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Abstract

A new method is presented for the computation of electromagnetic scattering from
axially symmetric bodies. To allow the simulation of inhomogeneous cross sections, the
method combines the finite element and boundary element techniques. Interior to a
fictitious surface enclosing the scattering body, the finite element method is used which
results in a sparse submatrix, whereas along the enclosure the Stratton-Chu integral
equation is enforced. By choosing the fictitious enclosure to be a right circular cylinder,
most of the resulting boundary integrals are convolutional and may therefore be evaluated
via the FFT with the system is iteratively solved. In view of the sparse matrix associated
with the interior fields, this reduces the storage requirement of the entire system to O(N)
making the method attractive for large scale computations. This report describes the

details of the corresponding formulation and its numerical implementation.
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Chapter 1

Introduction

A restraining factor in the numerical simulation of three-dimensional structures for
electromagnetic scattering computations is the storage requirement associated with the
chosen method. For sub-wavelength structures traditional methods 1] have been found
to work well. However, for structures spanning several wavelengths, the storage require-
ment limits the use of these methods.

For the special case of axially symmetric structures or bodies of revolution (BOR), a
reduction of the storage requirement is accomplished by reducing the three-dimensional
problem to a set of two-dimensional ones. Several moment method codes have been
developed for the solution of these ([2] - [7] and others). However, for large structures
the required storage of O(N?), where N denotes the number of unknowns over the BOR
cross section, limits their use.

To further reduce the storage requirement, hybrid finite element methods ([8]-[12],
etc.) may be used, since the storage associated with the finite element method is O(N)
in contrast to the O(N?) requirement of moment methods. These methods differ from

one another primarily by the application of the radiation condition. The most accurate



method enforces the radiation implicitly through an application of the boundary integral
equation over a fictitious boundary enclosure [11], and in this case the storage is still
O(sz), where N, is the number of unknowns on the boundary. However, through a
judicious choice of the enclosing boundary, the storage requirement can be reduced to
O(N). This can be achieved by selecting the enclosing boundary to be rectangular or
circular [15], [16], making some of the integrals convolutions which can then be evaluated
via the FFT when an iterative solution scheme is employed.

The proposed method combines the finite element and boundary element methods for
the solution of inhomogeneous bodies of revolution. The coupled potential equations [10]
are discretized via the usual finite element method, and the resulting system is augmented
by a discrete representation (via the boundary element method [13]) of the Stratton-Chu
equations [14]. By choosing a right circular cylinder to enclose the scatterer, some of
the integrals become convolutions and their discrete counterparts are then evaluated
via the FFT in conjunction with an iterative solution procedure as was done in the
two-dimensional case [15]. With some care, the storage is reduced to O(N).

In this report, we describe the formulation for the proposed finite element - boundary
element method as applied to the body of revolution. Some preliminary results are shown

to be in reasonable agreement with the method of moments (MOM).



Chapter 2

Analysis

Consider the body of revolution (BOR) illustrated in fig. 2.1. To employ the proposed
finite element - boundary element (FE/BE) method, the BOR is tightly enclosed in a
fictitious finite length cylinder, which divides the entire space into two regions, i.e. the
one enclosed by the cylinder and the other exterior to it. Since the interior region is
generally inhomogeneous, the finite element method is suited for formulating the fields
of that region, whereas the boundary element method is applicable for the exterior free
space region. A usual approach [3] for treating BORs is to introduce a Fourier series (in
the azimuthal coordinate @) representation of the fields, reducing the problem to a set
of two-dimensional ones. The finite element - boundary element method is then used to
compute each modal field and the final result is found by adding the modal fields.

In the following, we present the finite element and boundary element formulations

for each mode. First, the finite element formulation is developed.
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Figure 2.1: General surface of revolution.



2.1 Finite Element Formulation

In this section, we derive the analytical coupled azimuth potential (CAP) equations

[17] which are then discretized via the finite element method.

2.1.1 Analytic CAP Formulation

Maxwell’s equations in a source free region (a e’“* time dependence is assumed and

suppressed) are given by

V x B(7) = —jwpll (2.1)
V x H(F) = jweE (2.2)
V-D(F) =0 (2.3)
V-B(F)=0 (2.4)

(2.5)

For axially symmetric media, the fields may be represented as Fourier series in the

cylindrical coordinate ¢ as

E(F) = -Z Em(p, z)e™? (2.6)
HE= Y Fnlpr2)e™ 27)

and when these are substituted into Maxwell’s equations (2.1) and (2.2), we obtain

% [Imhm: = & (Rhmg)] = jerem, (2.8)
'lﬁ [jme‘mz - FBZ(Rermt)] = —j#rhmp (29)
R[ hmp = gghm:z] = j&(Remg) (2.10)

8



R[ Femp — 'a%emz] = -jﬂr(RhMQS)
3 [imhm, — 2 (Rhmg)] = —J€rems

t [imem, - 'a%(Remd))] = Jprhm:

with

(2.11)
(2.12)

(2.13)

(2.14)

(2.15)

to be referred to as normalized coordinates. Substituting hy,, of (2.13) into (2.8) gives

emp = Jfm [m &(Remg) + Rur E%(Rhm¢)]
where

o = (B =]

K = prey
Substituting e, of (2.8) into (2.13) we obtain
hmz = fm[m F5(Rhmg) + Rer gz(Remg)]
Substituting hp,, of (2.9) into (2.12) yields
emz = jfm [m F5(Remg) — Rptr g5(Rhmg)]
Substituting e, of (2.12) into (2.9) yields

hmp = me [m '8%(Rhm¢) - RG,- F%(Remd’)]

9
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Equations (2.16) through (2.21) may be written in compact form as

$XER,Z) = fm|[mX Vethe — RV it (2.22)
$XF(R,Z) = jfm[mdx Ven+eRVie) (2.23)
$-8R,Z) = %R (2.24)
$-h(R,2) = /R (2.25)
where
Vi=p&+i g (2.26)

Rewriting (2.10) and (2.11) as
RV: - (X b)) = —jerbe (2.27)
RV (¢ X &m) = jprthn (2.28)

and then substituting (2.22) and (2.23) into them, we obtain the CAP equations

€

Ve [fmle BVehe + mé x Vetn| + T2 = 0 (2.29)
Vi [fm (e RV 1~ m X Vibe] + “’}'f" =0. (2.30)
This system may be written in operator form as
L =0 (2.31)
where
Vi [fmer RV +&  mVi[fmdx V
p= | V! A+% d 1 (2.32)
"‘mvt[fm¢ X Vt] Vt : [fm,u'rRVt] + %
and

¥ =[te Yn)7 (2.33)

10
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Figure 2.2: Cross section of a generating surface enclosed by the fictitious boundary T',.
2.1.2 Discretization of the CAP Equations

To discretize (2.31), we first enclose the generating contours of BOR in a fictitious
boundary I'; and the axis of symmetry as shown in Fig. 2.2. The contour I', is chosen to
be rectangular in shape thus generating a right circular cylinder. The region interior to I'y

is divided into N, linear triangular elements and within each element the corresponding

11



weighted residual expression is written
//RN,-‘(R, Z)RqedS° =0 (2.34)
Se

where (RNf) is the weighting function and R§ is the residual. Further, Nf is the usual
linear shape function found in any finite element book [18]. Using this definition, (2.29)

and (2.30) may be written

/ / RN¢ {vt [fm(er BV e + m x Vo] + ”’"’}dSe =0 (2.35)
/ / RN? {Vt [ (e BV e = m x V| + “’;z/’ h } dse =0 (2.36)
3¢

and upon using the identity

(RNf)V, A’ =V, - (RNfA’) - A° . V4(RN¥) (2.37)
we obtain
[ BNE 9. {BN¢ o (6 BV + md x Vi) }
+<.:,¢,N,-°6:c fm (6 RVitbe + md X Vithn) - V(RNE)] dS¢ = 0 (2.38)
/e / RNF [Vi- {BN¢ fm (e BVt — m x Vi) }
+p,¢thS— fm (e BV o1, = m x Vibe) - VI(RNE)| dS¢ = 0 (2.39)

