
GAFA, Geom. funct. anal.
Vol. 15 (2005) 962 – 1003
1016-443X/05/050962-42
DOI 10.1007/s00039-005-0531-x
ONLINE FIRST: September 2005
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GAFA Geometric And Functional Analysis

HARMONIC CURRENTS OF FINITE ENERGY
AND LAMINATIONS

J.E. Fornæss and N. Sibony

Abstract. We introduce a notion of energy for harmonic currents of bi-
degree (1, 1) on a complex Kähler manifold (M,ω). This allows us to
define

∫
T ∧ T ∧ ωk−2, for positive harmonic currents. We then show that

for a lamination with singularities of a compact set in P
2, without directed

positive closed currents, there is a unique positive harmonic current which
minimizes energy. If X is a compact laminated set in P

2 of class C1 it
carries a unique positive harmonic current T of mass 1. The current T can
be obtained by an Ahlfors type construction starting with an arbitrary leaf
of X. When X has a totally disconnected set of singularities, contained in a
countable union of analytic sets, the above construction still gives positive
harmonic currents.

1 Introduction

The notion of invariant probability measure is a quite central notion in
dynamical systems. It permits in particular to study statistical properties
of orbits. The corresponding notion for smooth foliations of a compact
Riemannian manifold was introduced by L. Garnett [G]: it is the notion
of harmonic measure. She proved their existence and studied their ergodic
properties. The article by A. Candel [Ca] contains a more recent approach
to that theory.

Let X be a compact set in a complex manifold M. When X is laminated
by Riemann surfaces, the Garnett result implies the existence of a positive
current T of bidimension (1, 1) which is harmonic, i.e. such that i∂∂T = 0.
Moreover in a flow box B, the current can be expressed as

T =
∫
hα[Vα]dµ(α) ,

the functions hα are positive and harmonic on the local leaves Vα, and µ
is a measure on the transversal. On the other hand there is a well-known
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problem. Does there exist a compact laminated set X in P
2 which is not

a compact Riemann surface? See [CLS], [BoLM], [Gh] and [Z], where the
problem is discussed. If such an X does not exist then the closure of any
leaf L of a holomorphic lamination in P

2 will contain a singularity.
For nonexistence of Levi flat hypersurfaces in P

2, see [S2], [CaoSW]
and [I]. When X is a C1 laminated compact set in P

2, so that no leaf
is a compact Riemann surface, a result by Hurder–Mistumatsu [HM] im-
plies that it supports no positive closed current directed by the lamination.
Deroin [Der], using a result by S. Frankel [Fr] has shown that an immersed
Levi-flat hypersurface X in P

2 does not carry a positive harmonic current
with a strictly positive continuous density with respect to Lebesgue mea-
sure.

In a recent paper Loray and Rebelo [LoR] have made important progress
in the study of holomorphic foliations of P

k by Riemann surfaces. They
show in particular that for any degree d ≥ 2, there is a non-empty open set
of foliations with singularities of degree d, such that every leaf is dense in P

k.
It seems that this should be the generic case for this class of holomorphic
foliations with singularities. It is then of interest to extend Garnett’s theory
of harmonic measure to laminations with singularities.

In a recent work with B. Berndtsson, the second author, [BS] proved the
existence of directed positive harmonic currents for holomorphic foliations
with singularities. It is however useful to develop an intersection theory of
such positive harmonic currents.

In this paper we study harmonic currents. For example in P
2 a harmonic

current T can be written in the form
T = cω + ∂S + ∂S

where ω is the standard Kähler form on P
2, c ∈ R, S is a (0, 1) current.

It turns out that ∂S depends only on T and that for a harmonic current
one can define the energy E(T ) of T by the following integral, when ∂S is
in L2,

E(T ) =
∫
∂S ∧ ∂S

and that 0 ≤ E(T ) < ∞. It is hence possible to introduce a Hilbert space
of classes of currents of finite energy. We prove that positive harmonic
currents have finite energy. With this in hand, the integral

Q(T ) =
∫
T ∧ T

makes sense for positive harmonic currents and has the usual meaning when
T is smooth. The theory extends to compact Kähler manifolds. We apply
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this intersection theory to positive harmonic currents directed by a lam-
inated set with singularities in a complex Kähler surface M . More pre-
cisely we consider compact sets X laminated by Riemann surfaces out of
an exceptional set E. We will assume that E is locally pluripolar and that
X \E = X. We will call such a set (X,L, E) a laminated compact set with
singularities. On such sets, we consider harmonic currents T of order 0 and
bidegree (1, 1) in M . We then prove (Theorem 3.9)

Theorem 1.1. Let (X,L, E) be a laminated compact set with singularities
on a compact Kähler surface. There is a closed positive laminated current
on X or there is a unique positive harmonic laminated current T on X
minimizing energy.

We then study the geometric intersection of laminated currents. We
show, see Theorem 3.9 and Theorem 6.2,

Theorem 1.2. If X is a C1 laminated compact set in P
2, not containing

a compact curve, then X carries a unique laminated positive harmonic
current T of mass 1. The class of the current T is extremal in the cone of
positive harmonic currents. Moreover

∫
T ∧ T = 0.

A problem that is left open in our approach is how to estimate

c(P2) := inf
{∫

T ∧ T ;
∫
T ∧ ω = 1 , T ≥ 0 , i∂∂T = 0

}

.

If c(P2) > 0, then there is no C1 laminated set in P
2.

When X is not C1 we have to assume “finite transverse energy” to get
the result in Theorem 1.2. The main tool is that the quadratic form Q is
negative definite on the hyperplane

{
T ;

∫
T ∧ ω = 0

}
, Corollary 2.10.

It follows from results of Lins Neto and Soares [LS] that a generic holo-
morphic foliation of P

k by Riemann surfaces does not admit a directed
positive closed current. So in particular the above results apply to the fo-
liations studied by Loray–Rebelo. In that case the minimal set X is equal
to P

2.

When X is a compact space and f : X → X is a continuous map one
can construct invariant measures by taking cluster points of 1

N

∑N−1
i=1 δf i(x),

where δa denotes the Dirac mass at the point a. When f is uniquely ergodic
all such cluster points are equal to the unique invariant measure µ.

We introduce an averaging process à la Ahlfors along the leaves. We
recall the classical Ahlfors process. Given a holomorphic map φ : C →M,
let ∆r denote the disc of radius r. We define the current Sr = [φ∗(∆r)]

‖[φ∗(∆r)]‖
where ‖[φ∗(∆r)]‖ denotes the mass of the current of integration on φ∗(∆r).
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It follows from the estimates of Ahlfors that there are sequences rn → ∞
such that Srn converges weakly to a positive closed current S. In our case,
there is no positive closed current on X directed by L. Hence the leaves
are covered by the unit disc. Mimicking the Ahlfors approach we construct
instead a positive harmonic current. Let φ : ∆ → L be the universal
covering map from the unit disc to a leaf L. Let Gr(z) = 1

2π log+ r
|z| . Define

Tr := φ∗(Gr[∆]), r < 1. If A(r) is the mass of Tr we define
τr := Tr

A(r) .

When (X,L, E) is a laminated set with singularities such that E is totally
disconnected, and contained in a countable union of analytic sets disjoint
from X \ E, we show that all cluster points of (τr) are positive harmonic
currents directed by L. For that purpose we need to estimate the derivative
of φ, the estimates are valid for any laminated set. This is the analogue
of the Krylov–Bogoloubov construction of invariant measures. It will be of
interest to prove an ergodic theorem using this averaging procedure. When
X is a C1 laminated set in P

2 we get, since it carries a unique positive
harmonic current T of mass one, that

lim
r→1

τr = T .

Acknowledgement. We thank the referee for his careful reading. He
helped to improve the exposition.

2 Harmonic Currents

2.1 Harmonic currents.

Definition 2.1. Let M be a compact complex manifold of dimension k.
For 0 ≤ p, q ≤ k, let T be a (p, q) current on M of order 0. We say that T
is harmonic if i∂∂T = 0.

Observe that if T is harmonic then T , the conjugate, is also harmonic.
A current is real if T = T , in which case p = q.

Decomposition of harmonic currents. We want to prove a repre-
sentation theorem for real harmonic currents on compact Kähler manifolds.
So from now on M will be a compact Kähler manifold.

There is also a notion of � harmonic forms in the ∂ literature [FK],
[De1]. These are smooth (p, q) forms Ω for which �Ω = (∂ ∂∗ + ∂

∗
∂)Ω = 0.

These forms consist of the common null space of ∂ and ∂∗. Note that when
p = q, � = � so the conjugate of a � harmonic form is also � harmonic.
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Since � harmonic forms are ∂ closed they are also harmonic in the sense
of currents as defined above. The operator � is elliptic, selfadjoint. For
basics on Hodge theory we refer to [De1]. According to the theory of elliptic
operators there is an operator G so that Id = H + G� = H + �G. The
operator H = H2 is a projection on � harmonic forms and G is a Green
operator, which extends to currents and is continuous for the weak topology
of currents.

On a compact Kähler manifold, for a closed current u of bidegree (p, q),
the following are equivalent:

i) u is exact;
ii) u is ∂ exact;
iii) u is ∂∂ exact.

See Demailly [De1, p. 41] for smooth forms. The proof is the same for
currents since cohomology groups for currents and smooth forms are the
same [De2].
Proposition 2.2. Let T be a harmonic (p, q) current on a compact Kähler
manifold M of dimension k. Then

T = Ω + ∂S + ∂R (1)
where Ω is a unique closed smooth � harmonic form of bidegree (p, q), and
S is a current of bidegree (p − 1, q), R is of bidegree (p, q − 1). When T is
real we can choose R = S. If T and dT are of order 0, one can choose S,R
of order 0. Moreover the linear map

L : T → (Ω, S,R)
is continuous in the topology of currents.

Proof. The current ∂T is ∂ closed, hence d closed and is ∂ exact. It follows
from the ∂∂ lemma that ∂T is ∂∂ exact so there is a current S0 of bidegree
(p− 1, q) such that

∂T = ∂∂S0 .

One can choose the canonical solution given by Hodge theory, hence it
satisfies 〈S0, β〉 = 0 for all � harmonic forms β. Then S0 depends linearly
on T and is of order zero if ∂T is of order zero.

Let Ω be a smooth � harmonic representative of the Dolbeault coho-
mology class of T −∂S0. (See [De1] and [V].) Then T −∂S0 −Ω is ∂ exact.
Hence

T = Ω + ∂S0 + ∂R .

If T is real we obtain that T can be expressed as claimed.
The current T acts on Hn−p,n−q, the Dolbeault cohomology group, be-

cause of the ∂∂ lemma. Hence Ω is uniquely determined by T.
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The continuity follows from the ellipticity of � [De1, p. 17]. �
In [DiS1, Proposition 2.1] an explicit kernel is given to solve ∂∂ on a

compact Kähler manifold when the right-hand side is a difference of positive
closed currents. In this case the solution is a difference of negative forms.
Proposition 2.3. If T is as in (1), then S,R are not unique, but any other
S′, R′ can be obtained as S′ = S + Ω′ + ∂v + ∂u, similarly for R′.

Proof. The cohomology class Ω is defined uniquely. If S′, R′ is another
solution we get ∂(S − S′) + ∂(R−R′) = 0. Assume ∂σ + ∂σ′ = 0. Then σ
is harmonic. Using the above construction for a harmonic (p − 1, q) form,
we get

S − S′ = σ = Ω′ + ∂v + ∂u .

Hence
S = S′ + (Ω′ + ∂v + ∂u) . �

Corollary 2.4. Let T be a harmonic current of bidegree (1, p) on (M,ω).
Let T = Ω+∂S+∂R be any decomposition as in (1). Then ∂S is uniquely
determined by T . In particular it does not depend on the Kähler structure
on M . If p = 1 and T is real, then T is closed if and only if ∂S = 0.

Proof. If S′, R′ also satisfy T = Ω + ∂S′ + ∂R′ then, following Proposi-
tion 2.3, for bidegree reasons S′ = S + Ω′ + ∂u. Consequently ∂S′ = ∂S.
Assume that T is a real (1, 1) current. If T is closed, then ∂T = 0; hence,
S0 in the proof of Proposition 2.2 can be chosen to be zero, i.e. ∂S = 0.
Conversely, if T = Ω + ∂S + ∂S and ∂S = 0, and θ is any test form, we
have

〈T, ∂θ〉 = −〈∂T, θ〉 = 〈−∂∂S, θ〉 = 0 .
Hence T is closed. �

As Proposition 2.2 shows, the space of harmonic currents is infinite
dimensional. The cone of positive harmonic currents is also infinite dimen-
sional. It posseses however some properties reminiscent of rigidity proper-
ties of analytic objects.

• The complement of the support of a positive harmonic current of
bidimension (k − 1, k − 1) is pseudoconvex. For bidegree (s, s) it is
(k − s, k − s) pseudoconvex. See [FoS, Corollary 2.6].

