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1. Introduction 

Probabilistic potential theory has been a very important part in the study of stan- 
dard Dirichlet space theory. It establishes a beautiful bridge between functional 
analysis and the theory of symmetric Markov processes. It gives us probabilis- 
tic interpretation of potential theory. Many applications of this theory have been 
found, especially in the area of mathematical physics. Our purpose in this paper 
is to develop potential theory associated with the hyperfinite Dirichlet forms. The 
motivation is twofold. On the one hand, we would like to establish a relationship 
between the standard Dirichlet space theory and the hyperfinite counterpart. On 
the other hand, we are interested in the theory of hyperfinite Dirichlet forms itself. 
We hope to construct the completed theory system for hyperfinite Dirichlet space 
theory. Besides, we have studied infinite dimensional stochastic analysis exten- 
sively in recent years. It is our hope to find some new and powerful machinery 
to deal with the problems in this exciting area. Maybe the nonstandard analysis is 
one of these methods. In fact, we have utilized our theory of hyperfinite Dirichlet 
forms in the study of [6], in which the important construction of strong Markov 
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processes associated with quasi-regular Dirichlet forms has been fulfilled by using 
the nonstandard analysis language. For another method of construction, the reader 
can refer to [4]. 

The study of hyperfinite Dirichlet space theory was initiated by [3]. First of all, 
the authors introduced the frameworks of hyperfinite Dirichlet forms. When the 
state space is a hyperfinite subset So of*Y for some Hausdorfftopological space Y, 
they established an one to one correspondence between the family of hyperfinite 
Dirichlet forms and the family of symmetric Markov chains. Furthermore, they 
obtained hyperfinite lifting C(., .) for every standard Dirichlet form E(., .). The 
standard parts of hyperfinite Markov chains have been studied in the work also. In 
fact, some aspects of our potential theory have been considered by the authors, such 
as exceptional sets, Feynman-Kac formulae, equilibrium potentials. However, we 
shall study potential theory of hyperfinite Dirichlet forms systematically in this 
paper. New concept and method will be presented as the paper develops. 

Now let us talk about the arrangement of this paper. In Section 2, we shall intro- 
duce the framework of hyperfinite Markov chains and associated Dirichlet forms. 
The authors of [3] have given us a definition of exceptional sets, which might be 
too restrictive for certain case. Therefore, we define this concept in a new way 
in Section 3. Moreover, we introduce capacity for the hyperfinite Dirichlet forms 
and show that it is a Choquet capacity. Furthermore, we establish a relationship 
between the family of exceptional sets and the family of zero capacity sets. In Sec- 
tion 4, we consider positive measures of hyperfinite energy integrals and associated 
theory, that is, the connections among hyperfinite excessive functions and hyper- 
finite potentials. The zero capacity subsets will be characterized by the language 
of positive measures of hyperfinite energy integrals. In Section 5, we introduce 
internal additive functionals. The relationship between hyperfinite measures and 
additive functionals will be considered. Moreover, we obtain the positive hyper- 
finite measure/z(,~ / (i) associated with an internal function u. In Section 6, we get 
the Fukushima's decomposition theorem under the individual probability measures 
Pi, i E S0. This extends the work of [3], since they have completed the decompo- 
sition under the whole measure Pro. In Section 7, we will discuss the properties 
of internal multiplicative functionals, subordinate semigroups, subprocesses and a 
Feynman-Kac formula. The motivation of this work is the similar standard theory 
developed by [5]. Moreover, we hope to study perturbation theory of the hyper- 
finite Dirichlet forms. In fact, a subject for our future research is the hyperfinite 
perturbation theory characterized by the language of internal additive function- 
als. In standard Dirichlet space theory, we have been interested in such question: 
could we change a non-conservative symmetric Markov process into a conservative 
one? [8] answered this problem by using Girsanov transformation. In Section 8, 
we show that this problem is quite simple in hyperfinite settings (Theorem 8.1). 

It is well known that in the standard Markov process theory, we can study 
potential theory in the case of non-symmetry (refer to [5]). In fact, the symmetric 
condition (2.3) in Section 2 is not necessary in the Definition 3.1 and Definition 3.2 
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of exceptional sets. Moreover, we can prove Lemma 3.1 and Proposition 3.1 without 
this symmetric condition. Besides, we can define additive functionals, hyperfinite 
excessive functions and multiplicative functionals in the circumstance of non- 
symmetry. For the work of non-symmetry, the reader can refer to the book [1] in 
preparation and paper [2], also [9]. Nevertheless, let us work under the symmetric 
situation since in most part of this paper, it is still necessary. 

