noise distribution do not change
significantly during the time required for signal transmission.
33It may happen that the parameters of the noise distribution vary too much during the N
sampling intervals required for signal transmission to be treated as constant. In such
cases we can use either of two approaches: 1) take observations intermittenly so that
up-to-date information is available concerning the noise parameters, or 2) use only
initial observations and a priori knowledge concerning the variation of the noise distri-
bution parameters. We shall consider only the latter case in our discussion.
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That is, i ten observations are to be made they will be made at the first ten sampling instants.
Under these restrictions, a reasonable cost function is defined by
N-1

INEO] = ) [fxtk + 1) - dlk + | Qq(k) + [Juk)[Q,y()] ,
k=0

where Ql(k) and Qz(k) are positive semidefinite matrices. The cost of making observations
at the first n sampling instants is defined by f(n) = n fO where fO is a nonnegative constant.
Suppose, momentarily, that we make exactly n observations where 0 < n < N. Then the

optimum input sequence for n observations is defined to be that which minimizes

Ry[x(0)] = EL(0) atk n) LINXOI} (45)

where Ex(O)a(k n) is used to denote the expectation over the distribution of the initial state
and the aposteriori distributions of the noise parameters. (This latter distribution will de-
pend on n the number of observations taken; thus we use the subscript notation a(k n).)

The risk function R;[X(O)] defined by Eq. 45 will, in general, depend on the num-
ber of observations, n. Since it is desirable to make some charge observations, we define

the optimum input sequence as that which minimizes, over n = 0,1,...,N - 1, the function
n
RN[x(O)] +n fO .

The cost of making observations for communication can then be varied by changing the con-

stant fO‘

There are two features of this problem which distinguish it from the general
linear problem whose solution was given in Section 2. The more important of these is that
the probability distribution of the noise in the secure channel is not known in advance. The
controller must perform the dual functions of: 1) estimating the parameters of the noise
distribution and 2) determining the optimum input sequence. The other distinguishing feature
of this problem is the presence of the "observation cost" term f(k). A technique known as
"dual control” introduced by Feldbaum (Ref. 10) can be used to treat this problem. The de-
scription of this technique is too lengthy to be given in detail here, but a discussion of the

basic ideas involved is given in connection with the example considered in the next section.
\
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6. DIRECTION-FINDING SYSTEMS

Direction-finding systems are of considerable interest in electronic warfare.
We consider here systems having the form illustrated in Fig. 11. Many of the ideas dis-
cussed below can be extended to other types of direction-finding systems.

The system illustrated in Fig. 11 operates in the following way. An incoming
signal is received by each of the m antennas of an array. There will be a phase difference
between the signals received by the various antennas. The phase difference between the
signals on any two antennas depends on: 1) the relative positions of the two antennas within
the array and 2) the location of the signal source wich respect to the array. For example,
consider the linear antenna array shown in Fig. 12. Suppose that the received signal re-
sults from a plane wave making an angle o with the normal to the line containing the antenna
array. Then the phase difference between the signals received by adjacent antennas will be
equal to (d cos @)/c, where d is the distance between the antennas and c is the propagation
velocity of the incoming wavefront.

Again referring to the system of Fig. 11, we assume that each of the m an-
tennas in the array is connected to an electronically variable phase shifter. The phase
shifter of each antenna is controlled by a signal determined by the control unit. The out-
puts of the phase shifters are fed into a signal processor which performs some known
operation on these signals. The output(s) of the signal processor are forwarded to the
controller-estimator unit. The controller-estimator uses the information contained in
these signals to control the phase shifters and to specify the "location' of the signal source

(in a sense to be discussed below).

The signal processor is used to transform the received signals (with their
corresponding phase shifts) into a form suitable for use by the controller-estimator. We
assume that the signal processing is subject to noise and that the probability distribution

of this noise is known in advance. A very simple form of signal processor is one which
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has a single output equal to the sum of its inputs with added noise. We do not restrict our

attention to any one form of signal processor in this discussion.