• It is an observation by Skoda [Sk] that for a positive harmonic current
T of bidimension (p, p) it is possible to define a Lelong number ν(T, a)
at every point.

ν(T, a) = lim
r→0

1
r2pcp

∫

B(a,r)
T ∧ ωp.
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This permits us to show that positive harmonic currents give no mass
to sets of 2p-Hausdorff dimension 0 [BS, p. 389].

• For positive harmonic currents of bidimension (1,1) one can solve the
∂ equation on the current with L2 estimates [BS].

For a positive current T of bidimension (p, p) we define the mass norm
of T as ‖T‖ =

∫
T ∧ ωp.

In order to compute with positive harmonic currents on compact Kähler
manifolds, it is useful to approximate such currents by smooth ones. This is
easy when the manifold is homogeneous, but false in general. The following
result recently proved by Dinh and the second author is sufficient for most
computations.
Theorem 2.5 [DiS2]. Let T be a positive harmonic current of bidegree
(p, p) on a compact Kähler manifold (M,ω). Then there exist smooth
positive harmonic forms T±

n such that T+
n − T−

n → T weakly. Moreover,
‖T±

n ‖ ≤ CM‖T‖, where CM is independent of T .

2.2 Energy of harmonic currents. In this paragraph we introduce
a notion of energy of harmonic currents of bidegree (1, 1) on a compact
Kähler manifold (M,ω) of dimension k. We normalize ω so that

∫
ωk = 1.

We showed above that if T is a real harmonic (1, 1) current on M, then
it can be represented as

T = Ω + ∂S + ∂S

with S of bidegree (0, 1), Ω is a � harmonic form and ∂S is uniquely
determined. We define the energy E(T ) = E(T, T ) of T as

E(T, T ) =
∫
∂S ∧ ∂S ∧ ωk−2

when ∂S ∈ L2. Observe that ∂S is a (0, 2) form. Hence 0 ≤ E(T, T ) <∞.
We have seen in Corollary 2.4 that the energy depends on T only, not on
the choice of S.

Let 〈Ω1,Ω2〉 be some scalar product on the finite dimensional space of
� harmonic (1, 1) forms.

We define He to be the space of real harmonic (1, 1) currents on M of
finite energy. We consider on He the following (real) inner product and
semi norm:

〈T1, T2〉e = 〈Ω1,Ω2〉 + 1
2

∫
∂S1 ∧ ∂S2 ∧ ωk−2 + 1

2

∫
∂S2 ∧ ∂S1 ∧ ωk−2

‖T‖2
e = 〈Ω,Ω〉 +

∫
∂S ∧ ∂S ∧ ωk−2.
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Proposition 2.6. Let T = Ω + ∂S + ∂S, ∂S ∈ L2, a (1, 1) real harmonic
current of order 0 in M . Then ‖T‖e = 0 if and only if T = i∂∂u, for
u ∈ L1, u real.

Proof. If ‖T‖e = 0, then ∂S = 0, hence T is closed. Since Ω = 0, T is exact
and therefore T = i∂∂u [De1]. Regularity of the Laplace equation shows
that u ∈ L1. Conversely, suppose that T = i∂∂u, u ∈ L1, u real, so we can
set S = 1

2 i∂u. Then ∂S = 0, hence
∫
∂S ∧ ∂S ∧ωk−2 = 0. Clearly also, the

corresponding � harmonic form vanishes, so ‖T‖e = 0. �

Proposition 2.7. There is a constant C = C(M) so that if T is a real
harmonic (1, 1) current of order 0 on M, with finite energy, then there is
an element T̃ in the equivalence class of T , i.e. ‖T − T̃‖e = 0, which can be
written as T̃ = Ω+∂S+∂S with S, ∂S, ∂S ∈ L2, ‖S‖L2 , ‖∂S‖L2 , ‖∂S‖L2 ≤
C‖T‖e. Hence T = T̃ + i∂∂u and i∂∂u is of order 0.

Proof. We can write T = Ω+∂S1 +∂S1 with ∂S1 ∈ L2. Since ∂S1 is in L2,
we can find an S ∈ L2

01 for which ∂S1 = ∂S. Moreover, ∂S ∈ L2 as well.
Recall that by Hodge theory on compact Kähler manifolds, if a form α is
in L2 and is ∂ exact, then the equation ∂u = α admits a solution in the
Sobolev space H1. So there is a gain of one derivative. The L2 estimates
are classical [FK], [De1].

By Proposition 2.3, there is a � harmonic form Ω′ and a distribution v
for which S1 − S = Ω′ + ∂v. Therefore we have the decomposition

T = Ω +
[
∂(S + ∂v)

]
+

[
∂(S + ∂v)

]

= Ω + ∂S + ∂S + ∂∂v + ∂∂v

= T̃ + i∂∂

(
v − v

i

)

.

The distribution u := v−v
i is real. Since T, T̃ have order 0, i∂∂u is also

of order 0.
By Proposition 2.6, ‖∂∂u‖e = 0. It follows that T̃ := Ω + ∂S + ∂S is in

the equivalence class of T as desired. �

Let He denote the quotient space of equivalence classes [T ] in He.

Proposition 2.8. The space He is a real Hilbert space. Every element
[T ] in He can be represented as

T = Ω + ∂S + ∂S

where S is a (0, 1) form in L2, with ∂S and ∂S in L2. Convergence in He

implies weak convergence of currents. More precisely, if [Tn] → [T ] in He
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then there are representatives T̃n ∈ [Tn] such that T̃n → T in the weak
topology of currents. In fact the mass norms ‖T̃n − T‖ → 0.

Proof. We show first that He is complete. Let {[Tn]} be a Cauchy se-
quence of equivalence classes, limn,m→∞ ‖Tn − Tm‖e = 0. We can suppose
‖Tn+1 − Tn‖e < 1/2n. Inductively, we can (Proposition 2.7) choose repre-
sentatives T̃n so that
T̃n+1 = T̃n + Ωn + ∂Sn + ∂Sn , ‖Ωn‖, ‖∂Sn‖L2 , ‖Sn‖L2 , ‖∂Sn‖L2 ≤ C 1

2n .

Hence {[Tn]} converges in He. This shows that He is complete. The
last statement is similar. �

Next, we will introduce a notion of wedge product of real harmonic
currents of finite energy. Let T, T ′ be representatives of equivalence classes
as above,

T = Ω + ∂S + ∂S , T ′ = Ω′ + ∂S′ + ∂S′ .
Then a formal calculation gives

∫
T ∧ T ′ ∧ ωk−2 =

∫
Ω∧Ω′∧ωk−2 +

∫
∂S∧∂S′∧ωk−2 +

∫
∂S∧∂S′∧ωk−2

=
∫

Ω∧Ω′∧ωk−2 −
∫
∂S∧∂S′∧ωk−2 −

∫
∂S∧∂S′∧ωk−2.

Notice that if T, T ′ have finite energy, the last expression is well defined.
We define in this case the quadratic form Q(T, T ′) for currents T, T ′ of finite
energy:

Q(T, T ′) =
∫

Ω∧Ω′ ∧ ωk−2 −
∫
∂S ∧ ∂S′ ∧ ωk−2 −

∫
∂S ∧ ∂S′ ∧ ωk−2

and, motivated by the formal calculation, we define
∫
T ∧ T ′ ∧ ωk−2 := Q(T, T ′)

when T, T ′ are harmonic (1, 1) currents on M with finite energy. Recalling
the definition of energy, we get

∫
T ∧ T ∧ ωk−2 = Q(T, T ) =

∫
Ω ∧ Ω ∧ ωk−2 − 2E(T, T ) .

Note that Q(T, T ′) is well defined on equivalence classes in He.

Theorem 2.9. Any positive harmonic current T of bidegree (1, 1) on M is
of finite energy. If a sequence (Tn) of positive harmonic currents converge
weakly to T, then [Tn] → [T ] weakly in He. The quadratic form Q(T, T ′)
is continuous on He. If M is homogeneous then

∫
T ∧ T ∧ ωk−2 ≥ 0 when

T is a positive harmonic current.
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Proof. Assume first that T is smooth, then T = Ω+∂S+∂S with Ω smooth
and S smooth. We get, after integration by parts,∫

T ∧ T ∧ ωk−2 =
∫

Ω ∧ Ω ∧ ωk−2 + 2
∫
∂S ∧ ∂S ∧ ωk−2

=
∫

Ω ∧ Ω ∧ ωk−2 − 2
∫
∂S ∧ ∂S ∧ ωk−2

≥ 0 .
So

2
∫
∂S ∧ ∂S ∧ ωk−2 ≤

∫
Ω ∧ Ω ∧ ωk−2.

Assume (T+
n ) is a sequence of smooth harmonic currents, T+

n → T+

weakly.
Then we can write T+

n = Ωn + ∂Sn + ∂Sn and T+ = Ω + ∂S + ∂S,
with Ωn → Ω and Sn → S weakly. Indeed Sn and S are constructed using
canonical solutions to the equations ∂T+

n = ∂∂Sn, ∂T
+ = ∂∂S.

We have seen that

2
∫
∂Sn ∧ ∂Sn ∧ ωk−2 ≤

∫
Ωn ∧ Ωn ∧ ωk−2.

The T+
n have bounded mass, hence their classes Ωn are bounded. Using

a basis for the finite dimensional space H(1,1), it follows that −Cω ≤ Ωn

≤ Cω.
Hence the left-hand side is bounded by a fixed constant. So any weak

limit of ∂Sn is equal to ∂S and hence

2
∫
∂S ∧ ∂S ∧ ωk−2 ≤

∫
Ω ∧ Ω ∧ ωk−2.

Consequently T+ is in He. The same argument shows that ∂Sn ⇀ ∂S
in L2 and hence [Tn] ⇀ [T ] weakly in He.

Theorem 2.5 implies that any positive harmonic current T on M , can
be written T = T+ − T−, with T± = limT±

n , and ‖T±
n ‖ ≤ CM‖T‖, T±

n , T
positive, T±

n smooth. So T is in He and∫
∂S ∧ ∂S ≤

∫
Ω+ ∧ Ω+ ∧ ωk−2 +

∫
Ω− ∧ Ω− ∧ ωk−2 ≤ C‖T‖ ,

where C depends only on M . It remains to show the last part of the theo-
rem. First we show that

∫
T ∧ T ∧ ωk−2 ≥ 0 if T ≥ 0 can be approximated

by positive smooth harmonic currents. Secondly we show that smoothing
works when M is homogeneous.

If T, T ′ are in He then we have the estimate∣
∣Q(T, T ′)

∣
∣ ≤ C‖T‖e‖T ′‖e .

So Q is continuous on He.
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If T = lim Tn, with Tn ≥ 0 smooth and harmonic, then
∫
∂S ∧ ∂S ∧ ωk−2

≤ lim inf
∫
∂Sn∧∂Sn∧ωk−2. Hence

∫
T∧T∧ωk−2 ≥ lim sup

∫
Tn∧Tn∧ωk−2

≥ 0. So
∫
T ∧ T ∧ ωk−2 ≥ 0.

When M is homogeneous, any positive harmonic current T is the limit
of a sequence of positive smooth harmonic currents. Indeed define Tε =
Ωε + ∂Sε + ∂Sε with

Sε =
∫
ρε(g)g∗Sdν(g) ,

ν is the Haar measure on the component of the identity in Aut0(M), and
ρε is an approximation of unity on Aut0(M).

In this case we have ∂Sε → ∂S in L2 and hence E(Tε, Tε) → E(T, T ). �

One can define a notion of positivity in He. A class [T ] is positive if
there is a positive harmonic current in the class [T ]. We denote the convex
cone of positive classes by Ke. If T = T1 + i∂∂u and −T = T2 + i∂∂v, with
Tj ≥ 0, then T1 + T2 = i∂∂w. It follows that

∫
(T1 + T2) ∧ ωk−1 = 0 so

T1 = T2 = 0. Consequently Ke ∩ (−Ke) = 0. The cone Ke is closed in He.
If Tn ≥ 0 and [Tn] → [T0] then

∫
Tn ∧ ωk−1 is bounded. So we can assume

that (Tn) converges weakly to the positive current T0 and by Theorem 2.9
[T ′

0] = [T0].
We have seen that any element T of He can be written

T = Ω + ∂S + ∂S

where Ω is a � harmonic form. By Proposition 2.2, Ω is unique, so the
map T → Ω is linear. Moreover T → Ω is continuous in the topology of
currents.

We consider as in Hodge theory the “primitive” classes of harmonic
currents. Let [Ω] and [ω] denote the classes in the Dolbeault cohomology
groupH(1,1)(M). Note that [Ω]∧[ω]k−1 is a (k, k) form proportional to [ω]k.

Define

H =
{
T ;T ∈ He , [Ω] ∧ [ω]k−1 = 0

}
=

{

T ;T ∈ He ,

∫
T ∧ ωk−1 = 0

}

.