2. Hyperfinite Markov Chain and Diriehlet Form 

Let Y be a Hausdofff space and *Y be the nonstandard extension of Y. Let 
S = {so, S l , . . . ,  SN} be an S-dense subset of *Y for some N E *N - N and m 
be a hyperfinite measure on S. Denote by S the internal algebra of subsets of S. 
We would remind the readers here the difference between S and S. Assume that 
Q = {qij} is an (N  + 1) x (N  + 1) matrix with non-negative entries, and assume 
that 

N 

Y~ qii = 1 for all i E S, (2.1) 
j=0 

and the state so is a trap, i.e., 

qo /=  0 for all i ~ 0. (2.2) 

In the sequel, we shall write mi for m({si }) and qii for qsisj respectively, whenever 
it is convenient. 

We assume the measure m and the transition matrix Q satisfy symmetry condi- 
tions 

miqii = mjqji for all i r 0 , j  r 0. (2.3) 

Besides, we assume that 

mi • 0 for at least one i ~ 0. (2.4) 

Take an infinitesimal At  such that 0 < At. Set 

T = { k A t l k  E'N}. (2.5) 

If (~, P )  is an internal measure space, and X: f l x  T ~ S is an internal process, 
let 

= e a I X ( J ,  s) -- s) for all s ~< t}. (2.6) 

For each t E T,  let .Tt be the internal algebra on fl generated by all sets [w]t. 
Assume that for all w 

P([w]o) = m{X(w,  0)}, (2.7) 
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and whenever X (w, t) = si, 

P{w'  E [w]t [ X ( t  + At ,  J )  = sj} = qijP([w]t). (2.8) 

In particular, we define a family (ft, 9vt, Pi, i E S) of internal probability spaces 
by 

k - 1  

Pi([W]kZXt) = 5i.~(o) IX qw(nAt),~((n+,)At) 
n=O 

(2.9) 

for each i E S, where 5ij is the kronecker symbol. 
A process X satisfying (2.1), (2.2), (2.3), (2.4), (2.7) and (2.8) is called a 

symmetric hyperfinite Markov chain associated with m and Q, and it is this kind of 
processes we will study in detail. We shall first obtain the form from the process. 

If 

So = (2.10) 

is the state space S without the trap So, denote So = S M So. Let H be the linear 
space of all internal functions u: So ~ *R with the inner product 

N 

fso = = i----I 

(2.11) 

Just as we usually write mi for m(si) ,  we shall write u(i) or ui for u(si). And we 
shall identify H with the set of all internal function u: S -4 *R such that u(so) = O. 

Our convention of letting the trap so be the zeroth element is notationally 
convenient, but we call attention of the reader to the fact that he should distinguish 

N N between sums of the forms Ei= 0 and Ei= 1 . 
For t E T and u E H,  we define a new function Qtu E H by 

Qtu(i) = Eiu(X( t ) ) ,  (2.12) 

where Ei is the expectation with respect to the measure Pi defined in (2.9). Intu- 
itively, Qtu(i) is the expected value of u(X( t ) )  for a particle starting in state si. 
Notice that 

N 

QAtu(i) = (Q . u)(i) = E u(j)qij,  
j = l  

(2.13) 

where �9 is the matrix multiplication in the middle term, and since q(t+s) _ i3 
EN (t) (~) k=lqik qkj,  w e  must have 

Qt+S _= Qt . QS, (2.14) 
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where q~) is the transition probability given by operator Qt. Hence the family 
{Qt i t E T} is a semigroup of operators on H.  

The infinitesimal generator A of this semigroup is given by 

1 u(i) - ~ u ( j ) q i j  �9 (2.15) Au(i) = --~ 
j = l  

The Dirichlet form associated with Q and m is defined to be 

N 

g(u, v) = (Au, v) = ~ Au(i)v(i)m(i). (2.16) 
i=1 

Combining (2.15) and (2.16), we get 

1 u(i)v(i)m(i) - ~_,u(j)v(i)qijm(i) . (2.17) 
g(~/,, V) = ~ i=1 j = l  

Moreover, we have the following Beurling-Deny formula (refer to [3, 5.3.1 
Lemmal): l[ 

e(u,v)  = - ~  Z (u ( i ) -u ( j ) ) ( v ( i ) - - v ( j ) )q i jm( i )  
l<~i<j<~N 

+ ~u( i )v ( i )q iom(i )  . (2.18) 
i=1 

The domain D(s of s .) is the set of all u E/ - / such  that 

(i) ~163 =~163 + (u,u)] < m.  
(ii) For all t E T, t ~ O, s Qtu) ~ s u). 

