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Dirichlet forms. We shall introduce positive measures of hyperfinite energy integrals and associated
theory. Fukushima’s decomposition theorem will be established on the basis of discussing hyperfinite
additive functionals and hyperfinite measures. We shall study the properties of internal multiplicative
functionals, subordinate semigroups and subprocesses. Moreover, we shall discuss transformation of
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1. Introduction

Probabilistic potential theory has been a very important part in the study of stan-
dard Dirichlet space theory. It establishes a beautiful bridge between functional
analysis and the theory of symmetric Markov processes. It gives us probabilis-
tic interpretation of potential theory. Many applications of this theory have been
found, especially in the area of mathematical physics. Our purpose in this paper
is to develop potential theory associated with the hyperfinite Dirichlet forms. The
motivation is twofold. On the one hand, we would like to establish a relationship
between the standard Dirichlet space theory and the hyperfinite counterpart. On
the other hand, we are interested in the theory of hyperfinite Dirichlet forms itself.
We hope to construct the completed theory system for hyperfinite Dirichlet space
theory. Besides, we have studied infinite dimensional stochastic analysis exten-
sively in recent years. It is our hope to find some new and powerful machinery
to deal with the problems in this exciting area. Maybe the nonstandard analysis is
one of these methods. In fact, we have utilized our theory of hyperfinite Dirichlet
forms in the study of [6], in which the important construction of strong Markov
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processes associated with quasi-regular Dirichlet forms has been fulfilled by using
the nonstandard analysis language. For another method of construction, the reader
can refer to [4].

The study of hyperfinite Dirichlet space theory was initiated by [3]. First of all,
the authors introduced the frameworks of hyperfinite Dirichlet forms. When the
state space is a hyperfinite subset Sy of *Y for some Hausdorff topological space Y,
they established an one to one correspondence between the family of hyperfinite
Dirichlet forms and the family of symmetric Markov chains. Furthermore, they
obtained hyperfinite lifting £(-,-) for every standard Dirichlet form E(-,-). The
standard parts of hyperfinite Markov chains have been studied in the work also. In
fact, some aspects of our potential theory have been considered by the authors, such
as exceptional sets, Feynman—Kac formulae, equilibrium potentials. However, we
shall study potential theory of hyperfinite Dirichlet forms systematically in this
paper. New concept and method will be presented as the paper develops.

Now let us talk about the arrangement of this paper. In Section 2, we shall intro-
duce the framework of hyperfinite Markov chains and associated Dirichlet forms.
The authors of [3] have given us a definition of exceptional sets, which might be
too restrictive for certain case. Therefore, we define this concept in a new way
in Section 3. Moreover, we introduce capacity for the hyperfinite Dirichlet forms
and show that it is a Choquet capacity. Furthermore, we establish a relationship
between the family of exceptional sets and the family of zero capacity sets. In Sec-
tion 4, we consider positive measures of hyperfinite energy integrals and associated
theory, that is, the connections among hyperfinite excessive functions and hyper-
finite potentials. The zero capacity subsets will be characterized by the language
of positive measures of hyperfinite energy integrals. In Section 5, we introduce
internal additive functionals. The relationship between hyperfinite measures and
additive functionals will be considered. Moreover, we obtain the positive hyper-
finite measure ju(,) (1) associated with an internal function u. In Section 6, we get
the Fukushima’s decomposition theorem under the individual probability measures
P, i € Sy. This extends the work of [3], since they have completed the decompo-
sition under the whole measure Pp,. In Section 7, we will discuss the properties
of internal multiplicative functionals, subordinate semigroups, subprocesses and a
Feynman-Kac formula. The motivation of this work is the similar standard theory
developed by [5]. Moreover, we hope to study perturbation theory of the hyper-
finite Dirichlet forms. In fact, a subject for our future research is the hyperfinite
perturbation theory characterized by the language of internal additive function-
als. In standard Dirichlet space theory, we have been interested in such question:
could we change a non-conservative symmetric Markov process into a conservative
one? [8] answered this problem by using Girsanov transformation. In Section 8,
we show that this problem is quite simple in hyperfinite settings (Theorem 8.1).

It is well known that in the standard Markov process theory, we can study
potential theory in the case of non-symmetry (refer to [5]). In fact, the symmetric
condition (2.3) in Section 2 is not necessary in the Definition 3.1 and Definition 3.2
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of exceptional sets. Moreover, we can prove Lemma 3.1 and Proposition 3.1 without
this symmetric condition. Besides, we can define additive functionals, hyperfinite
excessive functions and multiplicative functionals in the circumstance of non-
symmetry. For the work of non-symmetry, the reader can refer to the book [1] in
preparation and paper [2], also [9]. Nevertheless, let us work under the symmetric
situation since in most part of this paper, it is still necessary.

2. Hyperfinite Markov Chain and Dirichlet Form

Let Y be a Hausdorff space and *Y be the nonstandard extension of ¥. Let
S = {sg,81,.-.,8n} be an S-dense subset of *Y for some N €N — Nandm
be a hyperfinite measure on S. Denote by & the internal algebra of subsets of 5.
We would remind the readers here the difference between S and S. Assume that
@ = {qi;} isan (N + 1) x (N + 1) matrix with non-negative entries, and assume
that

N
> gij=1 forall i€ 8, @2.1)
J=0

and the state sq is a trap, i.e.,
go; =0 for all 7 #0. (2.2)

In the sequel, we shall write m; for m({s;}) and g;; for g,,,, respectively, whenever
it is convenient.

We assume the measure m and the transition matrix ¢ satisfy symmetry condi-
tions

migi; = m;iqy; for all i # 0,7 # 0. 2.3
Besides, we assume that

m; # 0 for at least one ¢ 7 0. (2.4)
Take an infinitesimal A¢ such that 0 < At. Set

T = {kAt | k €'N}. (2.5)

If (2, P) is an internal measure space, and X: {2 x T — § is an intemnal process,
let

W ={w' €| X(,s)=X(ws) forall s<t} (2.6)

For each ¢t € T, let F; be the internal algebra on Q generated by all sets [w];.
Assume that for all w

P({w]o) = m{X(w,0)}, vk
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and whenever X (w,t) = s;,
P{w' € [w]e | X(t + At,0) = 55} = gi; P([w]e). (2.8)

In particular, we define a family (Q, 3, P;, i € S) of internal probability spaces
by

k—1
P([wlkat) = biwo) J] 9uinag winrnag (2.9)
n=0
foreach 1 € S, where d;; is the kronecker symbol.

A process X satisfying (2.1), (2.2), (2.3), (2.4), (2.7) and (2.8) is called a
symmetric hyperfinite Markov chain associated with m and Q, and it is this kind of
processes we will study in detail. We shall first obtain the form from the process.

If

So={s1,82,...,5N} (2.10)

is the state space S without the trap s,, denote Sy = § N Sp. Let H be the linear
space of all internal functions u: Sg — "R with the inner product

N

/:5_ vvdm = (u,v) = Zu(si)v(si)m(si). (2.11)

=1

Tust as we usually write m; for m(s;), we shall write u(z) or u; for u(s;). And we
shall identify /I with the set of all internal function u: § — "R such that u(sg) = 0.
Our convention of letting the trap sg be the zeroth element is notationally
convenient, but we call attention of the reader to the fact that he should distinguish
between sums of the forms S ; and BY .
Fort € T and u € H, we define a new function Q*u € H by

Q'u(i) = Eu(X (1)), (2.12)

where E; is the expectation with respect to the measure F; defined in (2.9). Intu-
itively, Q'u(1) is the expected value of u(X (¢)) for a particle starting in state s;.
Notice that

N

Q%u(i) = (@ - u)(d) = > _ ulf)ai, (2.13)

j=1

where - is the matrix multiplication in the middie term, and since q§;+‘g) =

Efcv: lq,g,? q,(fj), we must have

QU =qQ" Q*, (2.14)
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where q( ) is the transition probability given by operator . Hence the family
{Q! | t € T} is a semigroup of operators on H.
The infinitesimal generator A of this semigroup is given by

1 N
Aui) = = | uli) = 3 u(ias | - (2.15)

#=I1

The Dirichlet form associated with QQ and m is defined to be
E(u,v) = {Au,v) ZAu (£)v{i)m(q). (2.16)

Combining (2.15) and (2.16), we get

] N

E(u,v) = A - Z

N
u(d)v(i)m(i) — ZU(j)U(i)Qijm(i)] : (2.17)

i=1

Moreover, we have the following Beurling—Deny formula (refer to [3, 5.3.1
Lemmal]):

S(u,v):ﬁ[ Y (uli) - uG)e0) - vi)ami)

1<i<j<N

+Z i)v(i)gomn(i ] (2.18)

The domain D(£) of £{(-, ) is the set of all # € H such that

(i) °&1(u,u) =°[€(u,u) + (u,u}] < oco.
(ii) Forallt € T,t = 0,E(Qu, Q'u) = E{u, u).