Clearly H is a hyperplane in He. It is the hyperplane of harmonic
currents with primitive class Ω, in fact this is how primitive classes are
defined, i.e. by [Ω] ∧ [ω]k−1 = 0. In this context, we give a version of the
Riemann–Hodge theorem.

Corollary 2.10. On He, the quadratic form

Q(T1, T2) =
∫
T1 ∧ T2 ∧ ωk−2
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is strictly negative definite on the hyperplane H. IfM is homogeneous and if
T, T ′ are positive harmonic currents, non-proportional, then

∫
T ∧ T ′ ∧ ωk−2

> 0. If [Ω] is the class of a positive harmonic current T and
∫

Ω ∧ Ω ∧ ωk−2

= 1, then T is non-closed if and only if 0 ≤ ∫
T ∧ T ∧ ωk−2 < 1.

Proof. Assume that the � harmonic form corresponding to T satisfies
[Ω] ∧ [ω]k−1 = 0. The classical Riemann–Hodge theorem [GrH, p. 123]
asserts that when [Ω] �= 0, we have

∫
Ω ∧ Ω ∧ ωk−2 < 0 .

Hence

Q(T, T ) =
∫

Ω ∧ Ω ∧ ωk−2 − 2
∫
∂S ∧ ∂S ∧ ωk−2 < 0 .

It is zero only if T = 0 in He. Hence Q is strictly negative definite on H.
Suppose the space generated by T ′, T is of dimension 2. There is an a > 0,
so that T ′ − aT ∈ H. Hence

0 > Q(T ′ − aT, T ′ − aT )

= Q(T ′, T ′) + a2Q(T, T ) − 2aQ(T ′, T ) .
When M is homogeneous we have seen in Theorem 2.9 that

Q(T ′, T ′), Q(T, T ) ≥ 0. It follows that Q(T ′, T ) > 0.
The last part is an immediate consequence of Corollary 2.4. �

Proposition 2.11. Let (M,ω) be a compact Kähler manifold. The func-
tion T → Q(T, T ) is upper semi-continuous for the weak topology on He

and for the weak topology on positive harmonic currents. It is strictly
concave on {T ;

∫
T ∧ ω = 1}.

Proof. First, we prove that T → Q(T, T ) is upper semi-continuous for the
weak topology of He. This means: Fix T1 ∈ He and ε > 0. Let T ′ ∈ He.
Then there is a δ > 0 so that if
T2 ∈ He ,

∣
∣〈T2, T

′〉e − 〈T1, T
′〉e

∣
∣ ≤ δ , then Q(T2, T2) < Q(T1, T1) + ε .

The function Q is the sum of a continuous function
∫

Ω∧Ω∧ωk−2, and of
− ∫

∂S ∧ ∂S ∧ ωk−2 = −‖T‖2
e + 〈Ω,Ω〉. Hence it is upper semi-continuous

for the weak topology on He. We have shown in Theorem 2.9 that if Tn ≥ 0
and Tn ⇀ T weakly as positive currents, then Tn → T weakly in He.

To prove concavity, observe that if
∫
(T−T ′)∧ωk−1 = 0 then T−T ′ ∈ H.

Hence Q(T − T ′, T − T ′) < 0, so 2Q(T, T ′) > Q(T, T ) + Q(T ′, T ′). Hence
Q

(
T+T ′

2 , T+T ′
2

)
> 1

2Q(T, T ) + 1
2Q(T ′, T ′). �

Notice that C = Ke ∩ {T ;
∫
T ∧ ωk−1 = 1} is weakly compact in He.
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Proposition 2.12. Let M be a compact Kähler manifold. Let C =
Ke ∩ {T ;

∫
T ∧ ωk−1 = 1}. If T0 ∈ C and Q(T0, T0) = inf{Q(T, T );T ∈ C}

=: m, then [T0] is extremal in C. In particular, if M is homogeneous and
Q(T0, T0) = 0, then [T0] is extremal in Ke.

Proof. If [T0] = [T1]+[T2]
2 and Q(Tj , Tj) ≥ m, j = 1, 2 then Q(T0, T0) >

m by strict concavity of Q. When M is homogeneous we have seen in
Theorem 2.9 that Q(T, T ) ≥ 0 for every T ∈ Ke. �

The next proposition shows that the energy norm on currents gives a
different topology than the weak topology on positive harmonic currents.

Proposition 2.13. The map T → ∂S is not continuous for the weak
topology on positive harmonic currents T of bidegree (1, 1) on P

2 and L2

topology on ∂S. However, the map is continuous for the He topology on T
and the L2 topology on ∂S.

Proof. The standard Kähler form ω on P
2 is a generator for H(1,1)(P2).

In the case of (1, 1) harmonic currents T on P
2, one can decompose T =

cω + ∂S + ∂S if T is real, c ∈ R. Let T = ω + ε(∂S + ∂S) for a smooth
(0, 1) form S supported in the unit bidisc. For ε > 0 small enough, T is
positive and

∫
T ∧ T =

∫
ω ∧ ω − 2ε2

∫
∂S ∧ ∂S < 1. If the map T → ∂S

with weak topology on T and L2 topology on ∂S were continuous then,
when Tn → T0,

∫
Tn ∧ Tn → ∫

T0 ∧ T0. Let f be an endomorphism of P
2

of algebraic degree d. The map f∗ : He → He is a linear map of norm d if
the algebraic degree of f is d. Indeed

∣
∣
∣
∣

∫
f∗T ∧ ω

∣
∣
∣
∣

2

=
∣
∣
∣
∣

∫
T ∧ f∗ω

∣
∣
∣
∣

2

= d2

∣
∣
∣
∣

∫
T ∧ ω

∣
∣
∣
∣

2

,

because f∗ω ∼ dω. We also have
∣
∣
∣
∣

∫
f∗(∂S ∧ ∂S)

∣
∣
∣
∣ = d2

∣
∣
∣
∣

∫
∂S ∧ ∂S

∣
∣
∣
∣.

This can be obtained by smoothing.
Therefore E(f∗T/d) = E(T ) so

∫
f∗T/d ∧ f∗T/d =

∫
T ∧ T .

Let f [z : w : t] = [z2 : w2 : t2] and T = ω + ε(∂S + ∂S) as above. Then

1 >
∫
T ∧ T

=
∫

(fn)∗T/2n ∧ (fn)∗T/2n
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=
∫

(fn)∗ω/2n ∧ (fn)∗ω/2n − 2
∫
∂(fn)∗(S)/2n ∧ ∂(fn)∗(S)/2n

= 1 − 2
∫
∂(fn)∗(S)/2n ∧ ∂(fn)∗(S)/2n.

If we choose S = a(|z|, |w|)dz it is easy to check that (fn)∗S/2n → 0 weakly.
Hence (fn)∗T/2n converges weakly to a closed current A = lim (fn)∗ω/2n

whose class in H(1,1) is [ω]. If T → ∂S were continuous, the second integral
would converge to zero. Since

∫
ω ∧ω = 1, we get that the map T → ∂S is

not continuous, since the first integral is equal to 1 and the second converges
to zero.

The last statement follows from the definition of the weak topology
in He. �

3 Laminated Compact Sets with Singularities

Let M be a compact complex manifold of dimension k. We will say that
the triple (X,L, E) is a laminated compact with singularities if it satisfies
the following conditions:

(i) X,E are compact subsets of M with E ⊂ X and X \E = X;
(ii) E is locally a pluripolar set, called the singular set;
(iii) X \ E has the structure of a lamination L by Riemann surfaces.

Recall that a closed set E is locally pluripolar if any point a in E has
a neighborhood U(a) such that E ∩ U(a) ⊂ {z; z ∈ U(a), u(z) = −∞}
where u is plurisubharmonic in U(a). It is locally complete pluripolar if
E ∩ U(a) = {z; z ∈ U(a), u(z) = −∞}. An analytic set is locally complete
pluripolar. For basics on pluripolar sets and extension results of positive
closed currents, see the book by Demailly [De2].

A closed subset Y of a complex manifold M is laminated by Riemann
surfaces if it admits an open covering {Ui} and on each Ui there is a home-
omorphism φi = (hi, λi) : Ui ∩ Y → ∆(zi) × Ti(ti) where ∆ is the unit disc
and Ti is a topological space. The φ−1

i are holomorphic in z. Moreover,
φij(zi, ti) = φj ◦ φ−1

i (zi, ti) =
(
hij(zi, ti), λij(ti)

)

where the hij(zi, ti) are holomorphic with respect to zi.

When Ti is in a Euclidean space and φi extend to Ck diffeomorphisms,
we say that the lamination is Ck. We call the Ui flow boxes, {λi = t0} is a
plaque. A leaf is a minimal connected set such that if L intersects a plaque,
then L contains the plaque. We will say that (X,L, E) is oriented if there
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are continuous non-vanishing (1, 0) forms γj , j = 1, . . . , k − 1, defined on
X \E such that γj∧ [∆α] = 0 for every plaque ∆α; [∆α] denotes the current
of integration on the disc ∆α and the γj are pairwise linearly independent
over C. Otherwise, we can still find a larger finite set of γj of rank k − 1
everywhere.

A positive current T of bidimension (1, 1) with support in X is said to
be directed by L if on any open set U where L is defined by non-vanishing
continuous (1, 0) forms γj , j = 1 . . . , k − 1, i.e. γj ∧ [∆α] = 0, we have

T ∧ γj = 0 .
The wedge product makes sense because T has measure coefficients and

the forms γj are continuous.
It is interesting to introduce the notion of a minimal set for X.

Definition 3.1. A minimal set for (X,L, E) is a compact subset Y ⊂ X
such that Y is not contained in E, moreover Y \ E is a union of leaves L
and for every leaf L ⊂ Y \E, L = Y .

Proposition 3.2. Let (X,L, E) be such that there is a neighborhood
V of E, so that no leaf is contained in V. Then there are minimal sets
Y ⊂ X. Two different minimal sets intersect only on E. If M is a surface
where the Levi problem is solvable and E is locally contained in a complex
hypersurface, then any two minimal sets intersect.

Proof. Let V be an open neighborhood of E such that no leaf is contained
in V. Let (Xα) be an ordered decreasing chain saturated for L. Let X ′

α :=
Xα ∩ (X \ V). Then X ′

α �= ∅. Hence ∩Xα �= ∅. So Zorn’s lemma applies.
This shows that minimal sets exist.

If M is a surface, it follows that each M \ Y is locally pseudoconvex
away from E, and since E is locally contained in a complex hypersurface,
M \ Y is pseudoconvex [GrR]. If the Levi problem is solvable on M , i.e. if
pseudoconvex domains are Stein, each M \Y is Stein. Since Stein manifolds
cannot have two ends, it follows that any two minimal sets must intersect. �

Remark 3.3. Fujita [Fu] solved the Levi problem in P
k. See [E] for a

proof of this and some generalizations. The condition on E in the above
proposition, can be relaxed to assuming that E is meager in the sense of
[GrR].

Example 3.4. Let Lα be the foliation in P
2 defined in an affine chart

by wdz − αzdw = 0, with α real and irrational. Then Yc = {|z| = c|w|α}
is minimal for every c, the closure is in P

2. Let π denote the projection
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from C
3 \ 0 to P

2. The associated positive closed current T is defined by
π∗T = i∂∂u, u(z,w, t) = log(max{|z||t|α−1, c|w|α}) if α > 1 and is directed
by Lα.

Garnett has shown in [G] the existence of positive currents T , satisfying
i∂∂T = 0 and directed by foliations. In [BS] a version of this result is
given allowing singular sets. Here we are interested in constructing laminar
currents for a foliation with singularities that are only holomorphic motions
in flow boxes, the holomorphic case is treated in [BS].
Theorem 3.5. Let (X,L, E) be a directed set with singularities in a
surface M . Then there is a laminated harmonic positive current T , i.e. of
the form T =

∫
α hα[∆α]dµ(α) in flow boxes. Here µ(α) is a measure on

transversals, hα are strictly positive harmonic functions, uniformly bounded
above and below by strictly positive constants, hα are Borel measurable
with respect to α.

Proof. Let {γj} be a rank 1 finite collection of continuous (0, 1) forms such
that γj ∧ [∆] = 0 for every plaque ∆. In [BS, Theorem 1.4] a current T ≥ 0
supported on X satisfying i∂∂T = 0 and T ∧ γj = 0 is constructed. The
fact that E is locally pluripolar is used. It is shown that the current is
laminar in flow boxes when the foliation is holomorphic. We consider here
the general case, we need to modify the argument.

Let C be the convex compact set of positive currents of mass one, di-
rected by the lamination and supported on X. Any element T ∈ C, can be
written in a flow box B as T = ‖T‖iγ ∧ γ where ‖T‖ is a positive measure,
possibly zero.