If 5 E T, let Ta be the subline 

Ta = {0, (f, 25, . . .} .  (2.19) 

We write XO) for the restriction X I T~. For each t E T6, let 3r{ 6) be the internal 
algebra on f~ generated by the sets 

[w]~ ~) = {w' E f~ I X  (~) (w', s) = XO)(w, s) for all s E T(~, s ~< t}. (2.20) 

It is easy to verify the following for all k E *N, 

k - I  
(6) q(~) 

n=0 

(2.21) 
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and 

miqi~ ) = m .q  (6) forall i # 0 , j  # 0. (2.28) 3 ji 

The Dirichlet form associated with Q@ and m is defined to be 

N 

g(6)(u, v) = {A(6)u, v) = ~ A(6)u(i)v( i )m(i) .  (2.29) 
i = l  

Therefore, we have 

g(~)(u, v) = ~ i=1 ] =(0v(i)m(0 - Z 
3----1 

1 [ 
= -~ kl<~i<j<<. N 

N ] 
+ ~ u(i)v(i)q~o)m(i) . 

i=1 

N 

y~ (6) 1 for all i �9 S, (2.26) qij = 
3=0 

q(6)=0 for all i # 0  (2.27) 0i 

(2.30) 

k - l  

Pi([w](~ )) =- (~iw(o) H q(2~n,),~o((n+l),)" (2.22) 
n----0 

Therefore, for any t E T6 and u E H, we have 

E i u ( X  (6)(t)) = Qtu(i)  = E i u ( X ( t ) ) .  (2.23) 

In particular, we get 

N 

Eiu(X(a)(a))  Qau(i) ~ (6) . = = qij u(3). (2.24) 
j = l  

This implies that the semigroup of X(6) is {Qt [ t �9 T~}. The infinitesimal 
generator A(e) of X(6) is given by 

1 u(i) - ~_, u(j)q}~ ) (2.25) A(6)u(i) = -~ 
j = l  

Moreover, we can easily show that 
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Similarly, the domain D(s ('~)) of gO)(., .) is the set of all u E H such that 

(i) ~163 =~163 + (u,u)] < c~. 

(ii) F o r a l l t  E T6,t ~ O,g(~)(Qtu, Qtu) ~ g(6)(u,u). (2.31) 

For 5 E T, ~ E *R+, we will use the following notations: 

= = + 

. 

3.1. EXCEPTIONAL SETS 

For 5 E T,  denote 

T fin = {t E T [ t is finite}, 

and for r E T,  let 

Exceptionality and Capacity Theory 

T~ n = {t E T6 I t is finite}, (3.1) 

T r = {t ~ T i t  <. r}, T~ = {t e Ta It <. r}. (3.2) 

Moreover, we know that X (6) is the restriction X ] T6. 
For every y E Y, let us define the monad #(y) o f y  by 

#(y)  = ~ { * O  I O is open such that y E O}. (3.3) 

We call a point y E *Y is nearstandard if and only if y E #(x)  for some x E Y. 
Denote by Ns (*Y) the set of all nearstandard points in *Y. Since Y is a Hausdorff 
topological space, each element y E Ns(*Y) is nearstandard to exactly one element 
x in Y. We call x the standard part of y and denote it by ~ or st(y). In particular, 
we can take Y = R and use this notation also. 

DEFINITION 3.1. (i) A subset B of So is called &exceptional if 

L(P){w I 3t e T~n(X(w, t) e B)} = 0. (3.4) 

(ii) A subset B of So is called exceptional if it is (f-exceptional for some 
infinitesimal (f E T. 

REMARK 3.1. [3] has defined the &exceptional set in the following manner 

L(P){w I (X(w, 0) E S0) A (3t E Tfn(X(w,  t) E B))} = 0, (3.5) 

where T0 = So fl Ns(*Y).  Therefore, if a subset B is &exceptional in our sense 
of the Definition 3.1, it is &exceptional in the sense of (3.5). 

REMARK 3.2. From (3.4), we see for every exceptional set B 

L(P){w I X(w,O) E B} = O. 

This implies that L(m) (B) = O. 
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LEMMA 3.1. (i) All internal subsets B C 51o with re(B) ~ 0 are exceptional. 
(ii) The families of exceptional and g-exceptional sets are closed under countable 

unions. 
Proof Easy! [3 

DEFINITION 3.2. (i) A 6-exceptional subset A of So is called properly 6-exceptional 
if there is a family {Bm,n I m, n E N} of internal subsets such that 

A = U N .m,. (3.6) 
mEN hEN 

and for all si ~ A, 

L(Pi){w [ 3t e T~n(X(w, t) E A)} = 0. (3.7) 

(ii) A subset A of So is called properly exceptional if it is properly 5 exceptional 
for some 6 ~ 0, 5 E T. 