F\1rthér, by invoking the divergence theorem (2.38) and (2.39) may be written as
J[ -t (e RV 4 m x V)] - Vi(RNE) + e} d5e
Se

+ ]{ : [RN fn (- RV b+ m x V)] dl* = 0 (2.40)

ST [ (1 BT = m x Vi) - (RN + b as°
Se
+ }f : [BNE fm (e RV — m x v,¢e)] dIF =0 (2.41)

12



where 7 is the outward normal along the boundary, C¢, of the eth element. Finally,

these may be simplified by making use of (2.22) and (2.23), yielding
J[ [ (B e+ mb X Vi) - Vi(RNE) + criVE} ds®
Se

- }40 RN{(Ghm)dl =0  (2.42)

J] ([ (e RO~ s x V)] - VRN + e} d5®
Se

+ }{C RN{(jem)dl*=0  (243)
where
et = 120 (2.44)
Bt = b (2.45)
with
i=axg (2.46)

To form a system of equations over the eth element, the fields are represented as a

linear basis expansion as

e(R,Z) = 21/)’ RN{(R,Z) (2.47)
]_1

¥i(R, Z Z%RNe R,Z) (2.48)
=1

Substituting these into (2.42) and (2.43) yields
3
Z / / [~ fme: Vi(RNE) - Vo(RN?) + & NENS| g
=1
—mfm X Vi(RNY) - Vt(RN,-")zpﬁj} ds°]

13



- fc RNE(jhume)dl® = 0 (2.49)

> Lf [ {[- e VRN - Vi (RNG) 4 1 NENE) 1,
= [

+m x Vi(RNF) - Vy(RNF)$E; } dS¢]

+ fo RN (jeme)dl® = 0 (2:50)

To proceed further, it is necessary that we evaluate the integrals over the surface of the
element.

Assuming ¢, and p, are constant within a given element, (2.49) and (2.50)

3

> [easus; - bu5;] - §, RNFGihme)d® = 0 (251)
i=1
3
S [ + wiaois] + § RN Gemal® =0 (252)
J=1
where
o = ] / R [~ fnVi(RNF)- Vi(RNS) + NENj| dS° (2.53)
SC

by, = / / m fmd X V{(RNS) - Vi(RNF)dS® (2.54)
SC

Summing over all elements to obtain a solution for the entire problem region, our system

becomes
N. 3 ) Na
S [ecativg; - 0595] = 3 ciohmes = 0 (2.55)
e=1 j=1 s=1
Ne 3 Na
o3 [ + niauss] + 3 chemes =0 (2.56)
e=1j=1 s=1
where
ch= [ RN:Rd (2.57)

14



and P} is the pulse function equal to unity in the sth element. Note that in (2.55) and

(2.56) the contour integral contribution canceled out except along the boundary I'; as

shown in Appendix D.

In block matrix form (2.55) and (2.56) may be written

i » ]

A5, Ayp 0 =By —Ba —Caa emgl 0

% Ay 0 =B, -Bun 0 jeme | |0

Bawo Bar Coa Ay Ay O himda 0

B Bu 0 AL A% 0 || hnw 0
|

in which we have substituted 9, and ¥, with eng and hpmg, respectively, and

N,
€ _ e e
A°=) €a;

e=1

N.
A* =) prag;

e=1

N.
B = Z bfj

e=1

Na
C= Zcfl

s=1

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

The subscripts on A“#, B and C refer to the various regions of 2 and its boundary. The

elements of (2.59) - (2.62) are derived in Appendix E and are listed as follows

15



a; = [~afeiQi0 — (Bfaf + B505)Qu — 2(7ie + 7;0f)Q20 — 2(B{7; + B57) Q=
=B B; @12 — (47§75 + BiB; )30
+afaiPo + (8705 + B50f) Pu + (vi e + 708 ) Pao + (8775 + B57) Par + 55 85 Prz

€. c 1
+7:7; P30](2—Qe—)—2(2.63)
and

€. =

b5 = Tl = es)Quo+ 28528 - 6125)Qal (264)

where the Ps and @s are defined in Appendix E. The elements of C' are

Css =i
Cosr,s = c (2.65)
where
cy=¢ch = Eﬂ%éi for T'yo
¢y =1(A® £ R})(R] + RS) FL(RE? + R{R3 + R}Y?) upper sign for T,y (2.66)
h = FIRRI(RL + BY) —3(RY + RIR} + RYY)] lower siga for Tas

To form a complete system, (2.58) must be appended by a discrete version of the

boundary integral equation to be discussed next.

16



2.2 Boundary Integral Formulation

The electric and magnetic fields are represented in the unbounded region by

EF) = E'(F)+E(

=2
=3

) (2.67)

oy
&)
.

7)) = H'(F+HF (2.68)

where F(F) and F(?) are the incident fields and the scattered fields are given by the

Stratton-Chu equations [14]

B = ff {-jon [f T o7 4 [7- B Vo7 7)
+ [ x E(T)] x V'g(r,7)} ds’ (2.69)
T(F) = fj {jwe [# x E(™)] o(7,7) + [#/ - H(T)] V'g(7,7)

+ [ x ()] x V'g(7,7) } S’ (2.70)

where 7 and T are the source and observation points, respectively and

g—ikolF=]

= — 2.71
4r|7 - 7| (2.71)

9(7, )

is the free space Green’s function. It is convenient for computational purposes to elimi-

nate the presence of the normal field components and after some manipulation we obtain

rm=fJ {=iko it x ()] o7, 7) + II'E [# - V' x B (¥)] V'g(r, )
Sl
+ [ x BF)] x V'g(7,7)} dS" (2.72)
ol (7) = ﬁ {]ko [ x E(7)] o(r,7) - 7 [V X E(7)| Vo(r,7)
Sl

17



For ¥ = 7, the integrals in (2.72) and (2.73) are singular and by removing these singu-

larity, they may be rewritten in terms of principal integrals as
§5() = T') + F {-iko [ x mE ()] o(r,7)
SI

1 @ v x no’ﬁ(w)] V'g(7, ™) + [#' x E(7)] x V'g(7, ) { d5" (2.74)

+—
Jko

N’

o) = ') + B {0 [§ x B)] o7,)
Sl

_j%o iV x E(F)| V'g(r,7) + [ x mH ()] x V’g(’F,’F’)} s’ (2.75)

where we have also made use of (2.67) and (2.68). These must now be enforced on the
boundary so that they can be coupled with the FEM equations.

Initially, we will allow S’ to be a general surface of revolution and will then specialize it
to the case of a right circular cylinder. In the next section, we derive the modal boundary
integral equations by expressing the fields and the Green’s functions as a Fourier series
in the cylindrical coordinate ¢. The resulting modal equations are then discretized and

the resulting subsystem is augmented to the finite element system previously derived.