Assume z = 0 is a transversal and π is the projection along leaves in B,
on (z = 0). Let (νw) be the disintegration of ‖T‖ along π. If φ is a smooth
test form of bidegree (1, 1) supported in B, then

〈T, φ〉 =
∫

〈νwiγ ∧ γ, φ〉dµ(w)

=
∫ 〈

ν̃w[Dw], φ
〉
dµ(w) ,

here [Dw] denotes the current of integration on the plaque through w and
ν̃w is a measure. Let VN denote the space of continuous functions on X,
compactly supported in a union N of finitely many (open) flow boxes and
C2 along leaves, with the topology of uniform convergence on X and C2

along leaves. We can use the previous formula to extend the action of T on
∂b∂bψ for ψ ∈ VN . On a plaque where w = f(z) we can identify ∂b∂bψ with
∂2ψ(z,f(z))

∂z∂z dz ∧ dz = ∂2ψ(z,f(z))
∂z∂z with abuse of notation. If (χj) is a partition
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of unity associated to ∪Bj = N and ψ ∈ VN , then we define

〈T, ∂b∂bψ〉 :=
∑

j

∫ 〈
[Dw]ν̃w,∆w(χjψ)

〉
dµ(w)

where ∆w denotes the Laplacian on Dw. Then T is continuous on VN .
Moreover if a sequence Tn in C converges weakly to T then it converges
also weakly in the dual of VN . Define WN = {β} ⊕ VN . Here {β} refers
to the space of (1, 1) forms where β is a C∞ (1, 1) form on M and we use
the supnorm topology on X for the forms {β}. Let W̃N denote the Banach
space completion of WN . Then each T ∈ C extends as a continuous linear
functional on W̃N . Hence we have a natural map Λ : C → W̃ ′

N , the dual
space of W̃N . If {Tn} ⊂ C is any sequence, replacing with a suitable
subsequence we can assume that Tn → T ∈ C in the weak topology of
currents. In addition to the norm topology on W̃ ′

N there is also the weak
topology from WN , i.e. the weak topology for which all elements of WN give
rise to continuous linear functionals on W̃ ′

N . Since this topology is weaker,
we obtain that Λ(C) is a convex compact set in this weak topology. Let
BN := {i∂∂φ} ⊕ VN as a subspace of WN .

Suppose that Λ(C) ∩B⊥
N = ∅. Then, by the Hahn–Banach theorem, it

follows that there is a continuous linear functional L : W̃ ′
N [WN ] → R so

that L ◦ Λ(T ) > δ > 0 for all T ∈ C. Moreover this linear functional is
given by an element of BN .

Hence there are functions φN ∈ C∞(M) and ψN ∈ VN [we extend
the latter trivially to X], such that 〈T, i∂∂φN ⊕ i∂b∂bψN 〉 ≥ δ > 0 for
every T in C. Hence the function uN := φN + ψN is continuous and
strictly subharmonic on leaves of L. The max of uN can be reached only
at a point z0 ∈ E. Choose r such that E ∩ B(z0, r) ⊂ {v = −∞} for v
plurisubharmonic near B(z0, r). Then u − δ

2 |z − z0|2 + εv will still have a
maximum at z1 near z0, z1 /∈ E, a contradiction.

Hence there is a current TN in C vanishing on BN . Taking a weak limit
we get a harmonic current T such that for any ψ continuous in a flow box
B and C2 along leaves ∫ 〈

[Dw]ν̃w,∆wψ
〉
dµ(w) = 0 .

Hence 〈ν̃w[Dw],∆wψ〉 = 0 µ a.e. So ν̃w is a positive harmonic function
on the leaf [Dw] µ a.e. �

The following corollary was suggested by T.C. Dinh.
Corollary 3.6. Let (X,L, E) be a laminated set with singularities in M .
Assume E does not support a non-zero positive harmonic current of
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bidimension (1, 1). Then there are minimal sets Y ⊂ X. In particular
for X ⊂ P

2 it is enough to assume that P
2 \ E is not contained in a Stein

domain.

Proof. Let Xα be an ordered decreasing chain saturated for L. Let (Tα)
be positive harmonic currents of bidimension (1, 1) of mass 1 supported
on Xα. If T is a cluster point of (Tα), then T is supported by ∩Xα, and
not only on E. Hence ∩(Xα \ E) is non-empty and saturated for L. In
section 2, we have seen recalled that the complement of the support of a
positive, harmonic current is pseudoconvex, hence Stein in P

2 [FoS]. �

Proposition 3.7. Let (X,L, E) be a compact laminated set in a compact
Kähler manifold M . Assume E is locally complete pluripolar. Let T be a
positive laminated harmonic current on X, which is extremal in the cone
of such currents. If A is a measurable set which is a union of leaves then A
has zero or full mass for T .

Proof. Define T1 = 1AT . Then T1 is clearly harmonic on M \E and T1 ≤ T .
Hence T1 has bounded mass and the extension by zero defines a current.
Since E is complete pluripolar, according to [DEE] the trivial extension T̃1

satisfies i∂∂T̃1 ≤ 0. The manifold being compact and Kähler, we get by
Stokes that i∂∂T̃1 = 0. Hence T̃1 = cT , c ≥ 0. So A is of zero or full
measure with respect to T . �

Theorem 3.8. Let (X,L, E) be a laminated set with singularities in a
complex Kähler surface M . There is a unique equivalence class of harmonic
currents directed by L of mass one and minimal energy.

Observe that we don’t assume X is minimal.
Proof. Let C1 = {T ;T ≥ 0,

∫
T ∧ ω = 1, T is L − directed, harmonic}.

Then C1 is compact in the weak topology of currents since the forms γj
directing the lamination are continuous. From Theorem 3.5 we know that
C1 is non-empty.

The energy is a lower semi-continuous function on C1 by Proposi-
tion 2.11. Since C1 is compact it now follows that E(T, T ) takes on a
minimum value c on C1.

If E(T, T ) = c and
∫
T ∧ ω = 1, then Q(T, T ) = 1 − 2c. If T, T ′

are two elements of non-collinear equivalence classes of currents where the
minimum c is reached, then Q

(
T+T ′

2 , T+T ′
2

)
> 1 − 2c by strict concavity

of Q (Proposition 2.10), a contradiction. So the minimum is unique. �
We next show that under mild extra hypotheses, equivalence classes of

laminated positive currents contain only one current. Recall that a current
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on a laminated compact X is said to be a laminated positive harmonic
current if in local flow boxes it has the form

∫
hα[Vα]dµ(α) for a positive

measure µ(α) on the space of plaques, and hα > 0, harmonic functions on
plaques Vα. The current is closed and laminated if the hα are constant.

Theorem 3.9. Let (X,L, E) be a laminated compact set with singularities
in a Kähler surface M . Suppose E is locally complete pluripolar with 2-
dimensional Hausdorff measure Λ2(E) = 0. Assume there is no non-zero
positive closed laminated current on X. Consider the convex compact set
C of laminated positive harmonic (1, 1) currents of mass 1. Then there is
a unique element T in C minimizing energy.

Lemma 3.10. Let (X,L, E) be as above. If T1, T2 are two positive lami-
nated harmonic currents such that [T1] = [T2], then T1 = T2.

Proof of the Lemma. Since [T1] = [T2], then it follows from Proposition 2.6
that T1 −T2 is closed. In a flow box we have Tj =

∫
hαj [Vα]dµj(α), j = 1, 2.

Let ν(α) = µ1(α) + µ2(α), so µj = rj(α)ν. Then

T1 − T2 =
∫ (

hα1 r1(α) − hα2 r2(α)
)
[Vα]dν(α) .

Since d(T1 − T2) = 0 it follows that
hα1 r1(α) − hα2 r2(α) ≡ c(α) .

We decompose the measure c(α)ν(α) on the space of plaques, c(α)ν(α) =
λ1 − λ2 for positive mutually singular measures λj . Then

T1 − T2 =
∫

[Vα]λ1(α) −
∫

[Vα]λ2(α) = T+ − T−

for positive closed currents T±. These locally defined currents fit together
to global positive closed currents on X \ E. Observe that the mass of T±

is bounded by the mass of T1 + T2.
Since E is locally complete pluripolar the trivial extensions of T± are

also closed [De2].
Consequently T± ≡ 0 and T1 = T2 on X \E. It follows from a theorem

by Skoda [Sk], mentioned in section 2, that no positive harmonic current
of bidimension (1, 1) can have mass on a set of 2-dimensional Hausdorff
measure Λ2 = 0. So T1 = T2. �

Proof of the theorem. Observe that we do not assume that X is minimal.
We know C is non-empty. We showed in Theorem 3.8 that the class of
currents minimizing energy is unique. The lemma implies that the current
T is unique. �
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Corollary 3.11. Let (X,L, E) be a laminated set with singularities in a
homogeneous compact Kähler surface M . Assume Λ2(E) = 0. At least one
of the following statements holds:

i) There is a closed positive laminated current of mass 1 on X.

ii) All positive laminated harmonic currents of mass one on X satisfy∫
T ∧T = 0. In this case the space they generate is of dimension one.

iii) There is a positive laminated harmonic current T of mass one on X
such that

∫
T ∧T > 0. In particular the current T0 minimizing energy

satisfies
∫
T0 ∧ T0 > 0.

Proof. If i), ii) don’t hold, then we can assume
∫
Tj ∧ Tj = 0, the {Tj}

being harmonic and linearly independent. By Corollary 2.10,
∫
T1 ∧ T2 > 0.

Hence Q
(
T1+T2

2 , T1+T2
2

)
> 0. �

Remark 3.12. The above corollary holds for surfaces such that every pos-
itive harmonic current is a limit of smooth positive harmonic ones. Oth-
erwise we can only say that either there is a unique current such that∫
T ∧ T = 0 or there are currents with

∫
T ∧ T �= 0.

In view of the previous corollary it is interesting to show that generically
for a holomorphic foliation by curves on P

k the first case does not occur.
Let F be a holomorphic foliation of P

k of degree d. It was proved by Lins
Neto and Soares, [LS] see also [LoR], that for a Zariski open set of foliations
of degree d, all the singular points are hyperbolic and no leaf is contained in
an algebraic curve. Let λ1, . . . , λk ∈ C be the eigenvalues of the linear part
of the vector field Zp defining the foliation near a singular point p. Then the
foliation is hyperbolic at p if for every (i, j), i �= j, λi/λj /∈ R. In such case
Chaperon [Ch] has shown that the foliation is topologically linearizable in
a neighborhood of p. The following result is well known according to the
referee. We give some indications for the non-experts.

Theorem 3.13. Let X be a minimal set for a holomorphic foliation F of
dimension 1, in the complex projective space. Assume X is not an analytic
set and that X contains a singular point p of hyperbolic type. Then there
is no non-zero positive closed current directed by F .

Proof. Suppose τ is a positive closed current on X directed by F . In [Br]
it is shown that if a closed current is directed by the foliation, then near
the hyperbolic point p, it should be supported by the separatrices. One
has to consider the case where p is in the Siegel domain. One can conclude
as follows. Let ν(T, q) denote the Lelong number of T at q. A theorem
of Siu [S1], [De2] asserts that Y := {q, ν(T, q) ≥ c} is an analytic set. In
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our case we know that this analytic set contains ∪�j=1Aj , a union of local
separatrices. Any irreducible branch of Y containing one of the A′

j gives a
global analytic set of M , contained in X and directed by F , contradicting
the assumption on X. Hence τ = 0. �

The following is an analogue (for singular laminations) of Theorem 1
in [G].

Theorem 3.14. Let (X,L, E) be a lamination with singularities in a
compact Kähler manifold M . Let CL denote the convex compact set of L-
directed positive harmonic currents of mass 1. Let T be an extreme point
in CL. If u ∈ L1(T ) and i∂∂(uT ) = 0, then u is constant |T | a.e.

Proof. If u is bounded, umust be constant a.e. by extremality. Assume next
that u is unbounded. Let (un) be a sequence of smooth functions un → u in
L1(T ). Let χ be a smooth convex function such that χ(t) = |t| for |t| large.
Then χ(un) → χ(u) in L1(T ). We want to show that i∂∂(χ(u)T ) = 0. We
compute
∂∂

(
χ(un)T

)
= χ′′(un)∂un ∧ ∂un ∧ T + χ′(un)∂∂un ∧ T − χ′(un)∂un ∧ ∂T

+ χ′(un)∂un ∧ ∂T + χ(un)∂∂T

= χ′′(un)∂un ∧ ∂un ∧ T + χ′(un)
[
∂∂(unT )

]
.