PROPOSITION 3.1. l f  A C So is 5-exceptional, there is a properly 5-exceptional 
set B D A. 

Proof. The proof of this result is similar to [3, 5.4.7 Lemma]. For the reason of 
the conciseness, we omit the detail discussion. [] 

3.2. CAPACITY THEORY 

We now turn to study the capacity theory of the hyperfinite Dirichlet form 8(., .). 
Recall that for a E *R+, the form 8a(.,-) is defined by 

8 (u,v) = 8(u,v) + fsouVdm. 

Let f :  D I  -+ *R be an internal function defined on an internal subset D S of So, and 

let (f E T. Define a stopping time a~ ~ by 

aO)(w) = min{t E T~ I x(~)(~,t) e Dy}. (3.8) 

For o~ E *R, a />  0, set 

e~)(f)(i)  = Ei[(1 + vai)-'r(I~)/'f(X(')(a~)))]. (3.9) 

Denote 

Z:(f) = { g i g :  So ---~*R is internal and g IDs= f} .  (3.10) 

Then we have 



POTENTIAL THEORY OF HYPERFINITE DIRICHLET FORMS 425 

LEMMA 3.2.s = min{E(~6) (g, g) I g e s 
Proof. Refer to [3, Chapter 5]. [] 

We shall call e~ ) (f) equilibrium a-potential of f associated with E (6) (., .). Denote 

Cap~)(f) = g(6)(e~)(f),e~)(f)). (3.11) 

We call Cap~)(f) the a-capacity of f associated with s .). An internal 
function f :  D/--~ *R hasfinite energy of C (~) (., .) if 

~ < co. (3.12) 

Whenever 6 = At, we abbreviate e~ ) (f) and Cap~ ) (f) by ea (f) and Cap. (f), 
respectively. 

If f constant one on its domain A = D f, we write e~ ) ( A ) for e(a 6) (f), Cap~) ( A ) 
for Cap~ ) (f). In this case, we shall call e(a 6) (A) the equilibrium a-potential of 
A associated with g (~) (., .), and Cap~)(A) the a-capacity of A associated with 

.). 

LEMMA 3.3. Let 5 E T, a >1 0 and a E *R, the following results hold: 

(i) IrA and B are two internal subsets of So, A C B, then 

Cap~)(A) ~< Cap(a6)(B). (3.13) 

(ii) IrA and B are internal subsets of So, then we have 

Cap~)(A U B) + Cap~)(A N B) < Cap~)(A) + Cap~)(B). (3.1,$) 

Proof. (i) is clear. We show conclusion (ii). 
(ii) Without loss of generality, let us assume that 6 = At. Since 

es(A) + es(B) les(A)- e.(B)l 
es(A) V es(B) = 2 + 2 

and 

e . ( A ) + e . ( B )  
e.(A) A es(B) = 2 - 2 

we have the following 

Caps (A U B) + Caps(A A B) 

4 s V e.(B)) + r A e.(B)) 

= �89 +es (B ) )+  �89163 -es(B)])  

<~ �89 + e.(B)) + �89 - es(S)) 

= s e.(A)) + s es(B)) 

= Caps(A ) + Caps(B). 

le.(A)- e.(B)[ 

[] 
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Now let us generalize our capacity theory. For every subset A of So, we define 

~ -- inf{~ I A C B , B  E So}. (3.15) 

We call Cap~ ) (A) the a-capacity of A associated with E (6) (., .). 

LEMMA 3.4. Let 6 E T, a >1 0 and a E *R, the foUowing results hold: 
(i) I f{An In  E N} is an increasing sequence of internaI subsets of So, then 

t_.ap~ An = (3.16) 

(ii) If {As I n E 

(') (n N t-.apa 

N} is a decreasing sequence of internal subsets of So, then 

A n ) =  inf{~ l n E N}. (3.17) 
/ 

Proof. (i)Set a = sup{~ [ n E N}. Obviously, we have 

~ (U ] a ~< t~ap,~ An �9 
\ h E N  / 

Hence we can suppose that a < ~ .  Let {An [ n E *N} be an increasing internal 
extension of {An [ n E N). Given e > 0, we consider the following internal set 

{ (,_q) } n E*N Jl  = An isintemal, Cap~) At =Cap~) (An)  ~< a + e . 