2.2.1 Derivation of the Modal Boundary Integral Equation

Consider the general surface of revolution indicated in fig. 2.1 whose tangential unit
vectors are denoted by ¢ and i. The angle v is that between the { and the z-axis and is
negative when { points toward the z-axis. Referring to the figure, we may represent the

various unit vectors as

S
i

Zcosvcos@+ jcosvsing — Zsinv (2.76)

<
i

_ising + jcosd | (2.77)

18



t = &sinvcosg+ §sinvsing+ 2cosv (2.78)

£ = {sinvcos¢+ Acosvcosd— gsing (2.79)
§ = isinvsing+ Acosvsing+ cosg ~ (2.80)
2 = tcosv—fsinv ‘ (2.81)

Expressing the primed unit vectors in terms of the unprimed unit vectors results in

©-

{ =1 [sinv'sin vcos(¢ — ¢') + cos v cos ']

+#' [cos v’ sin v cos(¢p — ¢') — cos vsinv'] + ¢’ [sin vsin(¢ — ¢'))] (2.82)

# = 1 [sin v’ cos v cos(¢ — ¢') — sin v cos v/]

+#/ [cos v’ cos v cos(¢ — ¢') + sin vsin v'] + ¢’ [cos vsin(¢ — ¢')] (2.83)

—1' [sinv'sin(¢ — ¢')] — ' [cos v' sin(¢ — ¢')] + ¢' [cos(¢ — )]
—p'sin(¢ — ¢') + ¢' cos(¢ — ¢') (2.84)

Taking the ¢ component of (2.74) and noting the identities,

¢ (#' x noH) = —noHysin v'sin(¢ — ¢') — noHy cos(¢ — ¢') (2.85)
¢-Vg=-4-Vg (2.86)
W (VX B) =3 [~ dlomoHe) + F(mo)] (287)

- [(fz’ x E) x V'g] =

[ﬁ'Et sin(¢ — ¢') + #'Ey cos(¢p — ¢') + ¢' E4 cos v’ sin(¢p — ¢>')] -V'g (2.88)

19



we may rewrite (2.74) as

%Eé(?) = E}(7)

27
fr. fo {Jko [T)OH¢ sin v’ Sin(¢ - ¢’) + noHt COS(¢ _ ¢I)] g(?", F’)
Jk ’ [- a7 p nOH'ﬁ) + W("OHO] ¢ Vg(r ?’)
+ [E’E‘ sin(¢ — ¢') + #'Eg cos(¢ — ¢') + ¢'Eg cos v'sin(¢ — ¢’)] . V’g} Jdd/dT (2.89)

Further, by carrying out the derivatives of the Green’s functions, we have

%E¢(?) = Ei(7)

2T
][r ][0 (ko [noH¢ sin o' sin(¢ — ¢') + 1o Hy cos( — ¢')] ¢(F, 7)

1 d
k [— Z(p'moHg) + S ﬂoHt)] sin(¢ - ¢') = A dI‘iq
+ (Eysin(¢ — ¢') + E4[p’ cos v’ cos(¢ — ')
—pcosv' + (z = 2')sin v’ cos(¢ — ¢')]) %—‘%—} p'd¢'dT (2.90)
in which
Ro= /o2 + p2 - 2pp' cos(p - §/) + (2 = /)2 (2.91)

To generate the corresponding integral equations for the modal components, the fields

and Green’s function may be expanded as

oo
E(F) = Z Em(p, 2)e’™? (2.92)
m=-=o0
noH (T) Z R (p, 2)e’™? (2.93)
m=--00
g, 7) = Z dB(p,p, 2, 2)eim6=4) (2.94)

20



where

m(py2) = ][ E(p,u,z)e” ™ du

hm(p,2) = ][ (p,u,z)e" ™ du

-JkoR
Op,p',2,2') = ga(p, 0, 2,2') = = fo o cos(nu)d

1
(o, 2,7) = 5 19n-1(p16',2,2') + gnta (0,0, 2, 2)]

b —JkoR
][ cos u——=— cos(nu)du
0 4R

2=

(2)(/’,/’ %y zl) = "‘2' [g'n—l(pvp ,Z,Z) 9n+1(P,P Z,2 )]

j s e-]koR
=-= ][ sin 4 ——=— sin(nu)du
TJo 4R

o , 1 (7 1ldg
(p,0'2,2) = gu(p, 0, 2,2) = . RdRCOS(nu)d

g (p, ', 2,2") [gn-l (p,0', 2, 2)+gn+1(p,p z,7)]

1
Tk}

][ cos u—}.-ig.-: cos(nu)du
RdR
9 (p,p,2,7) = --[gn_l (p,#'2,2") = gnya (s 2, )]

= -—'7—2- ][ sin u-}.—-fd-i sin(nu)du
kg J o RdR

with

R= \/p’+p’2 —2pp'cosu + (z - 2')?

Substituting these into (2.90) yields

o] o]

1 : : .
Z '2'en¢(p’z)ejn¢= Z e:ub(p’z)eﬂw

n=-0oo n=-oo

21r
+ Z Z e’"¢][ ][ Jko [hm¢51nvgn +hm,g,(l )]

N==—00 M=~00

+jTo [= &(0'hmg + jmbins) k2g(?

21
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—emt(z — 2 )k3g{) + emgkd(p' cos v'gll)
—pcosv'y, + (z — 2')sin v'ggl)l)} eI m=m)¢' p'dg!dT (2.104)
and by multiplying each side by e /7% and integrating over (0,2) to extract the mth

modal equation results in

seme(py2) = eing(p12)
+2r ][ {ibmosino'g® = § 2(p'hmggl®) + (ihme) [g) + gD
—emt(z — 2 )kog(z) + emgko(p’ cos 'v’g,(,})'
—pcosv'g,, + (z - 2')sin v'g,(,})')} kop'dT  (2.105)
after combining terms and where we have used

2 , 2r m=n
/ elm=m)¢'dg! = (2.106)
0

0 otherwise

For the case in which T'(= T,) is the generating cross section of a right circular cylinder
(indicated in fig. 2.2) the integral in (2.105) may be written as a sum of three integrals,
one over each side of Tp(= Y%, Ty,) as
Semé(512) = ehno(p12)
+2r ][ {ibmsg® = i &(0'hme)g D" + (jbme) [ + jmglZ|
—emi(z — 23)kog'®’ + emgpko(z — 23)gl)’ } kop'dp’
+2r ][ {=7 2(02hme)g + (ihme) g3 + img?)
—emt(z = 2Yhog® + emaho(p29®) — por) } koprd?’
+2r ][ {=3hmed = § (0 hme)sD" + (jhme) [ o) + jme)]
—emi(z — 2')kog®' = emoko(z — z')g,(,})'} kop'dp’ (2.107)

22



Introducing the normalized coordinates

Z = koz Z' = koz' ’ (2.108)

(2.107) becomes
Semb(R, 2) = €ing(R, 2)
R ) e 0@ 4 (ih) [ 4 jmg®
+][0 {ihmos® = § r(R'hmg)g ) + (ihme) [0 + jmg ]
+i(iem)(Z - Ze)g®' + emg(Z - Ze)g)'} RaR
+][Z (=i & (Rahmg)gD + (jhme) [0 + jmg?)]
3
+i(Gent)(Z = Z')92 + emo(Rog®) - Rgl,)} RodZ'
R; '
+ 7[0 {=ihmog® = i o(R'hmg)g® + (jhme) [ + jmgD]

+i(iem)(Z = 29 ~ emg(Z - Z)g@} AR (2.109)
This equation and its dual are discretized in the next section.