Since ∂∂(unT ) → 0, we get since χ′′ ≥ 0 and i∂un ∧ ∂un ∧ T ≥ 0,
that i∂∂(χ(u)T ) ≥ 0. Since M is compact ∂∂(χ(u)T ) = 0. Observe
that χ(u)T is L-directed. If χ1, χ2 are convex functions as above, then
i∂∂((χ1(u) − χ2(u))T ) = 0. Since χ1(u)−χ2(u) is bounded, it follows that
χ1(u) − χ2(u) ≡ some constant for all such χ1, χ2. This is only possible if
u is constant. �

Remark 3.15. Assume T ≥ 0 is harmonic and extremal in the convex
cone of positive harmonic currents on M of bidegree (p, p), p ≤ k− 1. The
above proof shows that if u ∈ L1(T ) and ∂∂(uT ) = 0 then u is constant
|T | a.e.

4 Intersections of Laminar Currents

4.1 C1 laminations. Here we assume that X ⊂ P
2 is a laminated com-

pact covered by finitely many flow boxes Bi. We suppose that X locally
extends to a C1 lamination of an open neighborhood. Since X is laminated
it contains a unique minimal laminated set X ′. Choose p ∈ X ′. We can
assume that p := [0 : 0 : 1] ∈ B1 ⊂ X and that the leaf L through p has
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the form w = O(z2). So we will assume that the local extension of the
lamination of X is of the form w = w0 +fw0(z), fw0(0) = 0, where the map
Ψ(z,w0) = (z,w0 + fw0(z)) is a C1 diffeomorphism in a neighborhood of p.

Let Φε([z : w : t]) = [z : w + εz : t] denote a family of automorphisms
of P

2. Notice that each of these automorphisms fixes the w axis.
For two graphs L1, L2 given by w = g1(z), w = g2(z), z ∈ S, we

define the vertical distances over S between the two as dmax
S (L1, L2) =

supz∈S |f1(z) − f2(z)| and dmin
S (L1, L2) = infz∈S |f1(z) − f2(z)|.

Theorem 4.1. There exists an integer N independent of ε �= 0, |ε| small,
so that in any of the flow boxes Bi local leaves L1 and Φε(L2) can at
most intersect in N points, counted with multiplicity. Moreover there exist
neighborhoods Uε of Id in U(3) so that the same conclusion holds for Ψ1(L1)
and Ψ2(Φε(L2)), Ψ1,Ψ2 ∈ Uε.

The main idea of the proof is that if plaques L1 and Φε(L2) have many
intersection points, then their distance is at most a very small multiple
of ε. Following the leaves back to B1, their distance is still at most a small
multiple of ε. We use the following lemma repeatedly:
Lemma 4.2. a) There is a constant 0 < c0 < 1 so that the following holds:
Let g be a holomorphic function on the unit disc with |g| < 1 and suppose
that g has N zeroes in ∆(0, 1/2). Then |g| ≤ cN0 on ∆(0, 1/2).

b) Let g denote a holomorphic function on the unit disc and suppose
that |g| < 1 and that |g| < η < 1 on ∆(0, 1/4). Then |g| < √

η on ∆(0, 1/2).

Proof. To prove a) set

c0 = sup
|α|≤1/2,|z|≤1/2

|z − α|
|1 − zα| < 1 .

To prove b) observe that log |g| < log η when |z| < 1/4. Hence by sub-
harmonicity

log |g| ≤ max
{

log η
log |z|
log 1/4

, log η
}

.

This implies that if |z| = 1/2, then log |g| ≤ log η/2. �
Using this lemma, we obtain that the continuation of the plaques to B1

have distance at most a small multiple of ε. This contradicts the explicit
form of Φε.
Proof of the theorem. Fix a δ > 0. Let Lw denote the plaque through
[0 : w : 1] and let Lεw denote its image under Φε. Say Lw0 is given by
w = w0 + fw0(z) and Lεw0

is given by w = w0 + fw0(z) + εz. Note that the
vertical distance dmax

S between Lw0 and Lεw0
is |ε|δ at the boundary S of the
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disc |z| ≤ δ. In order to use vertical distance we need ε to be small enough.
Because the lamination is of class C1, there exists a constant K > 1 so that
if (0, w0), (0, w1) ∈ B1, then, using that the graphs satisfy

1
K |w1 − w0| ≤

∣
∣w0 + fw0(z) − w1 − fw1(z)

∣
∣ ≤ K|w1 − w0| ,

we get that there is a constant C > 1 such that
sup
|z|≤δ

∣
∣w0 + fw0(z)−w1 − fw1(z)

∣
∣ ≤ C inf

|z|≤δ
∣
∣w0 + fw0(z)−w1 − fw1(z)

∣
∣ (2)

If plaques L1 and Φε(L2) intersect in a flow box Bi, then L1 and L2 must
be at most a|ε| apart in Bi for some fixed large a. We are going to show by
contradiction that the number of points of intersection cannot be arbitrarily
large. Let c > 0 be any small constant. If L1, Φε(L2) intersect in N points
in Bi and N is sufficiently large then L1 and Φε(L2) can be at most at
distance c|ε| apart from each other in Bi. This follows from the lemma with
c = cN0 . Note that the same conclusion holds if the number of intersections
is counted for Ψ1(L1) and Ψ2(Φε(L2)) for a small enough Uε. But this
again implies that L1 and Φε(L2) have distance at most c|ε| also in this
case. Hence we only have to consider L1 and Φε(L2). Since X ′ is minimal,
there is a path of at most a fixed length along these leaves ending in the
flow box B1 containing [0 : 0 : 1]. It follows that continuing these leaves
to this neighborhood, they will have to stay at most bc|ε| apart, for a fixed
constant b determined by the length of the path. Choosing c small enough,
we get bc < δ/2C . Let L1 = {w = w1 + fw1(z)}, L2 = {w = w2 + fw2(z)}
denote the continuations to B1. Then

∣
∣w2 + fw2(z) + εz − w1 − fw1(z)

∣
∣ ≤ bc|ε| < |ε|δ

2C
when |z| ≤ δ . (3)

Hence, using (2)
dmax
|z|≤δ(L1, L2) ≤ Cdmin

|z|≤δ(L1, L2)

≤ Cdmin
z=0(L1, L2)

= Cdmax
z=0

(
L1,Φε(L2)

)

≤ Cdmax
|z|≤δ

(
L1,Φε(L2)

)

≤ |ε|δ
2 .

(4)

For the third inequality we use that 0 is fixed for Φε, and the last
inequality follows from (3). Applying this estimate when |z| = δ, we get
using (4)

|ε|δ
2 > |ε|δ

2C

>
∣
∣w2 + fw2(z) + εz − w1 − fw1(z)

∣
∣

≥ |ε|δ − ∣
∣w2 + fw2(z) − w1 − fw1(z)

∣
∣
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≥ |ε|δ − |ε|δ
2

= |ε|δ
2 ,

a contradiction. Hence N cannot be arbitrarily large. �

Remark 4.3. We only used that the lamination is transversally bilipschitz
in a neighborhood of a point in the associated minimal set.

4.2 Laminations by holomorphic motions. Now we consider the
case of laminations which are not C1. We recall the following result by
Bers–Royden [BeR].

Proposition 4.4. We are given a lamination of a neighborhood of the
unit polydisc in C

2. Assume that the leaves are of the following form:

Lt , t ∈ C , |t| < C , w = Ft(z) , Ft(0) = t , F0(z) ≡ 0 .
The map Φ(z)(t) = Ft(z) is a holomorphic motion and we have the estimate

1
K |t− s|

1+|z|
1−|z| ≤ ∣

∣Ft(z) − Fs(z)
∣
∣ ≤ K|t− s|

1−|z|
1+|z| .

Theorem 4.5. Let X ⊂ P
2 be a compact subset laminated by Riemann

surfaces. Then there exists a holomorphic family Φε : P
2 → P

2 for ε ∈ C,
Φ0 ≡ Id with the following properties. There are finitely many flow boxes
{Bi}i=1,...,� covering X and an ε0 > 0 and a constant A such that if L,L′

are any plaques in any flow box Bi then:

If 0 < |ε| < ε0, the number of intersection points counted with multi-
plicity of L,Φε(L′) is at most A log 1/|ε|. Moreover there exist neighbor-
hoods Uε of Id in U(3) so that the same conclusion holds for Ψ1(L1) and
Ψ2(Φε(L2)), with Ψ1,Ψ2 ∈ Uε.

Proof. We first choose a finite cover by flow boxes, Bi. We can do this so
that for each flow box there is a linear change of coordinates in P

2 so that
[z : w : t] = [0 : 0 : 1] ∈ Bi ∩X. Moreover, we can arrange that if L is any
local leaf intersecting ∆(0, 2) then L∩∆(0, 2) is contained in a local leaf L̃ of
the form {w = fα(z), |z| < 3}, (0, α) ∈ L̃, and ‖fα‖∞ < 3. Moreover we can
assume that each ‖f ′α‖ < 0.1 and that f ′0(0) = 0. Redefining the flow boxes,
we can let Bi denote the union of those graphs over |z| < 3 intersecting
∆(0, 2). We can assume that the smaller flow boxes B′

i consisting of those
graphs over |z| < 1 for which the graph is in ∆2(0, 1), already cover X.

Next we fix the coordinates z,w, t on P
2 used for the first flow box B1

such that p0 = [0 : 0 : 1] is on the minimal set X ′ ⊂ X. Define the family
Φε by

Φε[z : w : t] = [z : w + εz : t] .
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Lemma 4.6. There exists a δ > 0 and C > 0 so that if w = fα(z),
w = fβ(z) are two local leaves in B1, then

|α− β|2
C

≤ ∣
∣fα(z) − fβ(z)

∣
∣ ≤ C|α− β|1/2 , ∀ z, |z| ≤ δ .

Proof. This is a special case of the Bers–Royden result. �

Lemma 4.7. Fix δ > 0. Let ε0 > 0 be small enough. Then if L1, L2 are
plaques in the first flow box then dmax

{|z|≤δ}(Φε(L1), L2) > |ε|3 for all |ε| ≤ ε0.

Proof. Let Li be given by w = fi(z), fi(0) = wi. Then Φε(L1) is the graph
w = f1(z) + εz. Suppose that |f1(z) + εz − f2(z)| ≤ |ε|3 for all |z| ≤ δ.
Then, we get that |w1 −w2| ≤ |ε|3. Hence, by the previous lemma, we have
that |f1(z)− f2(z)| ≤ C|f1(0) − f2(0)|1/2 ≤ C|ε|3/2 for all |z| ≤ δ. Hence if
|z| = δ,

|ε|3 ≥ ∣
∣f1(z) + εz − f2(z)

∣
∣

≥ |ε|δ − ∣
∣f2(z) − f1(z)

∣
∣

≥ |ε|δ − C|ε|3/2
≥ |ε|(δ − C

√
|ε|) ,

⇒
ε20 ≥ |ε|2 ≥ δ − C

√
|ε| ≥ δ − C

√
ε0

⇒
ε20 +C

√
ε0 ≥ δ ,

a contradiction if ε0 is small enough. �

Continuation of the proof of Theorem 4.5. Pick ρ > 0. Let p ∈ X. Since
every leaf clusters everywhere on X ′, there is a (nonunique) continuous
curve γp(t), 0 ≤ t ≤ 1, from γp(0) = p to a point γp(1) = (0, wp) ∈ B′

1

which is contained in the leaf through p. By continuity, for every q ∈ X
close enough to p, a curve γq can be chosen so that dist(γq(t), γp(t)) ≤ ρ
for all 0 ≤ t ≤ 1.

A chain of flow boxes is a finite collection C = {Bi(j)}kj=1. Let p ∈ X.
We say that the leaf through p follows the chain {Bi(j)}kj=1 if there are local
leaves Lj ⊂ Bi(j), L̂j := Lj ∩B′

i(j), p ∈ L̂1, L̂j ∩ L̂j+1 �= ∅ ∀ j < k, i(k) = 1.
By compactness there are finitely many chains of flow boxes C1, . . . , C�

such that for each p ∈ X, there is an open neighborhood U(p) and a chain
Cr so that the leaf through q follows Cr for any q ∈ U(p) ∩X.

We will apply Lemma 4.6 repeatedly along a chain. We need to apply
Lemma 4.6 at most a fixed number of times, m depending on the length of



Vol. 15, 2005 HARMONIC CURRENTS OF FINITE ENERGY AND LAMINATIONS 987

each chain. Note that every time we switch flow box there is a change of
coordinates which distorts distances by at most a factor C > 1.
Lemma 4.8. Let ε be sufficiently small and suppose that N = N(ε) is an

integer such that C2c
N/2m

0 ≤ |ε|3. Then no local leaves of the laminations
L1,Φε(L0) can intersect more than N times in any flow box.