If 6 € T, let T5 be the subline
Ts = {(), 0, 25,...}. (2.19)

We write X(® for the restriction X | Tj. For each t € Tj, let .ﬁ('s) be the internal
algebra on ) generated by the sets

W = (W € ) XD (W, 5) = X (w,s) forall s € Ty, s <t} (2.20)

It is easy to verify the following for all £ €™N,

A—1
)
P{wli) = mw(O) TT ¢tusyatintni) @21)
n=>0



422 RU-ZONG FAN

and

k-1
(s g
Pi([‘*’]ka) ) =S [ QL()na),w((nH)a)' (2.22)

n=0

Therefore, for any ¢t € T; and u € H, we have
En(X9(2) = Qtuli) = En(X(2)). (2.23)

In particular, we get
Eiu(X('s) () = Q%u(s) E q(é) (2.24)

This implies that the semigroup of X® is {Q! | ¢t € T;}. The infinitesimal
generator A1) of X(9) is given by

Lo &
A®y() = = (u(z) - ¥ u ;)qgf)) . (2.25)
=1

Moreover, we can easily show that

N

Z @) =1 forall i€, (2.26)

qf,f’ =0 forall i+#0 (2.27)
and

migy) =mygl forall i#0,j#0. (2.28)

The Dirichlet form associated with Q(") and rn is defined to be
N
ENu,v) = (A%u,0) = APu(i)o(iym(s). (2.29)
'i_
Therefore, we have

N
£y, v) = w(iho(i)m(i) — Y u(iv(i )qU m(i )}
1 =1

Sn| =
M=

i

I

=§{ T (i) — (i) el) - v())ePmi)
iGN
N
+ u(z-)u(i)qgg)m(i)}. (2.30)
i=1
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Similarly, the domain D(£®)) of £ @), is the set of all u € H such that

(@) °£D (u,u) =°[£® (u, 1) + (u,u)] < oo

(i) Forallt € Ty, t = 0, £ (Qtu, Q'u) ~ 9w, w). (2.31)
For § € T, @ € R, we will use the following notations:

ENy) = ED(u,u),  ED(u) = EO (u,u) + afu,u).

3. Exceptionality and Capacity Theory
3.1. EXCEPTIONAL SETS

For é € T, denote

T = [t € T | tis finite}, TH — {t € Ty | tis finite}, (3.1)
andforr € T, let
T ={teT|tgr}, Ti={teTs|t<r} (3.2

Moreaver, we know that X (?) is the restriction X | 7.
Forevery y € Y, let us define the monad u(y) of y by

u(y) =(){*O | O is open such that y € O}. (3.3)

We call a point y €Y is nearstandard if and only if y € p{z) forsome z € Y.
Denote by Ns(*Y) the set of all nearstandard points in *Y". Since Y is a Hausdorff
topological space, each elementy € Ns(*Y') is nearstandard to exactly one element
z in'Y. We call z the standard part of y and denote it by °y or st(y). In particular,
we can take ¥ = R and use this notation also.

DEFINITION 3.1, (i) A subset B of 5y is called é-exceptional if
L(P){w| 3t € TI"(X(w,t) € B)} = 0. (3.4)

(i) A subset B of Sy is called exceptional if it 1s d-exceptional for some
infinitesimal d € T'.

REMARK 3.1. [3] has defined the d-exceptional set in the following manner
L(PHw | (X(w,0) € So) A (3t € TI(X(w,t) € B))} =0, (3.5)
where S = Sp N Ns(*Y). Therefore, if a subset B is d-exceptional in our sense
of the Definition 3.1, it is d-exceptional in the sense of (3.5).
REMARK 3.2. From (3.4), we see for every exceptional set B
L(P){w]| X(w,0) € B} =0.
This implies that L(m)(B) = 0.
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LEMMA 3.1. (i) All internal subsets B C Sy with m(B) =2 0 are exceptional.

(1) The families of exceptional and b-exceptional sets are closed under countable
unions.

Proof. Easy! a

DEFINITION 3.2.(i) A §-exceptional subset A of Sy is called properly -exceptional
if there is a family { B, ,, | m,n € N} of internal subsets such that

A= N B (3.6)

meNneEN

and forall s; & A,
L(P){w |3t € TI"(X(w,t) € A)} = 0. (3.7)

(i1) A subset A of Sy is called properly exceptional if it is properly § exceptional
forsome d = 0,6 € T

PROPOSITION 3.1, If A C Sy is 8-exceptional, there is a properly &-exceptional
set B D A.

Proof. The proof of this result is similar to [3, 5.4.7 Lemma). For the reason of
the conciseness, we omit the detail discussion. ]

3.2. CAPACITY THEORY
We now turn to study the capacity theory of the hyperfinite Dirichlet form £(-, ).
Recall that for @ € *R4, the form £, (-, -) is defined by

Ealu,v) = E(u,v) + a[s uvdm.

Let f: Dy — 'R be an internal function defined on an intemnal subset D¢ of Sp, and
let 5 € T', Define a stopping time 0}5) by

o (w) = min{t € Ts | XD (w, 1) € Dy}. (3.8)
Fora e R,a 2 0, set
_®
D (£)(0) = El(1 + ad) ™ P f(x O (o)), (3.9)
Denote
L(f)={g|g:S0 =R isintemnal and g |p,= f}. 3.10)

Then we have
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LEMMA 3.2. £ (e (£), e (£)) = min{P(g,9) | ¢ € L(F)}-
Proof. Refer to [3, Chapter 5]. O

We shall call i) (f) equilibrium a-potential of f associated with £ (-, .). Denote

Capl{) (f) = ELHEP (1), (1)) (3.11)

We call Capll!(f) the a-capacity of f associated with £)(.,.). An intemal
function f: Dy — R has finite energy of £ @) .)if

£ (el (1), 67 (£)) < o0, (3.12)

Whenever § = At, we abbreviate eg) (f) and Cap( )(f) by eq(f) and Cap,(f),
respectively.

If f constant one onitsdomain A = Dy, we write il )(A) foret ) (f), Cap(‘s) (A)
for Cap(a)( f). In this case, we shall call ey )(A) the equilibrium o-potential of

A associated with £%)(-, -}, and Cap( )(A) the a-capacity of A associated with
EO(,).

LEMMA 3.3. Let 6 € T, > O and o €R, the following resulis hold:
(i) If A and B are o internal subsets of Sp, A C B, then
Cap{{) (4) < Cap{?(B). (3.13)
(ii) If A and B are internal subsets of So, then we have
Capl®) (AU B) + Cap{) (AN B) < Cap¥(A) + CapP(B).  (3.14)
Proof. (1) is clear. We show conclusion (ii).
(ii) Without loss of generality, let us assume that § = At. Since
) ea(B)  eald) —ealB)

ea(A) Vea(B) =
and

ea(A) Aea(B) = ea(4) +ea(B) |ea(A) — ea(B)|

2 - 2 '

we have the following
Cap,(A| ] B) + Cap,(A[)B)
< alea(4) Vea(B)) + EalealA) A eq(B))
= 3Ea(ea(A) + ea(B)) + 3¢alleal(4) — a(B))
< 3€al(ealA) + ea(B)) + 3€a(eald) — calB))
= Ealea(A), ealA)) + Ealea(B), €a(B))
= Cap,(A) + Cap,(B). O
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Now let us generalize our capacity theory. For every subset A of Sy, we define

°Cap!®(A) = inf{°Cap!¥(B) | A C B, B € S} (3.15)
We cal! Capg )(A) the a-capacity of A associated with £ (., .).

LEMMA 3.4. Let§ € T, > 0 and a €™R, the following results hold:
(i) If { An | n € N} is an increasing sequence of internal subsets of Sy, then

°Cap{d) (U A") — sup(°Cap{ (4n) | n € N}. (3.16)
neN
(i) If { An | n € N} is a decreasing sequence of internal subsets of Sy, then
°Cap¥) ( N An) = inf{°Cap®(4,) | n € N}. (3.17)
nEN

Proof. (i) Set a = sup{°Cap{’(4,,) | n € N}. Obviously, we have

a $°Cap‘(f) (U An) ;

neEN

Hence we can suppose that ¢ < oo. Let { Ay | n € *N} be an increasing internal
extension of { A, | n € N}. Given £ > 0, we consider the following internal set

n n
{n €N U A=A, is intemal,Capgf) (U A,) = Capg‘s) (Ap) € a +5} .

i=1 =1

It is easy to see that N is contained in above internal set. By saturation, there is an
infinite member M belonging to it. Therefore, we have

Cap!?) ( U An) < Capl¥ (Am) € a+e.
neN

By letting £ | 0, we get
°Cap£f) (U An) < a.
neN

Therefore, we have

°Cap{®) (U An) = sup{°Cap{®(4,) | n € N}
neN

(ii) In a similar way as (i), we can prove (ii). a
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LEMMA 3.5.If{ A, | n € N} is a sequence of internal subsets of Sy, then we have

°Cap¥) (U An) <Y °Capl® (4 (3.18)
neN neN

Jorall§ €T, 2 Q.