2.2.2 Discretization of the Modal Boundary Integral Equation

Consider the fig. 2.2 where the rectangular boundary is divided into N, boundary
elements and are equal in length along the I';2. Along the boundary, the fields are

expanded into pulse basis functions as
U(R,Z" = ZU 1 P(Rips — R\ 251 - Z') (2.110)
j=1
where U represents any one of the components €mg, Amg, €ms OF hp: and
, , 1 if |2 +1—Z'l<$ﬂ-,|R+1—R’|gé§L
P(R; .1 - R ,Zj+% -7 = (2.111)
0 otherwise
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and

Zi414Z; _ Riy+R; .
Zj+% = 2T Rj+§ = St (2.112)

Substituting the pulse basis expansion into (2.109) and simplifying yields

1 i
§em¢(R’ Z) = eny(R, Z)
Na

R;
- (2
+ 2 {{hm¢}j+§][Rj+ngﬁn)R'dR'

J=Na14+Na2+1

R; , ) R; ) ,
H (B hmo) 44 ][ RJ - j¢P'RAR' + {jhme}; ][ o) + jmg®] R'dR/

I+1 41

R; R, ,
Hiemds | 32 2D RAR +{emelipy | (2= Zo)gl) R'dR'}
R4 2 J Rjpn
Nai+Na2 Zj . (9" ,
+ Y {{(Rthd’)'}j-}-% ][ - jgl? Rodz
j=Nay+1 Zin
. By, ) '
+{jhmt}; ][ [0 + jmg®] Radz
Zj4
Z‘ Z 1 ]
+{seme}; .-/z iz - 2@ RydZ' + {emg} ;11 ][z] (Rag) "Rgm)deZ'}
41 J+1
Nal
+3 {{hm¢},+ ][ - jg@R'dR
j=1

Rj4
+{(R'hm¢)’}j+;2_ ][R - Jg(z) R'dR' + {jhmt}j ][ a [g(l) + ng(Z)] R'dR’
3

+{jemt}; ][R J(Z = 21§V AR’ = {eme} iy f (Z- zl)g“)’R'dR'}zus)

5
'roceeding to point-match at the boundary element midpoints, we have

1 .
—em¢(R'+l Z1 = e;mb(.RH_l,Zl)

2
Na

R, )
+ ) {{hm¢}j+%][R joPRdR

J=Na1+Naz2+1 I+1

/ ' R; (2)' p'p! . R, 1) o 5002 R ap!
+H{(B'hmg)'} 41 ][R ~ j9m’ R'AR + {jhm:}; ][R [ym + jmgy, ]RdR
41

I+1
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R .

R; ' J '
Hiens); f (2 - B RAR + {emeby f (22 - Za)a) R’dR’}
3+1 ¢)

N¢1+Na2 Z,‘ ,

+ 2 {{(thm¢)'}j+1- ][ - 39%) RydZ’
. 7J Z4
J=Na1+1 7

+{jhmt}j ][ [g(l) + ]mg(z) ] R2dZI

Zj+

z; , z; ,
Hiend)s f | 323 = 200 RadZ +{emslyuy | (Rasl) - .-+%gm)deZ'}
J+1 J+1

Nai
+Z{{hm¢},+2 f " o) R
j=1

Rj41 ) i+ , '
HRhma) Vg § 7 = 56 RAR+ (el £ o0+ jmg®] R
J

J

Rj4 ' Rj41 .
+{jemt}; ][R’ i(Z3 = 21)g3 AR’ = {emg} ;41 fR, (21 - Z1)9)) 'R 'df(%u‘i
)

J

for the field points on contours I'y; and I'y3 and

1 .
gems(R2, Z;11) = €mg(R2, 24 1)

Na

R,
+ ) {{hm¢},-+§ ][R i9R'dR'

J=Na1+Na2+1 i+

Rl '
HRbma) )y =36 RO + (bl (ol 4 imal?] 2R

j+1

R; R, ,
+{jeme}; ][ (Z.+1 - Z3)91(r?) R'dR’ + {em¢}1+ _7[ J (Ziy1 - Z3)gy) R’dR’}
341 R4 2
Na1+Naz Z; ,
+ {{(thm)’}ﬁ% fz ~ gD RodZ’
i+

J=Na1+1

. Z" . !
+{Jh-mt}j ][ [g,(,}) + ngi,f) ] RodZ’
Zin1

Zi+

ZJ [ Z; ' '
+{jemt}jf J(ZH-% - Z’).q’(:) deZ/ + {em¢}j+l fz" (Rzgg) - Rzgm)RgdZI}
I+l
Nal

+ Z {{hm¢}g+ ][ - ]g,(,f)R,dR'

R;41
H{(R'hmg)'}j41 ][R ~ jg  RUAR + {jhms}; ][R’“ [ M) 4 jmgl? ] RdR'
7

¢l
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Rj41 R4
3

+{jemt}; ][R_

¢)

Ziyy ~ )6 RAR = fema}say

R (Ziyy =2 )g,(,})'R’dH'%lw)
J

for the field points on contour I';2. The above set of equations may be written more

compactly as

[ = P?] C {emg}, = [PY] {iemeda = [3Q°C + Q¥ D] {hms}, - [Q"] {ibme},
= {ein¢}a§2.116)
where the matrix D arises from the derivative

Ri{hm¢}; = Rix1{hm¢};+1
, / _ , _ . - ] J J J 2.117
{R'hms}iyy = siw(Rhmo)lr=R,, |Rj+1 - Rjl -

and C is a matrix comprised of ’1’s along the diagonal and superdiagonal. Also, the
subscript % represents evaluation at the boundary element midpoints. In a parallel

fashion, the dual of corresponding (2.116) may be written

£ (31 - P*] C {hms}, - [P'] {ihmela + [(3Q°C + Q¥ D) {ems}, + (@] {iemi}a

= {hin¢}a£2.118)

The matrices in (2.116) or (2.118) are 3 X 3 in size, each element of which is a
matrix corresponding a particular integration and observation (field point) contours.
Each element of the submatrices is in Appendix F. For non-self-cell terms, the integrals
are evaluated via open formula numerical integration schemes. The self-cell terms are
given in detail in Appendix F. The integrals involving g,, are computed via Romberg
integration with a specified convergence criterion to ensure accurate evaluation for any

mode.
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Finally, augmenting finite element system with that formed by (2.116) and (2.118),

we derive the system

[ 4, ¢, 0 =By, =By Coa |[mea | | 0 ]
%« Ay 0 =B, =By 0 emel 0
P 0 -P -Q 0 @ ||jem | | {ehsla
Bao Bar Caa A, Ay O hmga 0
B, By 0 AY, A4 0 hmel 0
Q@ 0 @ P 0 =P || jhm | | {hngla ]

which is to be solved iteratively and where

Q=3Q°C+Q*D

P =131~ P|C
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Chapter 3

Scattered Field Computation

In the far field the scattered fields are given by

-3

E*(7) Eg(T)$ + noHy(T)b (3.1)

ol (7) noHo(T)$ — E4(7) (3.2)

We wish to compute the radar cross section given by [19]

=812 =8 /12
o = lim 41rr2!—1i-(-r—)l- = lim 41rr2|—!-{—(-r—)-|— (3.3)

e E@E e [FE)P

For T M, polarization we have

M
Ey(r,0,8)=2j ) €py(r,6)sin(mg) (34)
m=1
M
noHg(r,0,8) = h§(r,0)+2 Y hiny(r,6) cos(mg) (3.5)
m=1

and for TE, polarization we have

M
Ej(r,8,8) = €§(r,0) +2 Y ehny(r, ) cos(mg) (3.6)
m=1
M
ToH3(r,0,0) =2 3 hing(r,6) sin(mg) (3.7)
m=1
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These combined with a unit amplitude incident field implies that (3.3) becomes