Proof. Suppose that local components of L1 and Φε(L0) intersect in more
than N points in some local flow box B′

s. Then these local graphs differ by
at most cN0 . Using Lemma 4.6 they differ by at most cN/20 in a suitable larger
flow box. Changing to the coordinates of another flow box might increase
the difference to CcN/20 . Applying Lemma 4.6 the difference increases to at
most C1/2c

N/4
0 and after another change of flow box to C3/2c

N/4
0 . Following

the leaves along a chain of flow boxes we see inductively that the distance
between continuations of the leaves grows at most like C2c

N/2k

0 after k steps.
Hence once we are in the first flow box, the leaves differ by at most |ε|3.
By Lemma 4.7, this is impossible for any pair of leaves. �

End of proof of theorem. From the above Lemma there is a constant
A so that for all small enough ε local leaves L1,Φε(L0) have at most
Nε := A log 1/|ε| intersection points. The construction is stable under small
perturbations by Ψ1,Ψ2 close to the identity. �

5 Construction from Discs. Ahlfors Type Construction

In this section we consider a laminated set (X,L, E) in a compact complex
Hermitian manifold M of dimension k. We assume that E is a compact set
with Λ2(E) = 0.

We want to construct harmonic currents using the Ahlfors exhaustion
technique.

5.1 When leaves are not uniformly Kobayashi hyperbolic. We
consider only the case whenX does not contain a compact Riemann surface,
possibly singular. Consider the universal covering for each leaf. We can
assume that the covering is C or the unit disc ∆. Let φ : ∆ → L be a
holomorphic map.
Proposition 5.1. Let (X,L, E) be a laminated set with singularities. If
there is no positive closed current on X, laminated on X \ E, directed by
the lamination, then there is a constant C such that |φ′(z)| ≤ C

1−|z| for
every holomorphic map φ : ∆ → L.
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Proof. If {|φ′(0)|} is not uniformly bounded, then using the Brody tech-
nique, one can construct an image of C. The part of the image not in E is
locally contained in a leaf of X.

The Ahlfors exhaustion technique furnishes a positive closed current of
mass 1 directed by the lamination. Since Λ2(E) = 0, the current gives no
mass to E. So there is a constant C such that |φ′(0)| ≤ C for every holo-
morphic map φ : ∆ → L, where L is a leaf of X \E. Using automorphisms
of the unit disc, one gets the above estimate. �

When the |φ′(0)| are uniformly bounded, we say that the leaves are
uniformly hyperbolic.

5.2 The case with no positive closed current directed by (X, L, E).
Let (X,L, E) be a laminated set with singularities. We assume that there
is no non-zero positive closed current on X directed by L. We showed in
Proposition 5.1 that there is a constant C so that for all holomorphic maps
φ : ∆ → X \E, directed by L, we have |φ′(0)| ≤ C.

Let φ : ∆ → X \ E be a covering map for a leaf. As above, we define
the (1,1) positive current Tr by

〈Tr, θ〉 = 1
2π

∫

∆
log+ r

|z|φ
∗(θ) .

We want to interpret the concept of ergodicity within this context. The
currents Tr can be thought of as averages on an orbit φ(∆). They corre-
spond to partial sums of Dirac masses on an orbit,

∑N
1 δfn(xp) for a con-

tinuous map f from a compact space to itself. We want to show that after
normalization the limits when r → 1 are “invariant”, i.e. define harmonic
currents. The ergodic theorem would be to show that the limits exist for
almost every leaf of a positive harmonic current. We start with a general
result.

Theorem 5.2. Let φ : ∆ → M be a holomorphic map where M is a
compact complex Hermitian manifold. If

∫

∆

(
1 − |x|)∣∣φ′(x)∣∣2dλ(x) = ∞ ,

where λ is the Lebesgue measure, then there is a positive harmonic cur-
rent T , supported on φ(∆). If φ(∆) is contained in a leaf of a lamination
(X,L, E), then the current T is directed by the lamination on X \E.

Proof. Assume that φ(0) = p. Define

Gr(x) := 1
2π log+ r

|x| , Tr := φ∗
(
Gr[∆]

)
, r < 1 .
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where log+ = sup(log x, 0). If θ is a (1, 1) test form on M

〈Tr, θ〉 = 1
2π

∫

∆
log+ r

|x|φ
∗(θ) .

So Tr is positive of bidimension (1, 1). The mass of Tr is comparable to∫
∆ log r

|x| |φ′(x)|2 ∼ ∫
{|x|<r}(r − |x|)|φ′(x)|2 =: A(r). A direct computation

gives
i∂∂Tr = φ∗(νr) − δp ,

where δp is the Dirac mass at p and νr is the angular measure on the circle
of radius r. Let T be a cluster point of T ′

r := Tr/A(r). Since A(r) → ∞
we have i∂∂T = 0.

If φ(∆) is contained in a leaf of a lamination and γ is a continuous
(1, 0) form so that [∆α] ∧ γ = 0 for all plaques, then Tr ∧ γ = 0. Hence T
is directed by L on X \ E. �

Theorem 5.3. Let (X,L, E) be a laminated set with singularities. Assume
E is totally disconnected, and that E is contained in a countable union of
irreducible analytic sets ∪Aj, with ∪Aj ∩X \E = ∅. Then∫

∆

(
1 − |x|)∣∣φ′(x)∣∣2dλ(x) = ∞ ,

and all cluster points of the normalized currents τr := Tr/‖Tr‖ are har-
monic.

Let X be a minimal laminated compact set in M . Suppose that there
is no non-zero positive closed current on X, directed by L. In particular,
X does not contain any non-constant holomorphic image of C. Let Bi be
a locally finite covering of X \ E by flow boxes which in local coordinates
are of the form wi = fα(zi), |zi| < 1 [but the graphs extend uniformly to
|zi| < 2]. Let φ : ∆ → L denote the universal covering of an arbitrary
leaf in X \ E. We say that x ∈ ∆ is a center point if φ(x) = (0, wi)
in some Bi. We can normalize φ for any center point, say φx : ∆ → L,
φx(0) = φ(x) [i.e. we move x to 0 with an automorphism of the unit disc].
Let wi = fx(zi) denote the associated graph in the flow box. Denote by
Ux := φ−1

x ({(zi, fx(zi)); |zi| < 1}). If φ is a multisheeted covering, we let Ux
denote the connected component containing 0. Then Ux ⊂ ∆ is a relatively
compact open subset of ∆ containing 0. Let 0 < rx ≤ Rx < 1 denote the
largest, respectively smallest, radii such that ∆(0, rx) ⊂ Ux ⊂ ∆(0, Rx).
Proposition 5.4. Let (X,L, E) be as above. Consider the family of uni-
versal covering maps φ from ∆ to an arbitrary leaf. Given ε > 0, there exists
a constant cε > 0 such that |φ′(z)| ≥ cε

1−|z| , for all φ, if dist(φ(z), E) ≥ ε.
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Lemma 5.5. Rx ≤ 1/2.

Proof. Since φ−1
x maps ∆(0, 2) into ∆(0, 1) and sends 0 to 0 this follows

from the Schwarz’s lemma. �

Lemma 5.6. Fix a finite number of flow boxes Bi ∩ E = ∅, i = 1, . . . , �.
Then inf{rx;x is a center point, φ(x) ∈ ∪�i=1Bi} > 0. In fact the same
holds if we take the infimum over all leaves and all covers of the leaves by
discs. We also have |φ′x(0)| ≥ 1/4rx.

Proof. Fix an x and a covering φ : ∆ → L of the leaf through x. Note that
φ−1
x (∆(0, 1)) ⊃ ∆(0, rx) hence by the Koebe 1/4 theorem, [φ−1

x ]′(0) = α,
|α| ≤ 4rx. Hence φ′x(0) = 1/α, |1/α| ≥ 1/4rx. If rx → 0 then α→ 0. Using
the Brody technique we construct an image of C contained in X. �

Proof of Proposition 5.4. Using automorphisms of the unit disc, we only
have to show that if dist(φ(0), E) ≥ ε, then |φ′(0)| ≥ cε. But φ(0) belongs to
a finite number of flow boxes. Hence the estimate follows from Lemma 5.6,
since rz ≤ Rz < 1/2. The constant cε appears when we compare the metric
in normalized cordinates with the Hermitian metric on M . �

Next we prove a density theorem for the above minimal laminations
with only Kobayashi hyperbolic leaves:

Theorem 5.7. Assume (X,L, E) is a minimal lamination. Fix a locally
finite cover of X \ E by flow boxes Bi. Fix a compact set K ⊂ X \ E.
There are constants R,N so that if φ : ∆ → X is a covering of any leaf
and φ(x) ∈ K, Bi ∩K �= ∅, then φ(∆kob(x,R)) intersects at most N of the
graphs over {|zi| < 3/2} in Bi and contains at least one complete graph
over |zi| < 1.

Proof. The estimates in Proposition 5.4 show that as long as φ(z) is away
from E, then φ is a bilipschitz map, from the unit disc with the Kobayashi
metric to X \E with Hermitian metric induced from M . �

Proof of Theorem 5.3. The main difficulty is to deal with the behaviour
of leaves near E. If φ(0) = p, we get as in the proof of Theorem 5.2,

i∂∂Tr = φ∗(νr) − δp (5)

where δp is the Dirac measure at p and νr is the Lebesgue measure on the
circle of radius r. The mass ‖Tr‖ is comparable to

∫

∆
log+ r

|x|
∣
∣φ′(x)

∣
∣2 ∼

∫

|x|<r

(
r − |x|)∣∣φ′(x)∣∣2 =: A(r) .
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It’s enough to show that A(r) → ∞ when r → 1, i.e.∫

∆

(
1 − |x|)∣∣φ′(x)∣∣2dλ(x) = ∞ .

For simplicity we consider first the case where E is just one point q =
[0 : 0 : 1]. Let φ = [φ1 : φ2 : φ3] in homogeneous coordinates.

Let
A :=

{
eit ; eit ∈ ∂∆ , such that lim

r→1
φ(reit) = [0 : 0 : 1]

}
.

We show first that ν1(A) = 0. Let eit0 ∈ A. Since |φ′(x)| ≤ C
1−|x| , then

φ is bounded in an angle with vertex at eit0 . Since φ has radial limit at
eit0 , by the Lindelöf theorem [CoL, p. 19], φ has non-tangential limit zero
in some smaller angle. By a theorem of Privalov [CoL] for meromorphic
functions, the functions φ1/φ3, φ2/φ3 are identically zero if A has positive
measure.

Privalov’s theorem [CoL, p. 166] asserts that if a meromorphic function
f on the unit disc has non-tangential limits equal to zero for eiθ of positive
measure, then f is identically zero. Since the cluster set of φ(reiθ) is con-
nected and E is totally disconnected, φ(reiθ) has radial limit at a point p
is equivalent to limr→1 dist(φ(reiθ), E) = 0. If φ has radial values in E for
a set of positive measure we can choose a neighborhood of a point p ∈ E
such that φ has radial limits in Aj on a set of positive measure. Then we
apply Privalov’s theorem to the function hj ◦ φ where hj is a holomorphic
function defining Aj in Uj . Since ∪Aj does not intersect X \ E we get a
contradiction.

As a consequence there exists δ > 0 and a set F ⊂ ∂∆ with ν1(F ) > 1/2,
such that for every eit ∈ F there is a sequence rj → 1 and dist(φ(rjeit), E)
≥ 2δ.

Let Eδ = {q; dist(q,E) ≤ δ}. Since |φ′| ≤ C
1−|x| there is a constant

c > 0 such that φ(∆(rjeit, c(1− rj))) does not intersect Eδ. It follows from
Proposition 5.4 that on φ−1(L \ E2δ) there exists a constant cδ > 0 such
that |φ′(x)| ≥ cδ

1−|x| . Hence for eit ∈ F , we have
∫ 1

0

∣
∣φ′(reit)

∣
∣2(1 − r)dr ≥

∑

j

∫ rj+c(1−rj)

rj−c(1−rj)

cδ
1 − r

= cδ
∑

j

log
1 + c

1 − c
= +∞ .

Hence A(r) → ∞ as r → 1.
Equation (5) implies that

lim
r→1

i∂∂τr = lim
r→1

i∂∂Tr
A(r)

= 0 . �
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Remark 5.8. In Theorem 5.3 we don’t need the assumption that Λ2(E)=0.

Remark 5.9. If we assume that limr→1(1 − r)
∫
Dr

|φ′(z)|2 = ∞, it follows

from a result of Ahlfors that limr→1
�(φ(∂∆r))

Area(φ(∆r)) → 0, � represents length.
Hence one can choose the current T to be closed.

In the usual Ahlfors procedure to construct a closed current start-
ing from an image of C one has to first extract good subsequences from

Φ∗[∆R]
Area Φ∗[∆R] when R→ ∞. Then cluster points of these give closed currents.
In our case, there is no need to first take a subsequence.

Remark 5.10. Let (X,L,E) be a compact laminated set out of a totally
disconnected set E, satisfying the assumption of Theorem 5.3. Theorem 5.3
gives a new construction of positive harmonic currents directed by L. In-
deed the currents constructed by the averaging process in Theorem 5.3 are
harmonic. We only have to show that they cannot be supported only on E.
But Stoke’s formula shows that a positive current cannot be completely
supported on a Euclidean ball,

0 <
∫
T ∧ ddc(|z|2 −R2

)
= 0 .