Proof. Denote b = Zpen °Cap(") (An). If b = oo, the inequality (3.18) holds.
In the following proof, we assume b < oco. Let {A, | n € "N} be an internal
extension of {A,, | n € N}. Forevery ¢ > 0, it follows from Lemma 3.3 (i) that

i n
Capl® (U A,) < 3" Capd)(4) ce+b forall nEN.
i=1 i=1

Consider the following internal set

{n €N

n n
U Aj is internal and Cdp (U A;) < z Cap('” (A) b+ 5}
=1 =1 =1

By saturation, there is an infinite element M = M{g) belonging to the above
internal set. Hence, we obtain

M
Cap(‘n (U AZ) < Cap(‘s) (U A,) £ Z Cap(‘i) (A)) <b+e.
leN 1=1

By letting ¢ | 0, we have proved (3.18). O

PROPOSITION 3.2. Forall 6 € T, & > 0, we have

(i} If A and B are two subsets of So, A C B, then

Cap®)(4) < Capl¥)(B) (3.19)
(i1) Let {A, | n € N} be a sequence of subsets of Sy, then
°Cap{) (U An) <Y °Capl®(A4,). (3.20)
neN neN

(iii) Let { Ay | n € N} be an increasing sequence of subsets of Sp, then

°Capl?®) ( ¥ A,,) = sup{°Capl®¥{4,) | n € N}. (3.21)

neEN
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Proof. (1) Easy! Using (i) and Lemma 3.5, we may show (ii).
(iif) We may assume that for all n € N,

°Cap£f) (Ap) < oc.
Given € > 0, for each n € N, let By, be an internal subset of Sy such that
AnC Bn,  Cap{)(B,) < Capl{)(4,) +&.

Then we have from (3.19) and Lemma 3.4 (i) that

°Cap!®) (U An) < “Cap) (U Bn) = sup{°Cap{¥) (Bn)}

neN neN neN
< sup{°(Cap{¥) (An) + €)} < sup{°Cap{P (An)} +e&.
neN neN

By letting € | 0, we get

*Cap{f) (U An) < sup{°Cap{¥) (4,) | n € N}. (322)
neN
On the other hand, it is easy to see
°Cap(®) ( U An) > sup{°Cap{® (4,) | n € N}. (3.23)
neN
From (3.22) and (3.23), we have proved Praposition 3.2 (iii). O

For the purpose of explaining our Theorem 3.1 in the following, we first introduce
some notations in capacity theory (refer to [10]). Let G be a set, G be a family of
some subsets of G. Denote by G, (respectively, Gs) the closure of a collection of
subsets of (¢ under countable union (respectively, countable intersection). That 1s,

ga={UAnlAn€G}, ga={ﬂAn|Aneg}. (3.24)

n=1 n=1
Moreover, we denote G5 = (G,)s.

DEFINITION 3.3. Let G be a set. A paving G on G is a family of subsets of G such
that the empty set ¢ is contained in G. The pair (G, G) consisting of a set G and a
paving G on (7 is called a paved set.

DEFINITION 3.4.Let (G, G) be a paved set. The paving G is said to be semi-
compactif every countable family of elements of G, which has the finite intersection
property, has a nonempty intersection.
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It is easy to see that (Sp, Sp) is a semi-compact paved set. Moreover, Sy is closed
under the complement, finite union and finite intersection operations.

DEFINITION 3.5. A subset A of Sp is said to be Sp-analytic if there exists an
auxiliary set (7 with a semi-compact paving G, and a subset B C G x Sy belonging
to (G x Sp)gs such that A is the projection of B on Sy. We denote by A(Sp) all the
Sp-analytic sets (Notice that G x S = {G1 x 5, | G1 € G and S € Sp}).

LEMMA 3.6, The o-field a(Sy) generated by Sy is contained in A(Sp).
Proof. Forevery F € 8y, Sp — F belongs to & also. By [10, Chapter III T12
Theorem]), we know o(Sg) C A(Sp). O

DEFINITION 3.6. An extended real valued set function
I:250 5 [—00, +00],

defined on all subsets 250 of S, is called a Choquet Sy-capacity if it satisfies the
following properties:
(i) I is increasing, i.e.,
ACB=I(A) < I(B). (3.25)

(i) For every inceasing sequence { A, | n € N} of subsets of Sp:

I ( U An) = sup I(A4,). (3.26)
neN neN
(i1l) For every decreasing sequence { A, | n € N} of elements of Sp:
T (RDN An) = Tilrelg I{A). (3.27)

We have reached ¢ne of our main results.

THEOREM 3.1. Foreach é € T and «« > 0, a €™R, we have the following results:

(i) °Cap}(-) is a Choquet So-capacity.
(ii) Every So-analytic set is capacitable with respect to capacity °Cap'®)(.). That
is, for every A € A(Sp), we have

°Cap{’(4)

= sup{°Capg’)(B) |B= () Bm,Bn €S and BC A}. (3.28)
meN



430 RU-ZONG FAN
(iii) Every subset A of Sy belonging to o(Sy) is capacitable with respect to the
capacity °Cap@(.) whenever 0 < st(a) < oo.

Proof. By Lemma 3.3 and Proposition 3.2, we know that °Cap{®) () is a Choquet
So-capacity. Therefore, (ii) hold by [10, Chapter Il T19 Theorem]. (iii) is the
consequence of (ii) and Lemma 3.6. O

DEFINITION 3.7. (i) A subset B of Sy is called d-zere capacity, if we have
Can'® (B) ~

p; (B) = 0.

(i) A subset B of Sy is called zere capacity if Cap\®(B) =~ 0 for some
infinitesimal 6 € T'.

REMARK 3.3. Forany B € Sgand § € T', we have

m(B) < Capi" (B). (3.29)
Therefore, for any zero capacity subset B of Sy, we have

L(m)}{(B) =0. (3.30)

In regular Dirichlet space theory, we know the concepts of exceptional sets and zero
capacity sets are equivalent, see [7, Theorem 4.3.1]. As the third part in this section,
we will discuss the similar problem in our hyperfinite Dirichlet space theory.

3.3. RELATIONSHIP BETWEEN FAMILY OF EXCEPTIONAL SETS AND FAMILY OF
ZERQ CAPACITY SETS

LEMMA 3.7 Let {B, | n € N} be a sequence of internal subsets of So. If

limy,_ 00 °Cap(ld)( m=1 Bm) = 0, then ;> By, is a 8-exceptional set, where

deT.
Proof. Since Sy is closed under finite intersection, we may assume that
{By, | n € N} is a decreasing sequence. Define a stopping time for eachn € N,

o0 (W) = min{t € Ts | X(w,¢) € Bn}.
Because

L(P)Y{w | 3t € T(X(w,t) € Bn)}
= °P{w | 3t € TH{X(w,t) € By)}

_ /S Ei(w| 3t € TN X (w,1) € B,)) dm(i)

=l E1

So (agigl) dm(Z)
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= Bfwl(t+ )75/ > (1+ ) W0} dmi)
a

o [ B
< J B o o
—e. [ E(+6) "l dm(i) = / &9 (B,)(5) dm(i)
So So
< e Ei(ef(Bn), el (Bn)) = e Capl” (By) — 0, (331)

where the last inequality comes from [3, Chapter 5, Section 5.3, Equation (35)].
From (3.31), we know the following

L(P) {w | 3t € T} (X(w,t) e () B,,)} =0. (3.32)
n=|
By the symmetric property of the Markov process X (t) and (3.32), we have
L{P) {w | 3t € Tho (X(w, t)e ) Bn)} =0.
n=1

Therefore, the set (152, By, is d-exceptional. o

THEOREM 3.2 If a subset A of Sy is 8-zero capacity, it is §-exceptional.

Proof. Since Capga)(A) ~ 0, we can take a sequence of internal subsets

{By | n € N} satisfying
Ac [ B.  lim °Cap{” (ﬂ B,,,) =0. (3.33)
n=1 m=1

Using Lemma 3.7, we know that 2 By, is §-exceptional. Hence A is 6-exceptional
also. This completes the proof of Theorem 3.2. 0O

LEMMA 3.8 Let 61 € T,8, ~ 0, and A be a subset of So. If A is 01-exceptional
and there exists an internal subset B of Sy such that

AcB, ccap™(B)] < o, (3.34)

then there is an infinitesimal 8g € T larger than &, such that A is d-zero capacity
forall § > do.
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Proof. By using Proposition 3.1, there exists a properly é;-exceptional set
U M Brn2 A
meNneN

For simplicity, we assume that B,,,, C B for all n,m € N, and for each m, the
sequence { B, , | n € N} is decreasing with respect to n. In order to show that
A is zero capacity, we first prove [, 5 B n i zero capacity for every m. From
now on, we fixanm € N. -

1

By the assumption (3.34), we know that °Cap;" ' (B, ») < oo for every n.

Moreover, Capgdl) (Bm,n) 1s decreasing with n. Therefore, we obtain

0[‘5‘1(6[)(‘3%61)(‘9%'1) - f—’-s&l)(Bm,Hn))]
= ("M (Binn)) — 8 (e (Brsr))] 20 s 1 - co.

This means that {egd‘)(Bm,n) | n € N} is a Cauchy sequence with respect to

the inner product °8](6')(-, ‘). Let {By,, | n € *N} be a decreasing extension of
{Bm » | n € N}. By saturation, there exists an infinite element np € "N — N such
that

. ar {6
Tim £ (el (B n) — € (Binyny))] = 0 (3.35)
On the one hand, we have that
(€8N (Brag), €8 (Bramo))] < 0. (3.36)

By ([3], 5.1.9 Corollary on p. 232) we can find an infinitesimal 3,, = 8k, for
some Ky, €*N such that e(l'sl)(Bm,nu) e D(E) forall§ > 4,6 ~ 0,8 € T5,.On

the other hand, for every 7 € Sy, it is easy to see that {eg's‘)(Bm,n)(i) | n € N} is
decreasing with respect to n. Denote

em{i) = lim °e{") (B n)(i). (3.37)
Since Uypen MNpen Bm,n is properly d;-exceptional, we know

en(i) =0 forevery i¢ U ﬂ Bmn- (3.38)
meEN neN

In fact, for every My € [0, c0), we have

e (Brnn) (i) = Eil(1+ 6)~0min/81)

(1)
= El[(]' + 51) JM3n/5l (I(U.Bm.n ?MO) + 1(am,n<Mﬂ))]

< (1 +86)™M/% + il <aty)-
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By letting M, sufficiently large, we know (148 ) ~Mo/%1 will be very small. Taking

n sufficiently large, we see that (3.38) holds.