M 2
oTM, = rll.rgo 4rr? [2 Z ems(T) + (hg +2 Z hg (7, 6) cos(mg) } (3.8)
m=1 m=1
2
OTE, = rli'r{.xo 4rr? [ e +2 E eme(T + 2 E home(Ts } (3.9)
m=1 m=1

We had previously discretized the Stratton-Chu integral equation for field points on
the integration contour as given in (2.113). Eliminating the principle value factor for
observation not on the integration contour, the corresponding scattered field equation

may be written

cing(R,2) = | " (ms8® = § o (Rhms)g® + (i) [oD + mg?]
+i(Gemt)(Z = Z)o8) + ems(Z - Z5)g)'} RAR’

+ / {5 (Rabmg)g® + (Glims) [ + imgD]
+i(iem)(Z = Z)9% + emg(Ragl) — Rgp) } RodZ'

+ / {~itmss®D = § o (Rhms)g2 + (i) [g3) + jmg?)|

+i(jemt)(Z ~ Z1)9 - emo(Z - Z1)gV'} R'4R'  (3.10)

We wish to evaluate this expression for large kor = vV R? + Z2. For large r

! /
\/R2 + R? - 2RR'cosu+(Z - Z2')? ~ kor — iTZr - Ilj_f; cos u (3.11)
Thus, we may write (2.97)
1 ~jkor .zz' fT .RR'
gm(R,R,Z,Z") ~ £ - 61707/0 €’ *or ¥ cos(mu)du (3.12)

Noting that the integral is related to the Bessel function of the first kind. we mav write

29



(3.12) as

e'jk” YA 0
gm(R, R,’ Z’ ZI) & ——el fm(R,, 0) (313)
2k07‘
where we have used
1 [~ . |
J"Im(B) = ;/ P % cos(mz)de (3.14)
(i
fm(R',0) = 3™ J (R sin ) (3.15)
and the fact that
R =korsinl Z = korcosb (3.16)

Likewise (2.98) - (2.102) become

d(R,R, 2,2 ~ %a’z’ cos f (R',0) (3.17)
d®(R,R, 2,2 ~ 5;;—0:;&2’ cosf (R, 6) (3.18)
g (R,R,Z,2") ~ —i@%eﬂ’m“ fm(R',0) (3.19)
W'(R,R,2,2") ~ -@%eﬂ’ cosb s (R',0) (3.20)
J®'(R,R,2,2") ~ -@%’-eﬂ'w fom(R',6) (3.21)
vhere
fom(R',0) = 5™ ;. (R’ sin 6) (3.22)
fom(R,0) = —mj'"%ﬁ—ez (3.23)

vhere the prime on J indicates differentiation with respect to the argument. Substituting

these expressions into (3.10) results in the expression

—jkor
efnd)(R’ Z) = er(m,g) (3.24)
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where

. R
fu(m, ) = eiZacost /0 (oG fom) + Ghmt) fom + (jmt) 08 O fom

—emg 08 0(j fom)} R'dR’

Z ., . . )
+/Z /2<% {(jhumt) form + (J€mt) €08 0 fom + €mg SID 6(j frm)} R2dZ'

3

. Ry
+e]Z; cosf '/0 {_hm¢(jfam) + (Jhmt)fcm + (jemt) €08 0 fom

+emgcos0(j fom)} R'dR’ (3.25)

Using a midpoint integration to compute the integrals, (3.25) becomes

Na

fe(m, 0) - est cosf Z {{hm¢}j+%UfBM(Rj+%’0)] + {jhmt}jfcm
J=Na1+Na2+1

+{jemt}j cos 0 fom — {em¢}j+% cos o(chm)} R_,'+%Aj

Nai+Na2 iZ.. 4 cosh
+ E € ’+% {{jhmt}jfcm(R% 0) + {jemt}j cos ofom
j=Na1+1

+{em¢}j+% sin 0(.7fm)} RoA;
. an
teid1cost Z {—{hm¢}j+1§[jfam(Rj+%7o)] + {jhmt};fom + {j€mt}; 08 6 fom
J=1

+{em¢}j+% cos 0(jfcm)} RH_%A,' (3.26)

Letting f(m, ) be the dual of (3.25) we may write (3.8) as

y 2
oTM;%0,¢) - ‘_11; [Q:L—;l fo(m, ) sin(mg)
.y 2
+1/4(0,6) +2 ) fu(m, ) cos(me) } (3.27)
m=1
y 2
UTE,)‘(%91¢) - 217_1- [fc(O,B) + 2mz=1 fo(m, 8) cos(mg)
M 2
+(2 )" fu(m,0)sin(mg) } (3.28)
m=1
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where A; is the length of the jth boundary element.
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Chapter 4

Results

The scattering patterns for three structures are shown in figs. 4.1 - 4.6. In each case
the bistatic pattern is computed as a function of #* with ¢' = ¢*.

The first body is a conducting right circular cylinder of length 1A and radius 1’\—0. Fig.
4.1 shows both the TE and TM scattering patterns for broadside incidence (6 = 90°)
for mode 0 and as seen these are in good agreement with the corresponding pattern
obtained from the MOM code CICERO [7]. The results for mode 1 are shown in fig. 4.2,
while fig. 4.3 shows the sum of modes 0 and 1. Fig. 4.4 depicts the bistatic scattering
pattern for the same geometry with axial incidence (6 = 0). Only mode 1 yields a
non-zero solution in this case and the results are in good agreement with CICERO.

The TE and TM bistatic scattering patterns of a perfectly conducting sphere of
radius % are shown in fig. 4.5. Again, these are in good agreement with the data
obtained from CICERO.

The axial incidence scattering patterns for an ogive of length 1 A and radius .088 A

are depicted in fig. 4.6 and agree with those generated by CICERO.
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"igure 4.1: Mode 0 TM and TFE bistatic scattering pattern from a perfectly conducting

ircular cylinder of length 1A and radius 0.1\ for broadside incidence.
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Figure 4.2: Mode 1 TM and T'F bistatic scattering pattern from a perfectly conducting

circular cylinder of length 1A and radius 0.1 for broadside incidence.
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Figure 4.3: Modes 0+1 TM and TE bistatic scattering pattern from a perfectly con-

ducting circular cylinder of length 1\ and radius 0.1 for broadside incidence.
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Figure 4.4: TM and TF bistatic scattering pattern from a perfectly conducting circular

cylinder of length 1) and radius 0.1 for axial incidence.
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Figure 4.5: TM and TE bistatic scattering pattern from a perfectly conducting sphere

of radius % for axial incidence.
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Figure 4.6: TM and TFE bistatic scattering pattern from a perfectly conducting ogive

length 1A and maximum radius of 0.088) for axial incidence.
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Appendix A

Derivation of Modal Incident
Field

Consider a field incident at a point 7 = (r,¢, 2) at an angle (6*,¢') (as indicated in

fig. 2.1 ) of the form

(6, ¢'5p,8,2) = eFoT (A1)

(6, ¢'; p, b, 2) = —Gie~iF0T (A2)

where the ¢ direction is perpendicular to the plane of incidence and #' direction is in

the plane of incidence. Using

7= Zsinfcos¢ + §sinfsin @+ Zcosb (A.3)

2l

# = #sin 6 cos¢' + §sin 0 sin ¢* + 3 cos 6 (A.4)
the argument of the exponential becomes

Eo ‘T= koT(—fJ' . T) (A5)

= -k [p sin ' cos(¢ — ¢') + 2z cos 0"] (A.6)
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in cylindrical coordinate system. Using these and the fact that

# = —isin 6 + jjcos ' (A7)

6 = & cos 8 cos ¢' + § cos ' sin ¢* — Zsin 6 (A.8)
§:=isin0cos¢+écos0cos¢—&sin¢ (A.9)