Proposition 5.11. If a positive harmonic current on a laminated compact
X gives mass to a leaf, then this leaf is a compact Riemann surface.

Recall that in a flow box T =
∫
hα[Lα]dµ(α), {Lα} are the plaques and

{hα} are the harmonic positive functions.

Lemma 5.12. Let T be a laminated harmonic current. Let φ denote the
covering map ∆ → L. If Hα denotes the analytic continuation of hα ◦ φ in
a flow box, then we have the estimate

c
(
1 − |x|) ≤ Hα ≤ C

1
(1 − |x|) .

Proof. The harmonic function h defined by the current on the leaf L is
determined up to a multiplicative constant. So H is positive. The estimate
follows from Harnack’s inequality and the Hopf lemma. �

Proof of the proposition. We assume first that the leaf is hyperbolic. Let
φ,Hα be as in the lemma. Suppose at first that Hα is unbounded. Then we
can choose a sequence pn → ∂∆ andHα(pn) → ∞ such thatHα is uniformly
large on ∆(pn, R) by Harnack, where R is as in Theorem 5.7. Hence T will
have infinite mass on a flow box. If H is bounded and nonconstant, we
can choose θn so that limr→1H(reiθn) are different. We can again choose
pn → ∂∆ so that φ(∆(pn, R)) are disjoint and again T will have infinite
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mass on a flow box. If H is constant, we get a positive closed current and
the leaf has an analytic closure. The same argument applies to the case
when the leaf is not hyperbolic. �

6 Vanishing of
∫

T ∧ T

Suppose that T is a positive laminated harmonic current on (X,L, E) which
in local flow boxes can be written as

∫
hα[∆α]dµ(α), hα(0, α) = 1.

Definition 6.1. The harmonic laminated current has finite transverse
energy if in some local flow box

∫
log |α− β|dµ(α)dµ(β) > −∞.

Having finite transverse energy is well defined and independent of the
choice of flow box.

Recall that Φε([z : w : t]) = [z : w + εz : t]. If T is a current, let
Tε := (Φε)∗(T ). Observe that Tε → T in He.

Theorem 6.2. If a harmonic current for a minimal laminated compact in
P

2 has finite transverse energy, then the geometric intersection T ∧Tε → 0.
The same conclusion holds for C1-laminations without the hypothesis of
finite transverse energy. In both cases we have

∫
T ∧ T = 0.

Proof. We calculate the geometric wedge product T ∧Tε in a flow box. Set
T =

∫
hα[∆α]dµ(α), Tε =

∫
hεβ [∆

ε
β]dµ(β). Note that functions defined on

plaques w = k(z), can be locally extended to be independent of w. Let φ
be a test function supported in a flow box. To avoid confusion, we index
with g during the proof when wedge products are geometric. We define

〈T ∧ Tε, φ〉g :=
∫ ∑

p∈Jε
α,β

φhα(p)hεβ(p)dµ(α)dµ(β)

where Jεα,β consists of the intersection points of ∆α and ∆ε
β. Assume at

first that µ has finite transverse energy. The estimate on the size of J εα,β in
Theorem 4.5, implies that the number of points in Jεα,β is of order at most
log 1/ε. Since hα, hεβ are uniformly bounded we get
∣
∣(T ∧ Tε)g(φ)

∣
∣ ≤ C1‖φ‖∞

∫

distmin(∆α,∆β)≤Cε
A log 1

|ε|dµ(α)dµ(β)

≤ C2‖φ‖∞
∫

distmin(∆α,∆β)≤Cε
log

1
dist(∆α,∆β)

dµ(α)dµ(β)

→ 0 as ε→ 0 .
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In the C1 case the number of intersection points is bounded by N inde-
pendent of ε (Theorem 4.1). Hence

∣
∣(T ∧ Tε)g(φ)

∣
∣ ≤ C‖φ‖∞

∫

dist(∆α,∆β)≤Cε
Ndµ(α)dµ(β)

→ 0 ,
since µ has no pointmasses by Proposition 5.11.

Next we show that Q(T, T ) =
∫
T ∧T = 0. It suffices to show by Theo-

rem 2.9 that Q(T, Tε) → 0 or even that for smoothings T δ, T δ
′
ε , Q(T δ, T δ

′
ε )

→ 0 when δ, δ′ are sufficiently small compared to ε and δ, δ′, ε→ 0. Indeed,
Tε → T in He, and for δ, δ′ small enough, T δ

′
ε , T

δ converge also to T .
Note that the estimate on the geometric wedge product is stable under

small translations of T, Tε. This is what allows us to smooth.
Let φ be a test function supported in some local flow box. As above,

the value of the geometric wedge product on φ is

〈T ∧ Tε, φ〉g =
∫ ∑

p∈Jα,β

φhα(p)hεβ(p)dµ(α)dµ(β) .

We can write this as

〈T ∧ Tε, φ〉g =
∫ ( ∫

∆ε
β

[φhαhεβ](p)i∂∂ log
∣
∣w − fα(z)

∣
∣
)

dµ(α)dµ(β) .

Note that these expressions are small when ε is small. The same applies
when we do this for slight translations within small neighborhoods U(ε) of
the identity in U(3) and their smooth averages T δ. Considering φT δ as a
smooth test form, we get

〈Tε, φT δ〉 =
∫ (∫

∆ε
β

[φhεβ ](p)T
δ

)

dµ(β) .

Averaging also over small translations of Tε we get that 〈T δ′ε , φT δ〉 → 0
when δ, δ′ � ε, ε → 0. Adding up for a partition of unity of φs, we get
〈T δ′ε , T δ〉 = Q(T δ

′
ε , T

δ) → 0. Hence Q(T, T ) = 0. �

Corollary 6.3. If a laminated compact set in P
2 carries a positive closed

laminar current T , then T has infinite transverse energy.

Proof. If T �= 0 has finite transverse energy, then 0 =
∫
T ∧ T =

| ∫ T ∧ ω|2 − E(T, T ) but E(T, T ) = 0 since T is closed. Hence T = 0,
a contradiction. �

J. Duval has independently obtained this corollary. Hurder and Mit-
sumatsu proved that there is no nontrivial C1 lamination in P

2 which carries
a positive closed current [HM].
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Corollary 6.4. If (X,L) is a C1 lamination on P
2 with only hyperbolic

leaves, then

T = lim
r↗1

φ∗

(
log+

(
r
|z|

)
[Dr]

)

Ar
uniformly with respect to φ.

Proof. We know from [HM] that there is no positive closed current directed
by L. It follows from Corollary 3.11 and Theorem 6.2 that there is a unique
harmonique current of mass 1 on (X,L). Hence the result follows. �

7 Examples of Harmonic Current

If X is a non-singular C1 lamination in P
2, then there are positive harmonic

currents T such that
∫
T ∧ T = 0. The problem of existence of such

currents is interesting in itself. A possible candidate is a current of the
form T = i∂u ∧ ∂u. In this section we investigate harmonic currents on
P

2 of the form T = i∂u ∧ ∂u. Our main result is that if u ∈ C2
R
(P2) and

i∂∂T = 0, then u is constant, hence T ≡ 0. We also compute the energy of
some positive harmonic currents.

Let M be a complex manifold of dimension m. For 1 ≤ k ≤ m, we
define P(k)

− (M) as the cone of upper semi-continuous real functions v on
M such that for every p ∈ M , there is an open neighborhood U of p
and {vn} ⊂ C2(U) such that vn ↘ v in U and (−1)k(i∂∂vn)k ≤ εnω

k,
εn ↘ 0. We say that U is associated to v. Here ω denotes a strictly positive
hermitian form. Notice that this condition implies that when εn = 0,
not all eigenvalues of i∂∂vn can be strictly negative. We define P(k)

+ :=
−P(k)

− (M) and P(k) = P(k)
+ ∩ P(k)

− . In particular, P(1)
− consists of the

plurisubharmonic functions and P(1) are the pluriharmonic functions. In
dimension 2, a smooth function v belongs to P(2)

− if and only if its Levi form
has at most one eigenvalue of each sign. These functions then, also belong
to P(2)

+ and hence P(2). Pseudoconvex domains are usually characterized
by plurisubharmonic functions, i.e. P(1)

− . We show here that P(2)
− works as

well, and that there are similar results for P(k)
− , k > 2.

Let Φ : M → N be a holomorphic map between complex manifolds. If
v ∈ P(k)

− (N), then v ◦Φ ∈ P(k)
− (M). In particular, if k > dimN , any upper

semi-continuous v is in P(k)
− (N), hence v ◦ Φ ∈ P(k)

− (M).

We give some examples of compact complex manifolds for which P(2)(M)
�= R:
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1. Tori: Let T be a torus. Then T = C
k mod a lattice generated by

{vi}2k
i=1. Let π : C

k → R, π
( ∑

xivi
)

= xi. Let v = φ(x1) where φ is
a smooth function supported in ]0, 1[ . Then (i∂∂v)2 = 0.

2. Hopf manifolds: Let M = C
2 \ {0}/(φ) where (φ) denotes the group

generated by φ(z1, z2) = (α1z1, α2z2) with α1, α2 fixed, 0 < |α1| ≤
|α2| < 1. Fix r such that |α1| = |α2|r. Define

v(z1, z2) =
|z1|2

|z1|2 + |z2|r .

The function v is well defined on M and (i∂∂v)2 = 0.
3. For any surface admitting a projection on a Riemann surface, P(2)(M)

�= R, for example ruled surfaces. Actually the Hopf surfaces above
admit such a projection C

2 \ {0}/(φ) → P
1, (z1, z2) → [zq1 : zp2 ] if

αq1 = αp2.
For k > 1, set z = (z1, . . . , zk−1), |z| = max{|z1|, . . . , |zk−1|} and let

Hr
k−1 denote the Hartogs figure

Hr
k−1 :=

{
(z, w) ∈ C

k−1×C = C
k ; |z| ≤ 1+r , |w| ≤ 1

}∖{
r < |w| ≤ 1 , |z| < 1

}
.

Let Ĥr
k−1 := {(z,w) ∈ C

k; |z| ≤ 1 + r, |w| ≤ 1}.
Definition 7.1. Let 2 ≤ k ≤ m. We say that an open set N ⊂ M is
(k−1)-pseudoconvex if whenever Φ : U →M is a rank k, 1−1, holomorphic
map of a neighborhood U ⊃ Ĥr

k−1 onto its image and Φ(Hr
k−1) ⊂ N , then

Φ(Ĥr
k−1) ⊂ N .

Remark 7.2. In the case k = 2, the definition is equivalent to N being
pseudoconvex.

Proposition 7.3. Let M be a complex manifold of dimension m ≥ 2. Let
N be an open set in M . Assume v ∈ Pk−(M), 2 ≤ k ≤ m and v < 0 on N ,
v|∂N ≡ 0, v ≤ 0 on M . Let U = {Uα} be a cover of M associated to v.

If Φ(Ĥr
k−1) ⊂ Uα and Φ(Hr

k−1) ⊂ N , then Φ(Ĥr
k−1) ⊂ N . In particular, if

k = 2, then N is pseudoconvex in M .

Proof. Assume that Φ(Ĥr
k−1) \ N �= ∅. Then also, Φ(Ĥr

k−1) ∩ ∂N �= ∅.
We can assume that M = U , Φ = Id, Hr

k−1 ⊂ N and that there is
an interior point of Ĥr

k−1 in ∂N . Assume that vn ↘ v, vn ∈ C2(U),
(−1)k(i∂∂vn)k ≤ εnω

k. Let (z0, w0) ∈ ∂N , |z0|, |w0| < 1. Then v < 0 on
Hr
k−1 and v(z0, w0) = 0. This is where we use that v|∂N ≡ 0. We would

like to get a contradiction.
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Let X := {|z| ≤ 1, r < |w| ≤ 1}. Define the function u by

u(z,w) := η

(

1 −
k−1∑

j=1

|zj |2
)

− ε

|w|2 + δ

where η � ε < δ � 1. We will choose the constants so that v < u
on ∂X and u(z0, w0) < 0. First observe that if δ is small enough, then
automatically v < u on all of ∂X except possibly where |w| = 1 and |z| < 1.
Fix any such δ. Let ε < δ be chosen big enough that − ε

|w0|2 + δ < 0. Since
ε < δ and v ≤ 0 on |w| = 1 and |z| < 1, v < u on all of ∂X if we choose
η = 0. To finish the choice of constants, η, ε, δ, choose η > 0 small enough
that v < u still on ∂X and in, addition u(z0, w0) < 0. Then i∂∂(−u) ≥ aω
on X for some constant a > 0.

Next choose n large enough so that vn < u on ∂X. We have vn(z0, w0) ≥
v(z0, w0) = 0 > u(z0, w0). Then if we add a strictly positive constant cn to
u we can assume that

vn < u+ cn on ∂X
vn ≤ u+ cn on X

vn(zn1 , w
n
1 ) = u(zn1 , w

n
1 ) + cn, (zn1 , w

n
1 ) ∈ X .