Since 656')(3,“ nol(1) € elé')(Bm ») (%) forevery n € N, i € Sp, we have from

(3.38) that

" (Bny)(@) =0 forevery ig |J [ B (3.39)
meNneEN

Now we have

(e (Bimng)) = st(el” (Brn,no)) =
in L2(So, L(Sp), L{mn)) because

m)(U ﬂBm,n)=o

meEN neN

and e (B n,) € DE®) for all § > 6,8 = 0,6 € Ty, which implies
egﬁ' ) (Bm,n,) is S*-integrable in the sense of ([3], p. 77, Chapter 3).
Therefore, we have

ED () (B o) €89 (Bpg) = 0 forall &3 8,6 = 0,6 € T,
Thus, we get
8D (e (Brn), & (Bnn))] = 0 forall 83 6p,,6~ 0,6 €Ty,
This says that

Cap (ﬂ B, n) ~0 forall 82 6,,6=00eT;,. (3.40)
nEN

By saturation, there is a dg 2 0, 6y € T}, larger than all 4,,,m € N. Therefore,
it follows from (3.40) that for § > dg

Cap?” (ﬂ Bm,n) ~Q forall meN. (3.41)
neEN
By Proposition 3.2 (i) and (ii) and (3.41), we obtain
°Cap('5) (A) <°Cap ( U ﬂ By, n) < z °Cap(15“) (ﬂ Bm’ﬂ) =0.
mENnEN m=1 neN

Therefore, the set A has §-zero capacity. a
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THEOREM 3.3. For §; € T, 4, = 0, let A be a subset of Sg. If A is §;-exceptional
and there exists a sequence of internal subsets { By, | n € N} of Sq such that

Ac |J By and °CapM(B,)<oc YneN, (3.42)
neN

then there is an infinitesimal g € T larger than &y such that A is 8-zero capacity
forall § 2 &.
Proof. It is followed from Lemma 3.8 and Proposition 3.2 (ii). 0

4, Measures of Hyperfinite Energy Integrals
We know that fora e R, > 0andd € T,
Eg) (u,v) = E® (u,v) + alu,v). 4.1)
Each of these forms generates a norm (possibly a seminorm in the case a = 0):
[l = (€8 (u, u)] /2. (42)
Denote by Fint(f ) (H) the set of all elements in H with finite norm | - |$1'5). By
defining u m(j) vif lu— vl(‘s) =z (), the space
“H® = Finld) (H)/ = (4.3)
is a Hilbert space if °a > O with respect to the inner product

([, []))E =9 (u,v)], (4.4)

where [u]‘(f) denotes the equivalence class of u under the norm | - |ff), and (-, -).(f)
denotes the related inner product.

DEFINITION 4.1. Let ;2 be a hyperfinite positive measure on Sp. For § € T, if
there exists a constant C' €10, oo) =R such that

N
[, ru(e)ln(ds) = Y- utss) | ) < e w2 @3)
0 i=1

for every u € H, we say that u is of d-hyperfinite energy integral. Moreaver, if
there exists C' € "Ry satisfying (4.5) and °C' < oo, p is said to be of §-finite energy
integral.

Afterwards, we will identify a hyperfinite measure p on S¢ with the measure i on
S defined by ji(sp) = 0, i(s;) = p(s;) forall s; € Sp.
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THEOREM 4.1, A positive hyperfinite measure y on Sy is of 0-hyperfinite energy
integrals iff for each a € "R, 0 < st{a) < o, there exists an element u € H such
that for everyv € H,

EP () = [ v(o)u(ds). (4.6)
Sp
Moreover, if u is of §-finite energy integral, we have u € Fing) (H).
Proof. Follows from the Riesz’s representation theorem. ]

REMARK 4.1. We call u in Theorem 4.1 a-potential of iz associated with £9) (-, -),
. (8)
and denote it by Uy ' .

DEFINITION4.2.Fix ¢ € "R, > O and 0 € T. An element u € H is called
hyperfinite a-excessive associated with £)(.. ., if

u(d) 2 0,Q%u(é) < (1+ ad)uli) 4.7)
for every i € Sp such that m(1) # 0.

In order to develop our theory, let {ng) | -} < B < 0} be the resolvent of
£W@)(.,.), ie., it is defined by
G = (A0 =) = 3@ + oo @8

Hence, we have fora e R,0 < a < 1/4,
(1+ad — QOGP = s(a+ AYGY), = 4. (4.9)

THEOREM 42 For § € T, and a € R,a > 0, and v € H. The following
conditions are equivalent:

(1) w is hyperfinite a-excessive associated with € @.,.).
(2) There exists a hyperfinite positive measure iz on Sg such that

5&’5)(1.4,1;) =/ v{s)u(ds) forall ve H.
So

) €9 (u,v) > 0forallv € Hyv > 0.
(4) u is an a-potential of £ (-, ).
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Proof. (1) = (2). Assume that u is hyperfinite a-excessive associated with
£(9)(.,.). Define a hyperfinite positive measure x on Sg by

p(so) =0, u(s;) = =((1 + ad)ul) — Q%u(d))m(z) for i€ So. (4.10)

| —

Since

plsi) = (1 + ad)uls) — QPu)m(s)

= (A®u(i) + au(i))m(i),
we see that forevery v € H,
N
8&5) (u,v) = Z(A(é)u(i) + au(i))v(i)m(i) :/.;' v(s)u(ds).
i=1 [}

(2) = (3). Easy!
(3) = (1). Since

ED (] = u, lu| — u)
= 0 (|ul, [ul) — 269 (jul — u,u) — £ (u, u)
< —28&5) (u, |u| —u) 0,
we obtain
ELN || — u, Ju| —u) = 0.

This implies that u(¢) > 0 for every ¢ € § such that m(z) # 0.
Furthermore, it follows from (4.9) that for any v € H,

(14 ad — Q%Yu,v) = (u, (1 +ad — Q%))
= E0(u, (1 + a8 — @)Gw) = O (u, dv). @.11)

Fix i € Sp. Let v € H be an internal function defined by v({) = d;,{ € S. Then
we have from (4.11) that

(1 + &b — QOu(iym(i) = EY) (u,bv) > 0.

Therefore, the internal function u is hyperfinite a-excessive associated with £(®)(., ).
(2) & (4). Follows from Theorem 4.1. O

We denote by 7o(4) the family of all internal positive measures on S of 4-hyperfinite
energy integrals. Set 7o = U{7o(d} | 4 is infinitesimal, § € T'}.
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PROPOSITION 4.1. For 8 € T, a hyperfinite positive measure p on Sy is of
8-hyperfinite energy integral iff for any o € R,0 < a < 1, there exists an
a-excessive function u associated with £9)(.. ) such that

uli) = (1 +ad)uli) - Qu(m() forall i€ S @.12)
Moreover, if U € H satisfies above equation also, then u(i) = U(3) forall i € Sy
with m(3) # 0.

REMARK 4.2. Let u satisfy (4.12), then we have
£ (u,v) = f v(a)u(ds) forall ve H,
Sq
Proof of Proposition 4.1. <= Easy to see from Remark 4.2.

= Assume that y is of §-hyperfinite energy integral, let v = U, l(a) u € H satisfy
(4.6). Then we have

#li) = (G um(i) = 301+ D) — Quli))m(s).
Therefore, forany a 'R, 0 < a < z‘;,v € H, we have
[ o) = [ w@(ER) w6 dm)
S S

= £9(G9((GY)'w),v).

Hence by Theorem 4.2, w = G@A((G@)_lu) is a-excessive associated with

£@}(.,.). Furthermore, we have
(i) = %((1 + ad)w(i) — Qw(i))m(i) forall i€ So. o

PROPOSITION 4.2 For § € T, and o € 'R, 2 0. Let u € H be a hyperfinite
-excessive function associated with £ (.,.). Then for everyi € So,m(i) # 0,
we have

u(d) 2 0, (u+ gg(;iau)(i) >0 forall B¢ (a - %,0) : (4.13)

Proof. For 3 € (o — %, (), we have from (4.7) and (4.8) that
FGY) uli) = B3((Q° + (—a + A)Fb)uli)
k=0

> Bou(i) Y_(1+ B6)* = —u(i).

k=0



438 RU-ZONG FAN

Hence
u(i) + BGE quli) > 0. .

PROPOSITION 4.3. For § € T, let v be a hyperfinite positive measure on Sy,
Define a measure p on Sp by

1(8) = v(8}l(m(s)z0) for s € So.
Then i is of &-hyperfinite energy integral.

Proof. Define
v(s)
fls) = ml(m(s);&o) for s€ Sg, f(so) =0.