§ = #sin@sin ¢ + 0 cosfsin ¢ + pcos b (A.10)
3=+cosf —0fsinf (A.11)

(A.1) and (A.2) become

T80, — ¢',2) = [psin(d — ¢) + Geos(g — ¢)] eftolosin coslé=ptzcant] (4 19)
£6'p,0-¢',2) = - [ﬁ cos§' cos(¢ — ¢') — cos 8 sin(¢ — ¢') — 2sin 0"]

gikolsin®’ cos(6-4")+zcos] (4 13)

The previously derived fields may be expanded into a Fourier series in the parameter

¢ — ¢ by first writing (A.1) and (A.2) as

((6p,0-¢,2) = i (6750, 2)eim(#=4) (A.14)
E6p,6- 6.2 = 3 Enllip,2)eim 69 (A15)
and then making the definitions
F(6p,¢ = ¢') = eftorsin® cosls=¢) (A.16)
fo(6'5p,6— ¢') = cos(¢ — ¢') (6% p, 0 — &) (A.17)
fo(6'; 0,6~ ¢') = sin(¢ — &) f(6 p, 6 - ¢) (A.18)
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Expanding each of these into a Fourier series in (¢ — ¢*) and using the fact that

f(8) = f(=9) <= fm(v) = fom(w) (A.19)
f(8) = =f(=¢) <= fm(u) = —f-m(v) (A.20)
we have
f(B5 0,0 - ¢) = fo(6',0)+2 Y fm(6,p) cosm(¢ — ¢')] (A.21)
m=1
f(6'0,6 = &) = foal0',0) +2 3 fem (6", ) cos[m($ - ¢)] (A-22)
m=1
fi(05p,8=6) =21 ) fom(6',p)sin[m(¢ — ¢')] (A.23)
m=1
where
fm(0,p) = / eikopsin b’ cosu cos(mu)du (A.24)
fom(6',p) = —/ cos uelkopsiné' cosu cos(mu)du (A.25)
fom(6,0) = / sin yedkopsin®’ €o8% sin(mu)du (A.26)
Noting the identities
*m — l i )8 cos z
I"JIm(B) = - /; ¢ cos(mz)dz (A.27)
i™1(8) = 1 /1r cos zelP 5 cos(maz )dz (A.28)
"7 Jo
—%j’” m(8) = —7%- ‘[ sin ze?P % sin(mz)dz (A.29)

where the last two are derived from the first by differentiation with respect to 8 and

integration by parts respectively, we may write (A.24)-(A.26) as

fm(8,p) = j™ Jm(kopsin 6°) (A.30)
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fom(8',0) = 57 Ty (Kopsin 6)

m

fam(oi, P) ==

With these, we may proceed to rewrite (A.14) as

C(0'0,6— ¢,2) = 052 N[350, ) + Bfom(6, p)] (8=

{85 p,0— ¢, 2) = —elhozcont’

o0

S [pem(6,0) cSE = Gfum(6',p) cOSE' — £ (6, p) sin 6] (4=

m=-oo

or, using (A.19) and (A.20), we have

(60,6 - ¢',2) = eFhorcost’ [ﬁ2j Y fom(8', p) sin[m(¢ - ¢')]

m=1

+85x(6',0) + 62 f: for (8, p) cos|m(¢ - ¢‘)]]

m=1

Z(ei;Pa‘ﬁ" ¢i12) = _ejkozcoso‘

{/3 cos ' [fco(oi,p) +2 f: fm(oi, p) cos[m(¢ ~ ¢i)]]

m=1

—dcosf’ [21‘ i fom (6%, p) sin[m(¢ — ¢‘)]]

m=1

—%sin ' [ fo(6',p) +2 i (6, p) cos|m(¢ — ¢)]

m=1

In this work, we will use the ¢ components of each of these equations.
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Appendix B

Maxwell’s Equations for
Axisymmetric Media

The usual Maxwell’s equations in a source free region are given by

V x E(F) = —jwpH (B.1)
V x H(F) = jweE (B.2)
V.D(F)=0 (B.3)
V.B(F) =0 (B.4)

In cylindrical coordinates the electric and magnetic fields may be expanded into a Fourier

series in ¢ as

E(F) = i em(p, 2)e™® (B.5)
()= 3 Fnlo,2)e™ (BS)

V X = Lt X 6 = —j L him (B.7)
p n
- jm— A



Appendix C

Derivation of Boundary
Conditions

In this appendix, the axial and perfectly conducting boundary conditions are derived.

C.1 Derivation of Axial Boundary Conditions

Substituting the Fourier series representation of the electric field into the divergence

condition we obtain in the normalized cylindrical coordinate system
V. (Emejmd’) = koe!™® (keremp + F(€remp) + T REremp + Fleremz)] =0 (C.1)
Thus,
€remp + B[ G(eremp) + F(€remz)] = —jmeremg (C.2)

as Morgan had previously derived. Taking the limit of this expression as R — 0%, we

obtain
emp + jmemg = 0 (C.3)
Expanding the derivative w.r.t. R in

% lImemp = Fz(Remg)] = jurhms (C4)
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and taking the limit as R — 0%, we obtain
emp +Lemg =0 (C.5)
Combining (C.3) and (C.5) and solving for e, we have
(m* — 1)emg|psot = 0 (C.6)
In a similar manner we obtain the dual expression
(m? = 1)hmg|poot = 0 (C.7)
For m # 1, the following axial condition holds
emplrR=0t = hmglp=0+ =0 (m # 1) (C.8)
To derive the condition for m = 1, lets first consider
emz = j fm [M g5(Remg) — Rptr gp(Rhmg)] (C.9)

As R - 0%, em; — 0 for m # 0. Differentiating (C.9) with respect to Z we have

Zem: = fm {MB Lrems = R[ &pir (hmo + R Fihimg)
+ir (g + R afizhms)|} (C.10)

Clearly, as R — 0% Zep,, =0 for m # 0. Differentiating (C.2) with respect to R after

dividing by e,, we obtain
#REmp +$[ wr(eremp) + FZ(eremz)] |r=0+ = —jm Femg|r=o+ (C.11)
Accounting for the behavior of e, and Zepm, (C.11) becomes

2 Fremp+emp ZH(ne)+im Semy =0 (C.12)
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To find another equation in terms of em, and Fremg, we multiply (C.4) by R

and differentiate it with respect to R to obtain
R Z(prhms) + trhmz = 3 [2 aems + R Zrems = im aemp| (C.13)
Letting R — 01 we obtain
2j Zemp+m fxeme =0 (C.14)
Substituting (C.14) and (C.5) into (C.12) we obtain
(4—m?) Zems +emg Z(lne)=0 R=0, m#0 (C.15)
In an analogous fashion, the dual of (C.15) is given by
(4=m?) Zhmg+ bhmp Z(np,)=0 R=0, m#0 (C.16)

For ¢, and p, constant in R at the axis of symmetry and for m = 1, (C.15) and (C.16)

reduce to
Zems =0 (C.17)
Zhme =0 (C.18)

C.2 Derivation of PEC Boundary Conditions

On a perfect conductor the condition
AXE=0 (C.19)

Substituting the Fourier series expansion for the field into this boundary condition yields

the following condition on each mode

~

A X Em =0 (C.20)
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The second Maxwell’s equation for the mth mode is given by (see an appendix)

V X b + J—pnl-ﬁm X d3 = jwenen,

(C.21)

Crossing this equation with # and noting that # - hy, = 0 on the conducting surface, we

obtain
AX(VXhyp)=0
Carrying out the curl in cylindrical coordates yields
W% {54 Bhme = hmo| + 6| Zhmo = Hhms|
+2 | £(ohme) = Fhmo|3} =0