This implies that i∂∂vn(zn1 , w
n
1 )≤i∂∂u(zn1 , wn1 ). Hence i∂∂(−vn)(zn1 , wn1 )

≥ aω.
Hence

εnω
k ≥ (−1)k(i∂∂vn)k(zn1 , w

n
1 )

=
(
i∂∂(−vn)

)k(zn1 , w
n
1 )

≥ akωk,

a contradiction. �

Corollary 7.4. If M is a compact manifold, v ∈ P(k)
− and K(v) :=

{p; v(p) = maxM v}, then the open set M \K(v) is k − 1 pseudoconvex.

Remark 7.5. Let v be a C2 function on a compact complex manifold
of dimension k. Stokes’ theorem implies that if (−1)k(i∂∂v)k ≤ 0, then
(i∂∂v)k = 0. In the case of compact Kähler manifolds of dimension m,
Stokes’ theorem applied to (−1)k(i∂∂v)k ∧ωm−k shows that the same con-
clusion holds.

Remark 7.6. The proof above shows that if an upper semi-continuous
function v is locally a decreasing limit of C2 functions vn such that at
each point i∂∂vn has m − 1 non-negative eigenvalues, then M \ K(v) is
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pseudoconvex. Namely, we get by the above construction with a Hartogs
figure of dimension two:

vn < u+ c on ∂X ,

vn ≤ u+ c on X

vn(z1, w1) = u(z1, w1) + c at some point of X . Hence

i∂∂(vn − u)(z1, w1) ≤ 0 .
Since −u is strictly plurisubharmonic there is at least one eigenvalue of the
Levi form of (vn − u) at (z1, w1) which is positive.

Corollary 7.7. If v is a continuous function on P
m such that v ∈ P(2)

− ,
then v is constant. In particular there are no nonconstant functions in C2

R

such that T = i∂v ∧ ∂v satisfies i∂∂T = 0.

Proof. We know that P
m \K(v) is pseudoconvex. We show next that also

P
m \K(−v) is pseudoconvex. It suffices to show that −v is also locally a

decreasing limit of C2 functions wn, (i∂∂wn)2 ≤ εnω
2. For this, let vn be

such a sequence for v. Taking a subsequence if necessary we can assume
that v ≤ vn ≤ v+1/2n. Then wn := −vn+1/n works. Since on P

m the Levi
problem has a positive solution, this implies that the complements of K(v)
and K(−v) are both Stein. But then the intersection of the two domains is
a Stein manifold of dimension > 1 with two ends, unless K(v) and K(−v)
have a non-empty intersection. But then v must be constant. �

The only property of P
m we have used is that the Levi problem is

solvable in P
m. So we get

Corollary 7.8. If the Levi problem is solvable on a compact complex
manifold M , then P(2) only contains constant functions.

Recall [BS] that given a positive closed current S on M , an upper semi-
continuous function φ defined on Supp(S) is S-plurisubharmonic if for every
p ∈ Supp(S) there is an open set U ⊂M , p ∈ U and a sequence φn ∈ C2(U),
such that φ = lim↘ φn on U ∩ Supp(S) and i∂∂φn ∧ S ≥ 0. A function φ
is said to be S-pluriharmonic if both φ and −φ are S-plurisubharmonic.

Theorem 7.9. Let S be a positive closed current of bidegree (1, 1) in P
2.

Assume φ is S-plurisubharmonic and let K(φ) = {p ∈ Supp(S);φ(p) =
maxφ}. Then P

2 \K(φ) is pseudoconvex. If φ is S-pluriharmonic, then φ
is constant.

Proof. Recall that for S-plurisubharmonic functions, the local maximum
principle is valid [BS, Prop. 3.1]. [The local maximum principle says that
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for every ball maxB v ≤ max∂B v.] We claim that P
2 \ K(φ) is pseudo-

convex. We modify the proof of Proposition 7.3. Assume that P
2 \K(φ) is

not pseudoconvex. We can assume in local coordinates that K(φ) contains
a point (z0, w0), |z0|, |w0| < 1 and that K(φ) does not intersect the Hartogs
figure H = {(z,w); |w| ≤ r < 1, |z| ≤ 1 + δ} ∪ {(z,w); 1 ≤ |z| ≤ 1 + δ,
|w| ≤ 1}. We can also assume that on a fixed neighborhood of Ĥ =
{(z,w); |z| ≤ 1 + δ, |w| ≤ 1} there is a sequence of C2 functions φn ↘ φ on
Supp(S), i∂∂φn ∧ S ≥ 0. We can assume φ = 0 on K(φ). Then φ < 0 on
H ∩ Supp(S) and φ(z0, w0) = 0.

Let X := {|z| ≤ 1, r < |w| ≤ 1}. Define the function u by
u(z,w) := ηb

(
1 − |z|2) − ε

|w|2 + δ

where η � ε < δ � 1. We will choose the constants so that φ < u on
∂X ∩ Supp(S). First observe that if δ is small enough, then automatically
φ < u on all of ∂X ∩ Supp(S) except possibly where |w| = 1 and |z| < 1.
Fix any such δ. Let ε < δ be chosen big enough that − ε

|w0|2 + δ < 0. Since
ε < δ and φ ≤ 0 on |w| = 1 and |z| < 1, (z,w) ∈ Supp(S), φ < u on all
of ∂X ∩ Supp(S) if we choose η = 0. To finish the choice of constants,
η, ε, δ, choose η > 0 small enough that φ < u still on ∂X ∩ Supp(S) and in,
addition u(z0, w0) < 0.

Next choose n large enough so that φn < u on ∂X ∩ Supp(S). Then if
we add a strictly positive constant c to u we can assume that

φn < u+ c on ∂X ∩ Supp(S)
φn ≤ u+ c on X ∩ Supp(S)

φn(z1, w1) = u(z1, w1) + c , (z1, w1) ∈ X ∩ Supp(S) .
Now, −u is plurisubharmonic, so i∂∂(−u) ∧ S ≥ 0. Hence φn − u is S-

plurisubharmonic so this contradicts the local maximum modulus principle
for S-plurisubharmonic functions.

If φ is S-pluriharmonic, then K(φ) and K(−φ) intersect, hence φ is
constant. �

Proposition 7.10. If v ∈ P(k)
− (M) then v satisfies the local maximum

principle.

Proof. This follows, since the Hartogs figure argument is local. In fact, let
K denote the compact set at which the maximum is reached. Let p ∈ ∂K
and use a Hartogs figure there. �

There are positive closed currents T on P
2 of the form T = i∂u ∧ ∂u,

u continuous except at one point and such that
∫
T ∧ T �= 0, for example,

u = log+ |z| in C
2 if [z : w : t] are the homogeneous coordinates in P

2.
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Proposition 7.11. Consider on P
2 the cone C = {T ≥ 0, i∂∂T = 0,∫

T ∧ ω = 1}. Then infT∈C
∫
T ∧ T ≤ 1 − 1

2π2 .

Proof. Let u(|z|2), v(|w|2) be C∞ real valued functions with support in the
unit interval. Define ψ(z,w) := u(|z|2)+iv(|w|2). Let T := i∂ψ∧∂ψ on C

2.
Then T ≥ 0 and T ∧ T = 0. Moreover, T is pluriharmonic on C

2.
We want to decompose T as in Proposition 2.2.

i∂ψ ∧ ∂ψ = i(u′zdz + iv′wdw) ∧ (u′zdz − iv′wdw)

= i(u′)2zzdz ∧ dz + i(v′)2wwdw ∧ dw
+ u′v′zwdz ∧ dw + u′v′zwdz ∧ dw .

Let

U(z) := i
π

∫
log |z − x|(u′(xx))2

xxdx ∧ dx

V (w) := i
π

∫
log |w − y|(v′(yy))2

yydy ∧ dy .
Then

∂ψ ∧ ∂ψ = i∂∂U(z) + i∂∂V (w) + ∂(uv′wdw) − uv′′wwdw ∧ dw
− uv′dw ∧ dw + ∂(uv′wdw) − uv′′wwdw ∧ dw − uv′dw ∧ dw .

Hence,
Lemma 7.12. On C

2,

T := i∂ψ ∧ ∂ψ
= i∂∂U(z) + i∂∂V (w) + ∂(uv′wdw) + ∂(uv′wdw) .

Let A := i/π
∫

(u′)2|z|2dz ∧ dz, B := i/π
∫

(v′)2|w|2dw ∧ dw. Then
U(z) = A log |z|, |z| > 1, V (w) = B log |w|, |w| > 1. We decompose T
further: Let h := U(z) + V (w) − 1

2(A+B) log(1 + |z|2 + |w|2). Then

Lemma 7.13. On C
2,

T = i∂∂h(z,w) + 2π
2 (A+B)ω + ∂(uv′wdw) + ∂(uv′wdw)

ω := i
2π∂∂ log

(
1 + |z|2 + |w|2) , the Kähler form .

We extend T to P
2 as T̃ , the trivial extension. We need to know that

T has finite mass near [0 : 1 : 0] and [1 : 0 : 0] for T̃ to be well defined.
To extend first across the line at infinity, t = 0 away from [0 : 1 : 0] and
[1 : 0 : 0], we extend the three parts individually. First ω extends as the
Kähler form, also called ω. The form uv′wdw has compact support and
extends as S trivially. Next we investigate h near [0 : 1 : 0]. We calculate
in local coordinates, [z : w : 1] = [Z : 1 : t], to get h(z,w) = h̃(Z, t) =
U(Z/t) + V (1/t) − 1

2(A + B) log(1 + |Z/t|2 + |1/t|2). When |Z/t| > 1 we
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have U(Z/t) = A log |Z/t|, V (1/t) = B log |1/t|. So h̃(Z, t) =
A log |Z|−A log |t|−B log |t|− 1

2(A+B) log(1+|Z|2+|t|2)+ 1
2(A+B) log |t|2,

h̃(Z, t) = A log |Z| − 1
2 log(1 + |t|2 + |Z|2). Hence h̃(Z, t) extends smoothly

across η = 0 except possibly at [0 : 1 : 0] and [1 : 0 : 0]. In particular
i∂∂h̃ extends trivially at η = 0 except at [1 : 0 : 0] and [0 : 1 : 0]. Next we
calculate in a neighborhood of [0 : 1 : 0]. We get

h̃(Z, t) = U(Z/t) +A log |t| − A+B

2
log

(
1 + |t|2 + |Z|2) .

The function U(Z/t) + A log |t| =: φ(Z, t) is plurisubharmonic when
t �= 0 and equals A log |Z| when |Z/t| > 1 or t = 0, Z �= 0. So φ(Z, t)
is plurisubharmonic away from the origin. Hence φ has a well-defined
plurisubharmonic extension through (0, 0) by setting φ(0, 0) = −∞. It
follows that h̃ is a global quasi-plurisubharmonic function on P

2 with poles
at [0 : 1 : 0], [1 : 0 : 0]. Hence,

Lemma 7.14. The trivial extension T̃ is given by T̃ = π(A+B)ω + ∂S +
∂S + i∂∂h̃, S = uv′wdw.

It is easy to check that T̃ is pluriharmonic on P
2.

End of proof of Proposition 7.11. This follows since ∂∂h̃ has no mass on
the line at infinity. Hence

∫
∂S ∧ ∂S = AB,

∫
T ∧ T = (A+B)2π2 − 2AB

and
∫
T ∧ ω = (A+B)π so if we let T1 = T/

∫
T ∧ ω we find

∫
T1 ∧ T1 = 1 − 2AB

(
A+B

2

)24π2
.

The minimum is reached for A = B and equals 1 − 1
2π2 . �

Proposition 7.15. Let M be a complex surface and ρ ∈ C2
R
(M). Assume

that ∂ρ is non-vanishing on X = {ρ = 0}. Assume (i∂∂ρ)2 = 0 on X and
i∂∂ρ ∧ ∂ρ ∧ ∂ρ = O(ρ2). Then T = iδ{ρ=0}∂ρ ∧ ∂ρ is a smooth positive
harmonic current. Moreover T ∧ T = 0.

Proof. Choose a χ ∈ C∞
0 (−1, 1), χ ≥ 0,

∫
χ = 1. Let

Tε = i1εχ
(ρ
ε

)
∂ρ ∧ ∂ρ .

Then Tε → T and we have
i∂∂Tε = − 1

ε2
χ′ (ρ

ε

)
∂ρ ∧ ∂∂ρ ∧ ∂ρ− 1

εχ
(ρ
ε

)
∂∂ρ ∧ ∂∂ρ .

Clearly then i∂∂Tε → 0. �

If a hypersurface X is foliated by Riemann surfaces, i.e. X is Levi flat,
then one does not have necessarily that (i∂∂ρ)2 = 0 on X for a defining
function ρ.
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