For any v € H, we have

[ 41 d0(8) = [ w6} gmisiny duts)

= /Su(s)f(s) dm(s) = 81(6)(G(f}f, ).
Hence, p is of §-hyperfinite energy integral. O
THEOREM 4.3. For a € 'R,0 < st(a) < oo and § € T. Let p be a hyperfinite
positive measure of §-finite energy integral, and u be an a-potential of 1 associated
with £ (.,.). Define
an(3) = n(u(@) —nG®__u@), n=12,... (4.14)

Then for every v € Fin{) (H), we have

(i) °€P (G(_'jgtgﬂ,v) - EP(°u,v) as n— oo (4.15)
(i) If ue DED), let 5% v and 7 e DEW),
Jim - an(ayo(©) dm(i) = 566) dut) (*16

Proof. (i) First of all, we have

"EP(G gn,v) = *({gn,v)) =T = GO _,u,v))

Un + ayu ~ (n+a)* GO, _u,v))

+°({—au + aszf,)l_ou + ZnCuG'{_'?l_au, v}). (4.17)
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It follows from ([3], p. 238, 5.1.19 Theorem) that

Un+a)u—(n+a) G('s) ot ¥) + e, v)]

— E,(f)("uf’v) as n — oo, 4.18)

Moreover, let {ex]1 < k < N} be an orthonormal basis of mgenvectors for AW,
and let a; be the kth elgenvalue Notice that if u = Ek—] Upep, U = Ek | Uk€k,
we have

N

(6) — (A®) —1,, _ Uk
Go_qu= (A" +n+a) 'u lgl——————ak+n+aek

This implies that

N
1) 20 + &
(~20u + (a® + 2na)GY),_u, )='ﬂ1£i;;;7;;auﬂm.

Therefore, we get

°{—20u 4 (0 + Zna)G@,_au, v}
< T2(26 w0} + atw, o))
50 as n— oo (4.19)

From (4.17), (4.18) and (4.19), we know that (4.15) holds.
(ii) From the proof of (i) we get

[+

lim | gn(s)w(s)m(ds) =€® (u, 7) =7 3(s)(ds). 0
S So

n-—00

PROPOSITION 4.4. For § € T, let p be a positive measure of 6-hyperfinite energy
integral, then for every L(p) measurable subset A of Sp, we have

L(u)(A) s°[\/£,“” (U, U \FCap“”(A)] : (4.20)

Praof. For simplicity, we assume that c’Cap('s) (A) < o0.
If A is internal, we have
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=
=
I

750 1a(s)(ds) < “[Soe&‘” (A)(s)n(ds)
= £ (e (4), U1 )

Ve P uP e ), (ay |

VP WP P ucala |.

Now it is easy to see (4.20) holds for all L{;z) measurable subset A. O

/Al

COROLLARY 4.1. Let i1 be a positive measure of d-finite energy integral on S,
then L{11) charges no set of é-zero capacity.
Proof. Tt is clear from Proposition 4.4. ad

On the other hand, we have the following characterization theorem.

THEOREM 4.4.Let A C Sy be an A(Sy)-measurable set (in particular, A €
o(Sg)) and b € T. We have

(1) Forany p € 19(8), L(u)(A) =0 ———>°Cap(5)(A) 0.
(2) Forany p € 10(8), L{u)(A) =0 ———-:>°Cap1 (A) =
where mo0(8) = {i € o(8)|e(S0) = 1,°|U{" tlloo < oo} and
10 oo = max{|U{” u(s)l |s € So}.
Proof. (1) Assume that cc ;“Caps‘s)(A) = « > 0. Since A € A(Sy), it follows

from Theorem 3.1 (ii) that A is capacitable with respect to the capacity "Cap(l'” ().
That is

°Cap(6)( A) = sup {“Capga)(BHB = ﬂ B, B,€8 and BC A} .
neN

Therefore, there exists a sequence {By|n € N} of decreasing internal subsets of
Sg such that

= a
ﬂBnCA,oo>°Cap (OB) 5

n=1
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Let {Bp|n € *N} be an internal decreasing extension of { B,,|n € N}. Then there
exists an infinite v € *N — N such that

o0
B, CA0<> <°Cap(") (ﬂ Bn) =Cap{’(B.) < . @21
Set B = B,,. Consider the internal function ¢{”(B). Notice that if i ¢ B, then
(1+ 66V (B)() = (1 + O)Ef(1 +8) 5 79)
o d
=Y (B = Q%7 (B) ), (4.22)
J=1
where ol = min{t € T5|X (w, 1) € B}.Ifi € B, then
{4 N (¢ § )
(1+ 8B = (1+8) 2 3 e (B)G)al)) = Qe (B)(E). (4.23)
j=1

It follows from (4.22) and (4.23) that the function egé} (B) is hyperfinite 1-excessive
associated with £(%3(-, ). Define a hyperfinite positive measure z on S by

(1 + D) (BY) — Q%D (B)@)mli), i € So.

Q-.lv-—t

I":(SO) = 07 f“‘( )
Then we have

w(B) = [ utas) = P01, (1)) = capl” (B).

This contradicts to the assumption °L(u)(A) = 0. Hence °Cap§6) (A) =0.
(2) Assume that 0 < °Capg5)(A) = « £ oo. By the proof (1), we see that there

exists an element v € 7y(4) such that (replace x in the proof of (1) by »)
0 <°Cap( )( B) € o0, Capw) (B) = v{B) = v(5)
and UPu(i) =P (B)5) < 1

for any ¢ € Sp, where B is an internal set contained in A. Define u(-) by

N0
MO = By (4.24)
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Then we have

u#(So) =1, pe€m(d) and

8 ..
0(maxU](‘s),u(i)) = maxm gu ——L—— < 0. (4.25)
i€ €5 Cap|”(B)/ ~ \Cap|" (B)

But

1=°u(B) < °p(d) <1, ie, L{u)(4)=1. (4.26)
This contradicts to our assumption L(z)(A) = 0. We have proved that

°Cap{® (4) = 0. D

THEOREM 4.5, For § € Ty, we assume that the Dirichlet form (). , ), D(E@®))
has the following property:

VAC Sy, °Cap{”(4) = o
= ABCA suchthat 0 < °Cap{®(B) < co. (4.27)

Ler 79(9) be the family of all positive measures of -finite energy integrals. Then
the following statements are equivalent for A € A(Sy) (in particular, A € a(Sp)):

(1) A is zero d-capacity, Le., °Cap§6) (A) = 0.
(2) For any p € 7p(8), L(u)(A) = 0.
(3) Forany p € Too(68), L{u)(A) = 0, where

#00(8) = {12 € 7o(8)1(S0) = 1, ° TP )l oo < a0}

Proof. (1) = (2) = (3) is clear by Corollary 4.1. We can show (2) = (1) and
(3) = (1) in the same way as the proof of Theorem 4.4. ]

5. Internal Additive Functionals and Associated Measures

For § € T, we have introduced the hyperfinite m-symmetric Markov chain
(2, X@ {FO)t € T3}, {Pi|i € S}) in Section 2. The hyperfinite Dirichlet form
associated with X® is given by (2.29) in Section 2. As in the study of standard
Markov processes, we define a family of translation operators {8;|¢t € T'} of Q.
That is, for each ¢t € T, 8; is a map from §) to {2 defined by

wEN=>0wecQ andforany s & T,w(s) =w(s+1). 5.1)
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Hence for each § € T, we have a family of translation operators {Bga)hf € T}
induced by {6;]t € T},Hi’g) = @, for any t € Tjs. In other words, for each
t € T;, 9§6) is a map from {2 to €2 given by

wEQz;»H()wEQ and for any sETg,O() (8) =w(s+1). (5.2)

DEFINITION 5.1. For any & € T, we call an internal *R-valued function A(w,t)
or Ay(w),t € T5,w € 1, 8-internal additive functional (abbreviated by §-1AF) if
it satisfies the foilowing two conditions:

(1) For each t € T3, A;{w) is nonanticipating with respect to the filtration
(£, {Ft(ﬁ)]t € Ts}), ie., Ay} is fgé)-measurable.
(2) For each w € {1, we have

Aw,0) =0, A(w,t + 5) = A(w, 5) + A0 w,t) forany t,s € Tj. (5.3)

PROPOSITION 5.1. If A(w, t) is a §-internal additive functional, then there exists
a hyperfinite measure . 4y on So (not necessarily positive) such that ju4y(i) = 0
whenever m(i) = 0 and for alln € *N, f,h € H,

[S h(3)E; i FIXO (k) (Alw, (k + 1)8) — Alw, k8)) dm(4)

= Y [ IOERXO (k8)) dui)s (5:4)
k=050
Proof. Define

pay0) =0,  pafi)= *E iAlw, 8)m(i), I<ig<N. (5.5)
Then

z)Ezi FIXD (k8){Aw, (k + 1)8) — A(w, k8)) dm (3)
k=0

h(D) E; (X (kd, ) A0} w, 8) dm(s)

o

e
Il
(=]

l
M:a
o

h(3)E; f (X (kd)) Ex (k) Alw, 8) dm(i)

0

o
I
o

I\ I
M: Ma
o

F () Ei Alw, ) B:h(X (k8)) dm (i)

0

i
=

[ Eih(X (kd)) du(é)é. O

Ee ol
i
o 5

a
1l
o
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PROPOSITION 5.2.Let ¢4 be a hyperfinite measure on Sy satisfying u(i) = 0
whenever m(i) = 0. Then for each § € T, there exists a §-TAF A{w,t) such that
(5.4) hold.

Proof. First of all, let f(s) = "2 1) 40). For cach u € H, we have

[ ws)au() = [ u)(s)am(s) = 0, 6.
S0 So

Define

Alw,0) =0,

k
Alw, k) = Z FXONw, (1-1)8)) for ke*N, k3l

It is easy to verify that A(w, t) is a §-1AF. Moreover, for each z € Sy,

S EiA(w, (i) = <E:f (XO(w,0)6m() = F(ihm(i) = u(i).