Noting the identities

S

X

>

3> ]
X -
—~~

- =13
] o
o~ ~—

~13

X

™

]

|

-
—

S
>
~—

we find that the middle term of (C.23) implies
Fhmp = %hmz
and the first and third terms may bé written
$(1-2) (3 &hms = &hms] = 8 5) | Z(ohms) = Fhimy]
Rearranging terms, we have
i+ [Vilphimg) = £ Zhmi = 0

51

1
P

=0

(C.22)

(C.23)

(C.24)
(C.25)

(C.26)

(C.27)

(C.28)

(C.29)



or

and we have used the following

52

(C.30)

(C.31)
(C.32)

(C.33)



Appendix D

Evaluation of Finite Element
Contour Integral

D.1 Contour Integral Evaluation along Conducting Sur-
faces

It is shown in the appendix that along perfectly conducting surfaces the conditions

Ye = 0 (D.1)

o
RSy
>
]
o

(D.2)

must hold. During the assembly of the finite element equations (i.e., when the summation
over all elements is performed), those rows and columns of the finite element matrix
corresponding to nodes on the conducting boundary are eliminated. As a result, the
corresponding contour integral vanishes along a conducting boundary.

Imposing the condition (D.2) results in the elimination of the associated contour

integral since on the conducting surface
i+ (§X Vighe) =1+ Vighe = 0 (D.3)

(check this stuff)
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D.2 Contour Integral Evaluation along the Axis of Sym-
metry

In the appendix, the axial boundary conditions are derived

em¢ =0 (D4)
hmg = 0 (D.5)
FrEm = (D.6)
orhme = (D.7)

Conditions (D.4) and (D.5) results in the elimination of the rows and columns of the
assembled finite element matrix associated with nodes on the axis.

Alternatively, since R — 0 all terms in the contour integral are zero by virtue of the
chosen weighting function.

(may explore the possiblity of a different weighting function which does not guarantee

this)

D.3 Contour Integral Inter-element Connection Cancel-
lation

Since the argument of the contour integrals are tangential fields at the element bound-
ary, they will be continuous between adjacent elements. As a result, the contour inte-

grations along the element intersection cancel.
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Appendix E

Evaluation of the Finite Element
Matrix Elements

In the evaluation of af; and bf;, integrals of the form

Py = / R°ZdRdZ (E.1)
and
RezZb
Qab = // T iRz (E.2)

Clearly, Qo exhibits singularities for real k. To evaluate this integral, consider an integral

of the form

I= / / 9(R)Z*dRdZ (E.3)
¢

To evaluate the integral, first transform it to an integration along the element boundary
via

Zb+1
(R,Z) = (R)mﬂ (E.4)

Using Stokes’ theorem

!/(VX?)-dF:%eﬁ-di (E.5)



and
V x7=-¢g(R)Z (E.6)
dS = ¢ dRdZ (E.7)
Inserting these into (E.5) yields |
/ f g(R)Z%dRdZ = T + - (R)Zb“dR (E.8)
Via (E.8), (E.1) and (E2) become respectively
Py = Z—:_-l- }i ] R*ZM'dR (E.9)
and
1 agb+1

Qab = b+ 1 Jre RPrZ = mZdR (ElO)

where the contour integration is taken in a counterclockwise fashion. For linear triangular
elements, I'° is represented by a summation of three contours, one for each side of the

triangle. The variable Z may be thus expressed as

Z(R)=vR+y (E.11)
where
Ziy1 = 2
U = —— E.12
’ Ry - Ry (E-12)
= Z; — wR (E.13)

Then Z°*! may be expressed as
Zb+1 (u+Rv)b+1 = ,vb+1(1 + y_}E)b+1

_ ”+1bf (b+1> <uR) (E14)

p=0
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where

(:,) = ;.(;;1%7,;)7 (E.15)

Thus, by writing the integral in (E.10) as a sum of an integral along each side of the

triangular element, it be rewritten as

3 b+1 b+1 b1 RH—I Ra+p
Qus = b+12§:( ) (% ) ot [ R (E.16)

=1 p=0 R

Clearly, integrals of the form

Y S ) E
owm) = [ g (B17)

for n=0,1,...,a+ b+ 1 must be solved. Forn =0

. Ry
~ B m=0
I(0,m) = Ry Rups (E.18)
5= [In(m — Rk) — In(m + Rk)] m >0
R,
For n = 1 it is easily shown that
1 R,
I(1,m)= 32 [In(m — Rk) + In(m + Rk)) m>0 (E.19)
R

Using the definition of the principle branch of the natural logarithm in the equations
above guarantees that the singularity is properly handled. For values of n > 1, the
recursive formula [17]

I(n,m) = I(n,0)+ ’:21(1: 2,m) (E.20)

is used. Thus, (E.16) may be written in terms of I as

i=1p=0
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In a similar fashion,

1 3 b+1 b+1 P b1 Ra+p+1
o=y (50) (5) o ee

p=0

Ry,

The shape function is written in expanded form as

Ni(R,2) = s=(af + B2 +(R)

2Q¢

where

S(6598 - B3
o = Z3R,- IR
Bi = R;-R;
Y = Zk-Z;

We had derived in section 2.1

a?j = //R [—fmervt(RNf) ) Vt(RN;) + erN‘.eNje] d5*
Se

Noting that

2Q2e 2Qe

NEN; = s et + Z(850 + Bja) + Rlsfos + 7jad)

Vi(RN?) [Ne R""] 4 28

+RZ(BY; + Bf) + 228365 + R4
Substituting these into (E.28) and reducing we obtain the desired result
af; = [-afefQuo - (Bfef + B50f)@n - 2(vfe5 + 75ef)@20

=2(Bi7; + B57i)Q@2 — Bi B5Q12 — (47§75 + B 55) Q30
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(E.23)

(E.24)
(E.25)
(E.26)

(E.27)

(E.28)

(E.29)

(E.30)



+afaiPo + (Bief + Bjof) Piu + (vief + v5af) Poo + (8575

+6 85 Pz + {75 Pso) s

In a similar manner, we may write
= / mfmd X Vi(RNY) - Vo(RNF)dS®
Se

as

b; = m//fm[,(Ne fgg) ﬂ,( fg’)]ds

and likewise as

b = roeprl(F5at — ra5)Qu0 + 20657 - 1)
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Appendix F

Boundary Integral Matrix
Elements

In this appendix, the elements for the discrete boundary integral system are pre-

sented.

F.1 Elements of P

[Pﬁ G o= 0 (F.1)
é % (1) / ! 1
[P, = /Zm [Ragl = Riyy9n(Riyy, B, 20, 2')] RydZ (F.2)
é - Ry ay / ! 1pt
[Pls s = (i-12) o 90 (Riyy B, 20, Z3)RdR (F.3)
J+1
Bl = (Zuy-20 4" - o (R 2o, 2R R F
21 i = (,+% 1) R gm( 2,4, 1+%7 1) ( '4)
J
Z' !
A ][Z’ [Rag® = Bagin(Ra, Ra, Z,y, 2')] RydZ! (F.5)
'7+1
(7] (Ziy1 — 2s) ][R’ oV (Ry, R, 2, , 2,)R'dR (F.6)
23 i i+d 3 Ry m 2y 4L, ,+«2l’ 3 .
Rj41 ,
7], = (Z-2) 1.7 - o Ry, R, 25, 2) R (£.7)
/]
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]

][ [Rzg Q-

i+%g1’n(Ri+%, RZ, Z3, Z’)] deZ’

Z,)g(Z) (Ri+%’ R2’ Zl, ZI)RQdZ’

(2, —Za)/:

Ziys -zl)/ g Ry, B, Ziy1. 7)) RdR

0 (Riy1, R, 21, Z5)R'AR!