Antenna Array

and
Phase Shifters )
[ | Noise
Al l

B 4 a
I . l - Signal - I 1 al
l : | Processor : : Estimation : v2
l 62 l L ._.._Un_lt_ — —* an
| -
' | Control 1,

| | Unit I
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B l N
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Fig. 11. Block diagram of a direction-finding system.

Wavefront

(Each antenna in the linear
array is indicated by x.)

Fig. 12. Linear antenna array with incident plane wave.
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The "location" of the source of the received signals is assumed to be specified
by a vector a. 34 The function of the estimation unit is to compute an estimate of a which
is optimal in some sense. We use the notation a to denote an optimal estimate.

The control unit determines what signal is to be used to control the antenna
phase shifters. However, varying the phase shifts of the received signals will vary the
output(s) of the signal processor. Thus, the information available to the estimation unit
will depend on the control signal. Since the estimation unit uses this information to deter-
mine @ , it is clear that the optimal estimate will depend on both the control unit and the
estimation unit. For this reason, it is necessary that the design of the two units be carried
out jointly in order to obtain an optimal estimate of a. We denote the two units as the
controller-estimator system. We assume that the antenna array, the antenna phase shifters,
and the signal processor are given. The remainder of this discussion is therefore concerned
only with the design of the controller-estimator.

Several techniques in modern control theory can be used to design the controller-
estimator. The optimal system in each case will be that which minimizes some given cost
function. It is not necessary for the present discussion to restrict our attention to any one
particular cost function. The cost function will in general depend on the intended application
of the direction-finding system being considered.

Before considering methods for designing the controller-estimator, it is de-
sirable to point out a difficulty inherent in this problem: The received signals are usually
corrupted by noise. As mentioned above, the signal processor introduces additional noise.
Although we assume that the probability distributions of both noise components are known,
such noise tends to obscure the phase relations between the signals received by the various
antennas, thus reducing the amount of information available for estimating a. This diffi-
culty makes it desirable to design the controller-estimator unit so that it operates in some

optimal manner.

34We assume here that the "location' of a source may require specification of only some of
its position coordinates. For example, the '"location' of a ground source may only re-
quire that a single angle be specified even though the actual position of the source is given
by an angle and a radial distance.

351t should be pointed out, however, that time will usually be a factor in the cost function
since the received signals may be of short duration.
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As noted above, there are several techniques which can be used to carry out a
jointly optimal design of the control unit and the estimation unit. We mention here a tech-
nique known as "'dual control" which was introduced by Feldbaum (Ref. 10). This method
can be used whether the controller-estimator is to be a continuous-time or a discrete-time
system.

It is sufficient here to discuss the ideas behind the dual-control-theory approach.
(The mathematical details are somewhat lengthy and will not be given in this memorandum. )
The main idea behind the dual control method is to view the control signal as simultaneously
performing two functions. The usual function of the control signal is to control the system
in some way; however, the control signal can be used simultaneously to probe the system.
That is, the control signal can also be used to allow the controller-estimator to learn some-
thing about some unknown or partially known parameters of the system.

The present discussion will be restricted to a degenerate form of dual control.
In this case we require that the controller and estimator be jointly designed to yield an
optimal estimate a of the location of the source of the received signal. 36 The control signal
will then vary the phase shifters so that the output(é) of the signal processor are optimal in
the sense that they provide sufficient information to the estimation unit so that it can deter-
mine a .

It may happen at some point in the design of the optimal controller-estimator
that the problem separates into the individual designs of the optimal estimation unit and the
optimal control unit. There are well-known techniques for carrying out the individual de-
signs in such cases. The estimation of vector valued random variables has played a key
role in the development of modern control theory. Some of these techniques can be found
in the works of Kalman (Ref. 7), Ho (Ref. 8) and Cox (Ref. 9). The method used to estimate
a will usually depend on the cost function which is to be minimized by the optimal estimation

unit.