Therefore, it follows from the proof of Proposition 5.1 that (5.4} holds. 0
Ford € T, let A(w,1) be a 6-IAF. Define

e(4) = = E(A(w, 5)- / B, AZdm(i). (5.6)
We call e(A) the energy of A. Furthermore, we define mutual energy e(A, B) for

d-internal additive functionals A and B by

L BlA(w,5)B(w, ). (5.7)

e(4,B) =

Let A A{w, kd) be the forward increment of A(w,¢) at time k4, i.e.,
AA(w, kd) = Alw, (k +1)8) — Alw,kd) for k€ *N. (5.8)
We define the quadratic variation [A]: 2 x Tj — *R by

[A] (““" 0) = 0:

n—1
[Al(w,nd) = > (AA(w, k8))* for ne*N, n>0. (5.9)
k=0
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Because
n—1 n+m 1
[A)(w, (0 +m)8) = 3" (AA(w, k) + 3 (AA(w, k)

k=0 k=n
n-—1 m—1

= S (AAw, k) + ¥ (AAfw, (K + n)d))?
k=0 k=0

= nz_:(AA(w, k8))* + mZ_ (AA(Bnsw, k),
k=0 k=0

[A] is a positive 8-IAF. By Proposition 5.1 and its proof, we know that p 43 (2) =
%Ei(A(w, 8))?m(3) is the hyperfinite positive measure associated with [4] in the
sense (5.4). We call p4)) the energy measure of A. It is obviously from (5.5) and
(5.6) that

e(A) = 3u4(S0)- (5.10)
Letu € H.For § € T, define a 6-IAF AM(w, t) by
AM(w, 1) = w(X D {w, 1)) — u(X(w,0)) for e Ty 5.11)
Then

e(Al) = B4, )"

= L Bu(X® (w,6) - u(X® (w,0)]

28
1 N
= =3 E;(w(X® (w, 8)) — u(3))*m(i)
i=0
1 XX . (8,
=0 j=

U

N N N
= 5= 33 () — u@) e mli) + 5 S (@i el m()
i=1

i=1j=

—

N
= £90u,u) - %Z(u(z‘))zqu) (3)- (5.12)

i=1
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THEOREM 5.1.Foru € H, f € H, let p1,,y(") be the energy measure of Al we
have

(1) spli) = 3B, )P

N
= 23 (wl) - u(@) P mei). (5.13)
7=0
) /S F()y(ds) = 26D uf,u) - EO02, ). (5.14)

Proof. (1) Easy!
(2) On the one hand, we have

ff(s Phu) (ds) _"ZEJ’(@ Ju(i) — (i) g m(i). (5.15)

1=0 =0
On the other hand, we have

260 (uf,u) — £9 2, f)

N
%Z[w DR FGmE) — 3wl qf;“m(z}
i=1 j=1
1 N N
-3 [( - Y @@ 1 G)aly ()}
=1 j=1

N N
-Z(u(z) 27 am) ~ 23 3 (2u) — ui))u(s)f G ms)

i=1 7=1
N N N
= + Y W) @mt) — + 3 3 ul) — u)u (e m()
i=1
1 & ]
=3 gf (#)m(3) ( z(zu —u()ulie; ))

N
=5 2 Y S00) - ul@) e m) 5.16)
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By (5.15) and (5.16), we get (5.14).

6. Fukushima’s Decomposition Theorem

6.1. DECOMPOSITION UNDER INDIVIDUAL PROBARILITY MEASURES F;

447

LEMMA 6.1. For & € T, let v be a positive measure on Sy of -hyperfinite energy

integral. For any v € H,t € Ts and € > 0, we have

Py(w)3s € THu(XD (w, 5))| > £))

t/8
< 2D (6000 UP0EP (),

where P, (+) = fq Fi(-) dv(s).
Proof. Let A= {i € Sy | u(i) > €}, define

6P (w) = min{t € T; | X(w, 1) € A}.

Then we have

P,(w|3s € Ts,s € t{u({X®(w,3)) > )
- [ v ol (07805 (148700 gy
< /S E; [(1 +38)"78 /(1 +6J""’] (i)

—(+8) [ P e

0

= (1 + 85y 0 (4))

2
< (140 [eP U, UPn)e? (‘”(A),eﬁ‘”(A))]l/

= 1

t/6 1/2
< WD [0 00, U PP ]

where the reason for the last step holding is

ul U
M ), 4 < 60 (U4 < e,

£ 4

Hence we can prove Lemma 6.1 by using the same argument to —u.

(6.1)
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PROPOSITION 6.1. For § € T, assume thar (£ (-, ), D(ED)) satisfies condi-
tion (4.27) of Theorem 4.5. Let u, {un|n € N} be the elements in H and § € T.
Suppose that

°€1(5)(un — U, —u) >0 as n— oo

Then there exists a subsequence {ur, | k € N} and a 3-exceptional set B such
that for all i € 5o — B,t € T{",

L(R-)(unk(X(a)(w,s)) converges uniformly to w(X9(w, 5))
in 5 on Tf as n—o0)=1. (6.2)

Proof. Let {n; | k € N} be a subsequence satisfying

°81(6) (Un, — U, Un, —u) < 27,
Set

Ax(t) = {w ] 38 € TE(|utn, (X@(w, 5)) — u(X®(w,3))] = 27%)}.
For v € Tyo(d), we have from Lemma 6.1 that

°P,(Ag()) < (27 [P (U1, U] ).

Hence

oC

> L(P,)(Ag(t)) < o0.

k=1

By the Borel-Cantelli lemma, we get

L(P,) (ﬁ G A,(t)) = 0. (6.3)
k=11=k

Set A(t) = N2, Uy Au(t). From Theorem 4.5, Proposition 3.1 and (6.3) that
there exists a §-exceptional set B(t) such that

L(F)(A(f)) =0 forany ¢e€ Sp— B(t).

Now let us select a countable subset {tnjn € N} CTs such that t, ~ n. We
define A = |52, Atn), B = USZ, B(tn}). It is casy to see that Proposition 6.1
holds. 0

LEMMA 6.2. For § € T, let A be a 8-IAF and p 4y (i) be the hyperfinite measure
defined by (5.5) in Section 5. Then for any v € H, we have
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£0(fov) = [ i) ~ B (XOWN]duy(®) forall teTs,  (64)

where fi(i) = B;A(w,t).
Proof. If k = {, then

EO(fs,0) = 3 [ (0l ~ Qo)) dm(i)
= [ 1) - ElX D)) iy )
Assume that (6.4) holds whenever k < n, then
EO firrpo) = 3 [ (06) = Qo) Eudl (n+ )3) )
- Jf (5) — Q%u(i)) (s Alw, nd)
+BiA(Brg0,3)) dm(3)
= [ () B (X (00)) a9
+% /S (E(XO ) - Buo(XO (n+ 1))
x B3 A{w, 8) dm(3)
= [ ) = Ea(XO(n-+ DI duin (). .

LEMMA 6.3. For d € T, ler A(w,t) be a positive 8-TAF. For all positive measure
v on Sy of §-hyperfinite energy integral, we have

By (A) € 1+ UL vlloopuay(Sa) forall teTs. (6.5)
Proof. 1t follows from Lemma 6.2 that

£ A(w, 1) = fs EiA(w, ) du(i) = £ 0D, 1)
0

| 1017w(i) = Bi(Uw(X O (0)] 8pa) ()

+ /S o AHOUD(E) dm(s)

< TPl ooliaqay (S0) + /S fli) dm(3)] (6.6)
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Noticing that
/5 foesnsli)dmG) = /. Eifl(w, (k-+1)8) dmi)
= [ B, k)dm@) + [ BiA(Busw,6) dm(i
So Sp

< E;A(w, kd) dm(i) + ; E;A{w,8)dm(s),
0

So
we can show
[ A0 dm() < i ay(So) ©7)
From (6.6) and (6.7), we obtain (6.5). ]

DEFINITION 6.1. An internal process A: @ x T' =+ *R is said to be a martingale
with respect to (ﬂ,.?-’t(a),Pz-,i € 8S) if w = A(w,1) is ]_.t(a) measurable for all
te Ty andforall s,t € Ts,s < t,andall B € F&,

E;(1p(A; — A)) =0. (6.8)

It is easy to see that if [w]g'j) is the equivalence class of w defined by (2.20) in
Section 2, then a nonanticipating process A(w, t) is a martingale iff

> AA@,t)P{@} =0. (6.9)

wefw)

PROPOSITION 6.2. For§ €T, let A, { Ap|n € N} be b-internal additive function-

als. Assume that °e(An, — A) — Oasn — oo, and for eachi € Sy, {11, ft('s) , A(t),
An(t), P;} are martingales for ali n > 1. There exists a subsequence { Ay, (t)|k €
N} and a 5-exceptional set B such that for all i € Sy — B,t € T,

L(P){(w|An, (w,5) = A(w,s) uniformlyon Tf) = 1. (6.10)
Proof. By (5.10} in Section 5, we know
O;L([An_A])(So) = O[Ze(An - A)] —0 as n > oo
For simplicity, we suppose that ®pi4, - 41y (So) < 273k (taking a subsequence if

necessary). Since A, A,,n > | are martingales with respect to F;,1 € Sp, we get
from Lemma 6.3 that for all v € 7o0(8), ¢ € T

°(E.(An(t) — A®))Y] = °(Eu([An ~ A)®)))

< 1+ OIUP 274, (6.11)
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From (6.11) and Doob’s inequality (refer to [3, 4.2.8]), we get
°Py(max | An(s) — A(s)| 2 27%) < °[2"" By (max | 4n(s) — A(s)])?)