J
J(z, 41— 2 "9 (Ry, Ry, Z, +1rZ')RodZ’
i+l Zs)/ i9% (Ro, B!
J+1
(2 - 21) /R 9% (Roy ., B, 25, 21 R AR’

Zj
/Z " 3(Z3- 2 (Reys, Ra, Zo, Z') RydZ’

- ng)(R +1 R Zl, Zl).R’dR,

Rt (9) / .
fR- J9m (Ri.*.%,R,Zl,Zs)RdR

(F.8)

(F.9)

(F.10)

(F.11)
(F.12)
(F.13)
(F.14)
(F.15)
(F.16)

(F.17)

(F.18)

(F.19)
(F.20)

(F.21)



Rjq
[le]ij = ij —]gm (RZ?R, '+%7Z1)R'dR'

[ng =0
Jy
[lei = ][R Jgg)(R%R Z+11Z3)R,dR’
Jyy ;5
o R;
%), = {7 - isRipy R\ 20, )RR
. .1] J
¢1 = o
.Q32.ij
(]  _ Q)p. ' 1 1!
CARE ][R,. §9(B, 1, R, Zs, Z)R'dR

F.4 Elements of Q¥

rQ¢/' _ Rj41 _ )(R RI 7.7 )RIdRI
nj. = R, J9m i+1 1,41

- Z: ,

QfZ_ ij = ][Z, _]g(Z) (Ri+%7 RZa Zl, Z’)R’dZ,
J+1

e Rjn

Qfs .. = ][ _.791(13) (RH..!.’ RI,ZlaZS)R'dR,

Y R] 2

- Ri; ,

@), = ][R. - g (R, R, 2 i1 Z1)RIAR
J

0% = 47 _je®(Ry Ry 2., Z)RAZ

| 22 ij = Z: J9m 2, 412y ,‘+.21_,
141

(9] Rin (2)’ ! 11Dt
.QZS. ij = fR - ]g (R2, R +l7 Z3)R dR
¢
SRPYE Rjy1 ,
_QSI. g = ][ RJ_ - jg? (R;+%, R',Z3,7,)R'dR’
5
¢'] Zi 2y " p! g7
AT ][z-+, ~ 562 (Riyy, Ba, 2, Z')R'dZ
3
" R4 ,
Q33. 1] = ][ - .7953) (R¢'+% ’ R,7 Z37 Z3)RldR,

3
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(F.22)
(F.23)

(F.24)

(F.25)
(F.26)

(F.27)

(F.28)
(F.29)
(F.30)
(F.31)
(F.32)
(F.33)
(F.34)
(F.35)

(F.36)



F.5 Elements

[@44]

7]

SO
@1z,
SUR
.Q13. ij

:le] ..

ij

Qtzz]

i

0%,

1

Q4]

L

r 1
@%).

L

0%

i

o) + jmg@® (Byyy, R 22, 70)| BB

9®) + jmg®' (R, 5, B2, 21, Z)| R'dZ'

9 + img®) (Riyy, R, 2, Z5)| AR
|89 + jmg® (Ba, R, Zy 1, 21)| B4R

0 + imgD'(Ro, Ra, 24, 2)| RdZ'

hgg) + ngg)'(R% Rl’ Z{+%7 Z3) R'dR’

0 + jmg) (Byyy, R, 2, 7)) BB

93 + jmg® (R, 3, Ba, 26, Z)| R'dZ'

[gr(r}) + jmg,(,f)’(R,-_i_%, R,’ Z31 Z3)] Rlde

F.6 Self-Cell Evaluation

(F.37)
(F.38)
(F.39)
(F.40)
(F41)
(F.42)
(F.43)
(F.44)

(F.45)

The integrals in the matrix elements [PS);;, [Qf;].'.- and [@%)i; contain integrable

singularities. They could be integrated numerically without modification as long as the

singularity point is avoided, but costs excessive computation time. To avoid the resulting

excessive computation time and innacuracies, the integrals are evaluated as in [5)].

For self-cell integrals involving g, Glisson gives

l2
][hgm(R#;” R, Z,-+% ,Z"YR'dl
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l T -Jﬁo R' 1
=L ][2][ f..—cos(mu)R’ - 2| dudl’
2T Iy 0 Ro RO

H(Riypligs,holo) (F.46)
where
(R, 1,1, 15) = Riry ]['2 1k (NIW“%) + DR | g
r T | R Ra 2R 1
4ol =h) = (a=D(-D-(-Wh(-h)]  (F47)

and where K is the complete elliptical integral of the first kind, / may be either Z or R

and
Ri = [Bong - P (Zigy - 27 (F.45)
Ry=/(Riyy + R +(Zyy - 27 (F.49)
Also,
Ry= \/Rf+% + R - 2R, 1R cosu+ (Z;,1 — Z')? (F.50)
(F.51)

The first and second integrals of (F.46) may be computed using an open interval numer-
ical scheme that also avoids the midpoint.

The integral expression for the self-cell of P% may be rewritten as

z; m B e~iRo
[P2¢2} = ][ [—-1—][ cosu(1+JR0)e = cos(mu)du

T™Jo R% 2Rg

~ -

1 [~ iR e—iRo
—][ u +~JR0)8 <~ cos(mu)du| R2dZ’
TJo Rg 2Ry

z; x iBo) e—iRo
][ 1ra +~‘72R0) e sin?(=) cos(mu)du R}dz' (F.52)
Zipm [TJoO R Ry 2 |
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where we have used the identity
1 —cosu = 2sin?(%)

The solution to (F.52) is

[P % i ][ Zin T ][ l(lﬂRO) e'jRo cos(mu) sin’(3)

2
- 2 duR2dZ'

4[R2 + (2, - 2]

R}
+421'(R2,Z+1 Z..H,Z)

where

I'(R,1,14,1,)

!
][ ][[R2u2 - 2]3/2d ud!

= %{(1—11 [R1r+\/l—ll 2+R27r2]

+(ls - 1)In [Rr +y/a-12+ Rw]

(1= ) n(l - 1) - (I = D)In(lz - 1)}

In the same manner we have

Iz -iRy
" ]][ 7 ][ [(1 ;‘ZRO)C %0 sin(mu) sin(u) R’

mu’R,
- i+ duR'dll

2 2 / 3
[R L +(R,+1—R)]

mR

27

+

I,(RH'% ) RH.%’ Ri, Ri+1)
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(F.54)
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where
h=R, Ily=Rinx l,-_,_%:RH_% I!'=R" fora=1
h=274 lha=2 li+%=zi+% '=27" fora=2
h=Riy1 la=R; l‘-+%=Ri+% '=R fora=3

Finally, we treat each term in [Q?,].. seperately and obtain
Iy ,
ot = o 5 5y, )

L4 -]RO R‘ 1
= _.1_][ ][ [e cos u cos(mu)R’ — ~+2] dudl’
21!' Ro

+I(Ral,11112)
l —JRO
+]m{][2‘7 ][ [(1+‘7R° ~ sin(mu)sinuR’
Ro
mqu,-_,_% .
33 duR'dl

JmRB;, 1

+ o I’(Ri+%,l,-+.;_,ll,l2)}

where (F.57) is used to determine the expression for each value of a.

(F.57)

(F.58)

The self cells involved in the other matrices contain non-singular integrands and may

thus be integrated numerically without modification.
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