36In a more general case it may, for example, also be desirable that the control unit vary
the antenna phase shifters so that the signal-to-noise ratio(s) of the signal processor
output(s) are maximized, thus allowing information to be extracted from the received
signal. Actually, if we are interested in both estimating the location of the source of the
received signal and extracting information from the signal itself, some trade-off between
signal-to-noise ratio and information content of the signal processor outputs must be
made. This is usually a considerably more complicated problem.
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Some of the ideas introduced above can be clarified by considering the direction-
finding system illustrated in Fig. 13. We assume that the system has a linear antenna
array and that the received signals result from a plane wave. The line segment joining the
source of this plane wave to the antenna array makes some angle a with the line containing
the linear array. The outputs of the antenna phase shifters are operated on by the signal
processor. The output of the signal processor in Fig. 13 is equal to the sum of the outputs

of the phase shifters. We assume that any noise entering the signal processor can be

neglected.
Noise
i -———
Bl | Estimator |

_— — 1}

Y—* & '. | Controller |
]

T

—o

Fig. 13. Direction-finding system using an adder
as a signal processor.
The controller-estimator unit is to be designed to have an output @ which is an
optimal estimate (in a sense specified below) of the angle a. The control unit is to be de-
signed to vary the phase shifts Bl" cey Bm in such a way that the signal-to-noise ratio at

the output of the signal processor is maximized. The "effective direction' of maximum gain

37

(see Fig. 14) of the antenna array can be varied by changing the phase shifts Bl" c, ﬁm.

37To see this, note that the phase difference between the signals received by different an-

tennas in the array depends on the spacing between the antennas and the angle of incidence
of the plane wave on the linear array. (See the discussion given above concerning Fig. 12.)
Thus, if the phase shifts of the antenna filters 8y,...,8,, are chosen to cancel these phase
differences, the signal level at the output of the signal processor will be 2 maximum.

Thus we refer to the effective direction of maximum gain of the antenna array as the direc-
tion from which the received signal will yield maximum signal level at the output of the
signal processor.
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line containing linear array

\ antenna array

Fig. 14. Effective antenna gain pattern.

The effective direction of maximum gain is taken to be the direction of maximum array gain
as measured at the output of the signal processor. We let Q, = 010(61,. .. ,Bm) (not to be con-
fused with the source angle ) denote this angle corresponding to the effective direction of
maximum gain.

We assume that the spacing of the antennas in the array is such that the noise
present on different antennas is independent. Then it is reasonable to define the optimal
estimate @ as that which maximizes the signal-to-noise ratio at the output of the signal
processor. Thus the control unit must be designed to choose the phase shifts Bl" .. ’Bm
which maximize the signal-to-noise ratio at the output of the signal processor. The cor-
responding angle aO(Bl, e ,Bm) will then equal @ .

Note that in this case we have defined the optimal estimate in such a way that
the optimal controller and the optimal estimator can be designed separately. The details
of determining how the maximum signal-to-noise ratio is to be obtained are not considered
here.

In conclusion, there is generally no one ''best' method for designing a direction-
finding system have a given form. It is usually difficult to say what cost function is best for
any particular system. There are other factors such as reliability of operation, or (dollar)
cost of building the system, which help to determine which "optimal' system should be used

for a particular direction-finding application.
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7. CONCLUSIONS

This memorandum illustrates a variety of electronic warfare problems which
can be treated using the techniques of modern control theory. A quadratic type cost function
was used for those problems in which the resulting optimal control problem was practically
significant. The discrete-time formulation was used for the problems considered because
the resulting difference equations are more easily handled on a digital computer and because
of the added insight it provides into possible methods of solution.

The problems formulated in this memorandum are only representative of the
types of problems which can be treated within the framework of modern control theory; they
do not exhaust the class of electronic warfare problems which can be considered. Moreover,
it should be kept in mind that solutions have not yet been obtained for all of the problems

formulated in this memorandum.
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