< °[2%12E, (Aa(t) — A®)Y] < [+ DU 00274,

It is easy to show Proposition 6.2 by using Borel-Cantelli lemma, Theorem 4.4
and Theorem 3.2. m

DEFINITION 6.2, (1) We call an internal function in H S-bounded if there is a
positive constant C such that |u(z}] < C forall 7« € Sp.

(2) An internal function f: Ty — *R is called S-continuous if f(s) = f(t)
whenever s & t and s and ¢ are nearstandard.

LEMMA 6.4. For § € T, u € Fin(H), define a 5-IAF A° by
A%(w,0) =0,

A (w,n8) =6 u(X(w,(k—1)8)), neN, nxL (6.12)
k=1

Then there exists a properly 6-exceptional set BCSy such that for all i € Sy — B,
L(P){w | A%(w,-) is S-continuous} = 1. (6.13)

Proof. First of all, we assume that u is S-bounded. We have for any w € ,

A% (w,8) — A (w, 8} < £ - SI({.TElg’DtIU(i)I +1).

This implies that A%(w, t) is S-continuous.
Next, we suppose that u € Fin(H). For each n, denote

By, = {s € 5| |u(s)| > n}
and define

og, (w) = min{t € T; | X(t) € B,}.
Then

P(w|Ft € THX (w,t) € By))

= P(wloBa(w) < 1)

<n7? [ Bifu(X(op,)) dm(i)

< n*zfs [u(3)]? dm(4).
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Therefore, we get

L{P) (w|3t €T} (X(w,t) € ﬁ B,.,)) =0.

n=1

This implies that {s € Sp|°|u(s)} = oo} is a d-exceptional set. Let B be a properly
d-exceptional set containing {s € Sp|°|u(s)| = oo} (Proposition 3.1). For each
n € N, define

on(w) = min{t € Tl fu(X (w, 1)) > n}.

Then for each w € 2, A%(w, ) is continuous in [0, o (w)) for every n.
Moreover, for each i € Sp — B, we have

L(F){w|°on{w) T oo as n— oo} =L
We have shown Lemma 6.4. O

THEOREM 6.1 For § € T, assume (E®(-, ), D(E®)) satisfies (4.27) in
Section 4. For any u € D(EW®), there are two d-internal additive functionals
MU (w,t) and N (w, t) such that

(1) Al (w, ) = MM(w,t) + N¥(w, ).

(2) For eachi € Sy, MY is a martingale with respect to (£, {}-t(:i) 1, P
(3) e(N4) = 0 and EINWM|(t) = 0 for ail t € TS,

(4} There exists a d-exceptional set ACSy such that for all i € Sg — A,

*Ej(MM(w,1))? < co forall teT, (6.14)
L(P)(w | NM™(w,-) is S-continuous) = 1. {6.15)
Proof. Define
NM(w,0) =0,
ANM(w, 1) = Qu(XP(w,1)) — u(XD(w,1)), teT, (6.16)
and
MM, 1) = wW(X D (w,1)) — u(X ¥ (w,0)) — N¥(w,1). (6.17)

For each t € T, we have

M w, ¢ + 8) = MM (w, )

= u(X® (w, 1+ 6)) — Pu(XD(w, ). (6.18)
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It is easy to see from (6.9) and (6.18) that (£2, }}(6) , MB®(w, 1), P,) is a martingale
for each i € Sp. Furthermore, have

SEANH0) < %i(@fu(i) — u(i))?m(i)
= E@(y,u — Qu) ~ 0. (6.19)

From (6.19), we obtain

E[NM(t) < €9 (u,u — Q%) ~ 0 foreach e TP,
and

e(NH) = S BV, ) < 36 (uu - QP) =0, (6:20)
Therefore, we deduce from (5.12) in Section 3 and (6.20) that

e(MP) = e(AM — N1¥) = e(AM) < £ (u, ). (6.21)

By using Lemma 6.3 and {5.10) in Section 5 and (6.21), we get for any v € 700(8),
t e Tfn,

*(B (MM (w,1))?)
= °(B,[MM)(8)) < °[(1 + TP llaottartey (So)]

= °[(1 + U vloo2e(M1)

<1+ NP 1) 026 (u, 1)) < 0. (6.22)

Therefore, it follows from Theorem 4.4 and (6.22) that there exists a d-zero capacity
set Ay C.Sp such that

"B (MM(w,8))? < oo forall teTi" ieSy— A (6.23)
Put u,, = @"/™u,n € N, then
ANl w, 1) = Qun(X(w,1)) — un(X{w, 1))
= ~5A®yu, (X (w,t)). (6.24)

First of all, we have
[ (AP (i))? ami
So

1

= £ (g, ADvp) = @ (un, (1 — Q%)) (6.25)

on|
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By the proof of ([3], 5.1.4 Proposition and 5.1.7 Lemma), we have
ED) (un, un ~ Qun)
< E9 (un, 1) — E9(QPup, QPun) < ndEW) (u, ). (6.26)
Thus we get from (6.25) and (6.26) that
I (A@q, (1)) dm(i) < °(n€D (u, u)) < oo 6.27)
0
Therefore, we know from (6.27) and Lemma 6.4, for each n € N, there exists a
properly d-exceptional set B, CSp such that for all i € Sy — By,
L(P){w|N®nl(w,.) is S-continuous} = 1. (6.28)
It follows from (6.21) that
(MM — pMnly <260y —upu—up) >0 as m—oo.  (6.29)

(6.29) and Proposition 6.1 and Proposition 6.2 imply that there exist a subsequence
{ng | k € N} and a §-exceptional set B such that

L(P)(2)=1 forall i€ Sy— B, (6.30)

where set Qg = {w € Q| un, (X®(w, 3)) and Ml(w, 5) converges uniformly
to (X ¥ (w,s)) and M™(w, s) on each S-bounded subset of T, respectively}.
Set A = BUA U (UL, By), then we see Theorem 6.1 (4) hold from (6.23),
(6.28), (6.30) and Theorem 3.2. O

6.2. DECOMPOSITION UNDER WHOLE MEASURE P

In the following, we shall consider similar decomposition as Theorem 6.1 under
the whole measure P. We will see that we may work under quite weak conditions.
Just as Lemma 6.1, we have

LEMMA 6.5. Let X be a hyperfinite Markov chain and E(-, ) its Dirichlet form.
ForéeT, allue H,t € Ty and e > 0, we have

2(1 + 5)‘/‘551(5)

P(w]3s € THwW(XD (w,s))] 2 &) < 2

(u,u). (6.31)
REMARK 6,1.The proof of this result can be found in [3], 5.3.6 Proposition, p. 257.

COROLLARY 6.1. Let u, up,n € N be elements in H, and assume that
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8
°€f )(U,-un,u—un) =0 as n-— oo

There is a subsequence {un, } such that for a.e.w, up, (X ©)) converges uniformly
to u(X D) on all S-bounded subsets of T.
Proof. By Lemma 6.5 and basic measure theory. (|

DEFINITION 6.3. A Dirichlet form £(-, ) is normal with respectto § € T if
(@u,u) 2 0. (6.32)

THEOREM 6.2.For § € T, let us assume that (EF(-, -), D(E®)) is a normal,
hyperfinite Dirichlet form. For any u € D(E®), there are two é-internal additive
functionals M (w, t) and N (w, t) such that

(1) A (w,t) = MU (w, 1) + N (w 1)

(2) M™ is a \2-martingale with respect to (£, {.7-}(5)}, P).

(3) N[ is S-continuous and E[NM]](t) ~ 0 for all t € TF".

Proof. The proof of this result is something like that of Theorem 6.1. We
remind that the detail demonstration was given in [3]. Hence we do not discuss it
so carefully here. O

7. Internal Multiplicative Functionals
7.1. INTERNAL MULTIPLICATIVE FUNCTIONAL

DEFINITION 7.1.For é € T, an internal function M (w, t),t € Tj,w € (1, 1s said
to be a d-internal multiplicative functional (abbreviated by 8-IMF) of X (%) (w, 1)
iff

(i) Foreach ¢t € Ty, My(-) is ft(ﬁ)-measurable.
(ii) Foreacht € T, w € Q, M(w,t) € *[0, 1].
(iii) For each w € {1, we have

Mw,0)=1, M(wt+s)=Mw,s)\M0Pw,t), ¥, s€T.  (1.1)

REMARK 7.1.Let A{w, t) be a non-negative d-internal additive functional. We can
define a 6-IMF M (w, t) by

M(w,t) = exp(—A(w,t)) forall we, teT;. (7.2)

It M(w,t) is a é-internal multiplicative functional, let us define a family of
operators { P*|t € T} on H by

P = Eff (X (w, ) M(w, 1)} (7.3)
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Then we have for all £,s € T5,1 € 5,
P f(i) = Bi{ /(XD (w,t + 8))M(w,t + 5)}
= B f (XD 6w, 0))M (w0, )M (0w, 1)}
= Ei{M(w,s)Ex (o [f(XO ()M}
= PSPf(i). (71.4)

Hence, {P!|t € Ty} is a semigroup. We call it the semigroup generated by
(X 6 M ). Moreover, we have forall f € H,

POf(i) = B[ f(X(w,0)M(w,0)} = £(i). (7.5)
In particular, we have
P =1. (7.6)
Since M (w, d) is F éa)—mcasurable, we have
M(w,8) = 2 LGy (@) Mij, (1.7

1,7=0
where [@](1j) = {w|w(0) = 7 and w(§) = 5} and {M;;li,5 = 0,1,2,..., N} is
a family of positive hyperreals. Moreover, M;; € *[0, 1]. Therefore, the transition
matrix {p{y’ | 4,5 =0,1,2,..., N} of {P* | t € Ty} is given by
P =My, My erl], i,5=012... N, (1.8)

From (7.8), we know for all non-negative internal functions f € H,

Py < QUF(i), Vies, teT;. (7.9)

7.2. SUBORDINATE SEMIGROUP

DEFINITION 7.2. A semigroup {P* | t € Ts} of positive linear operators from
H to H is said to be subordinate to {Qt | t € T} iff PPf(i) < Q*f(3) for all
teTs, feH f(i)20,i€Sand PP =TI

THEOREM 7.1. Let {P* | t € Ty} be a semigroup on H. Then the following two
conditions are equivalent:

(1) {Pt | t € T5} is subordinate to {Q* | t € Ty}
(2) There exists a 8-IMF M (w,t) of X w, t) generating {P* | t € Ts}.
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Proof. (2) = (1). It follows from (7.6) and (7.9).
(1) = (2). Let {pg) 4,7 =0,1,2,..., N} be the transition matrix of semi-
group {Pt [te CID}} .Then for each f € H, we have

F) = Z a5 (), (7.10)

Pof(i) = pr)f (). 7.11)

Since {P* | t € Ts} is subordinate to {Q* | ¢ € T}, we can see

oD <gd Vi, =012, N (7.12)
Define
. @
M@, j) = qw) (qu);éo), (7.13)
Ly

where we define § = 0,a € *[0, c0). Put
M{w,0) = 1, M{w,8) = M(X¥(w,0), X (w,8). (7.14)

Foralli € §, we have forany f € H,
Bl (X (w, ) M(w,6)] = zf (hd)asg = PP1(3). (7.15)

By using mathematical deduction, we define
M(w, (k + 1)8) = M(w, k8)M(6)w,8) forall ke *N. (1.16)
Tt is easy to show that M (w, t) is a §-IMF generating { P* | ¢ € T5}. a

7.3. SUBPROCESSES

In Section 2 we define m-symmetric Markov process X (w, t) associated with
the hyperfinite Dirichlet form £@)(-, ). Let {&, 7%, Y@ (&,1),6:, P}ser,
be a Markov process with state space (S, S). We call Y(&,t) a subprocess
of X@(w,t) iff the semigroup {P? | ¢ € T5} of Y¥)(D,1) is subordinate to
{Q" |t € Ty}

Let Y9 (&, t) be a subprocess of X% (w, t). From Theorem 7.1, there exists a
6-IMF M (w, ¢) of X{¢) (e, #) such that

Ef(Y9(o,0) = B[f (X (w,t))M(w,t)] forall te T, (7.17)
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where Ej(-) is the expectation operator corresponding to Y)(, ¢).
Now we are interested in the following question. Given a §-IMF M (w, 2}, could
we construct a subprocess Y9 (w, ¢) such that (7.17) holds? The answer is yes! In

fact, let ) = Q,j-'t(a) = .E(J),Y(&)(w,t) = X% (w,t),é}‘s) = 9?). Furthermore,
let {P? | t € T} be the semigroup given by (7.4), and {pg-) | 4,7 =0,1,2,...}
be the transition matrix of {P* | t € T5}. Define forw € {} = Q, k € *N,

k=1
By([wlks) = diney [] plw(nd),w((n + 1)4)). (7.18)

n=0

It is obviously that (7.17) holds with respect to Y% (w, t). We call Y (®)(w, 1) the

canonical subprocess associated with (X (®), M). We notice that {pg) | 4,5 =
0,1,2,..., N} need not have the regularities (2.1) and (2.2) in Section 2.

7.4. FEYNMAN-—KAC FORMULAE
Let {¢¥ | =1,2,...,N} beal x N matrix satisfying

0<d¥ <, i=12,...,N (1.19)
Define a transition matrix P{®) = {pg) |4,7=0,1,2,...,N} by

Py = —a%8; for i,j=12...¥,

o =@ +4P for i=1,2...,N and

) =1, p=0 for i=1,2,...,N. (7.20)

Let {P* | ¢ € Ts} be the semigroup with P@ = {p{ | 4,5 =0,1,2,..., N} as
its transition matrix. Then we have

THEOREM 7.2.(i) The semigroup { P* | t € Ty} is symmetric with respect to m,
(ii) The Dirichlet form associated with P\ and m is given by

N
EO (u,v) = £ (u,v) + 3_ u(@)o(@)gVm(i). (7.21)

=1
(iil) There exists a 6-IMF M (w, t) such that forany f € H,1 € S,t € T},
Pfi) = BlF(XO(w, ) M(w, ). (7.22)

Proof. (1) and (ii) are obvious. (iii) is followed from Theorem 7.1. 0
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8. Transformation of Hyperfinite Dirichlet Forms

In this section, we assume that
gii=0 forall :=1,2,...,N. (8.1)

In fact, this assumption will not affect our theory. The reason comes from the proof
of [3, 5.3.3 Proposition]. Actually, for general Dirichlet form £(-, -) in (2.17) in
Section 2, we define

(i) = (1 — gii)m(i), g:;=0 forall 1=1,2,...,N.
Moreover, ifi = 1,2,..., N and g;; < 1, define

-~ qij
%ij = 1 _Uq

1

for j#4,7€{0,1,2,...,N}

ifi=1,2,...,N and g;; = 1, define
gij =0 for j#0,iand Go=1.

Besides, let qoo = 1,q0; = 0,5 = 1,2,..., N. It is very easy to verify from
Beurling-Deny formulae that the Dirichlet form associated with m and Q=
{@14,7=0,12,....,N} isE(, ).

Let @ be an internal nonnegative function in A. We define a quadratic form in
the following way

)= Y () - ui)el) - i)2ESwmE). 62

ICIQIEN

It is easy to see that £2(., -) has Markov property defined in Section 2. Thus by
[3, 5.3.3 Propoesition] there exists a transition matrix P = {p;; | 0 < 4,5 < N}
and a symmetric measure 77i(-) such that

E%(u,v) = fs u(@) (v(d) — ﬁ%(-i))zlE din(i). (8.3)

0

In the following, we will find the P and 7. From (8.3) and the Beurling—Deny
formulae, we have

E¥(u,v) =

> (ul(d) —u(5))(v(E) — v(5))Biy(E)

1<i<GEN

N
+ EU(i)v(i)ﬁmﬁm(i)} : (8.4)

i=1
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Comparing (8.2} and (8.4), we must have
O ()(5)q;;m (i) = piym(é) forall 1<4,5<N, (8.5)
fm(i) =0 forall i=1,2,...,N. (8.6)

Therefore, we get

N
i) = 3 Pyimli) = Y 2(1)ai; 2(E)m(i) + Pur(i)
j=0

J#
= E;[®(X(At))]@()m(i) + pun(i). 8.7)
Define
Poa = 1, Pui=0 for i=12 ... N, (8.8)
Py=0 for i=1,2,...,N. 8.9

Hence from (8.7), we obtain
(i) = E;[®(X(AL))]®()m(5). (8.10)

Fori = 1,2,...,N, if E;®(X(At)) # 0, we see from (8.5) that for all j =
1,2,...,N, 7 #4,

i = % 20) %)

T E[O(X(AL)]  Bieigu®()

Fori=1,2,..., N, if E;[®(X (At))] = 0, we can define fiz;,1 < j < N,j # i
arbitrarily such that

(8.11)

N
> Bi=1 (8.12)
3=1

From (8.11) and (8.12), we get

pio=0 forall 1#0. (8.13)
In the following discussion, we suppose that

E[®(X(At))] >0 forall i=1,2,...,N. (8.14)
Hence we have from (8.11) that for all f € H,

_ E(79)(X(A1))]

PIO) = —gigtxan) @.15)
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Let {P, | t € T} be the semigroup generated by P. Then it is easy to see that
{ﬁ‘ | t € T} is subordinate to {@Q* | ¢ € T'}. By using Theorem 7.1, there exists
an IMF M (w, t) of X (w, t) generating { Pt | ¢ € T'}. From (7.15) in Section 7, we
know that

B(X (w, At))
M(w, At) = . 8.16
B = o P (AD] @.16
Therefore, for all k € *N, we have
k
Mw, (k+ 1)A1) = ] =+ DAY (8.17)

16 Exwinn[2(X (A1)

On the other hand, let ® be an internal function in H satisfying (8.14). We define
M (w, t) directly by (8.17). Then we have the following

THEOREM 8.1. Assume that the hypotheses (8,1) and (8.14)} hold. Then

(1) The semigroup {(Q®)" | t € T} generated by M(w,t) is symmetric with
respect to the measure E;[®(X (At))]®(i)m(:) = m(4).
(2) £%(-, -) is the Dirichlet form associated with {(Q*)* | £ € T'} and ().

Proof. Easy! O
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