It is easy to see that N is contained in above internal set. By saturation, there is an 
infinite member M belonging to it. Therefore, we have 

Cap~) ( U An / ~< Cap~ )(AM) <~a + e .  
\ h E N  / 

By letting e $ O, we get 

~ a p ~  As ~< a. 

Therefore, we have 

~  ( ~ / ( n U N )  s u p { ~  } . t ~ a p ~  A,~ = 

(ii) In a similar way as (i), we can prove (ii). [] 
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LEMMA 3.5. I f{An [ n E N} is a sequence of  internal subsets of  So, then we have 

~  ( 6 ) ( U )  t~aPa (An), ~ap a An << ~ or. (6) 

\ n E N  / nEN 

(3.18) 

for all 6 E T, a >10. 
o (6) Proof. Denote b = Yl, nEN Capa (An). If b = oo, the inequality (3.18) holds. 

In the following proof, we assume b < oo. Let {An I n E *N} be an internal 
extension of {A,~ [ n E N}. For every e > 0, it follows from Lemma 3.3 (ii) that 

n 

~< ~ Cap~)(At) ~< e + b 
l = l  

for all h E N .  

Consider the following internal set 

n E*N At isintemalandCap~ ) At ~< Capri(At) ~< b + e  . 
-- /----1 

By saturation, there is an infinite element M -- M(e) belonging to the above 
internal set. Hence, we obtain 

Cap~) A, ~< Cap~) A, ~< ~ Capri (a , )  ~< b + e. 
\/----1 -- 1=1 

By letting e $ 0, we have proved (3.18). [] 

PROPOSITION 3.2. For all 6 E T, c~ >t O, we have 

(i) IrA and B are two subsets of So, A C B, then 

Cap~)(A) ~< Cap~)(B) 

(ii) Let {An [ n E N} be a sequence of subsets of So, then 

~  ~ (An). 
\ n E N  / nEN 

(iii) Let {An [ n E N} be an increasing sequence of  subsets of  So, then 

~ (nUrwA,~) = sup{~ l n E N}. 

(3.19) 

(3.20) 

(3.21) 



428 RU-ZONGFAN 

Proof. (i) Easy! Using (i) and Lemma 3.5, we may show (ii). 
(iii) We may assume that for all n E N, 

~ (an)  < oo. 

Given e > 0, for each n E N, let Bn be an internal subset of So such that 

An c Bn, Cap~)(Bn) ~< Cap~)(An) + e. 

Then we have from (3.19) and Lemma 3.4 (i) that 

c 1 ~apa A,~ ~<~ U Bn = sup{~ 
\ n E N  / nEN 

~< sup{~ + e)} ~< sup{~ + e. 
nEN nEN 

By letting e $ 0, we get 

On the other hand, it is easy to see 

~176 A,~ >1 , n  EN}.  
\ h E N  / 

From (3.22) and (3.23), we have proved Proposition 3.2 (iii). 

(3.22) 

(3.23) 

[] 

For the purpose of explaining our Theorem 3.1 in the following, we first introduce 
some notations in capacity theory (refer to [10]). Let G be a set, G be a family of 
some subsets of G. Denote by 6,, (respectively, G~) the closure of a collection of 
subsets of G under countable union (respectively, countable intersection). That is, 

} ~ =  AnlA,~eG , } A IAn G . (3.24) 

Moreover, we denote ~a~ --- (~a)0. 

DEFINITION 3.3. Let G be a set. A paving G on G is a family of subsets of G such 
that the empty set ~ is contained in ~. The pair (G, G) consisting of a set G and a 
paving ~ on G is called a paved set. 

DEFINITION 3.4. Let (G, ~) be a paved set. The paving G is said to be semi- 
compact if every countable family of elements of ~, which has the finite intersection 
property, has a nonempty intersection. 
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It is easy to see that (So, So) is a semi-compact paved set. Moreover, So is closed 
under the complement, finite union and finite intersection operations. 

DEFINITION 3.5. A subset A of So is said to be So-analytic if there exists an 
auxiliary set G with a semi-compact paving ~, and a subset B C G x So belonging 
to (G x SO)~ such that A is the projection of B on So. We denote by .A(SO) all the 
S0-analytic sets (Notice that G x So = {G1 • ,5'1 ] GI  6 ~ and S1 E SO}). 

LEMMA 3.6. The a-field a(So) generated by So is contained in ,A(So). 
Proof. For every F 6 So, So - F belongs to So also. By [10, Chapter III T12 

Theorem], we know G(So) C ~4(So). [] 

DEFINITION 3.6. An extended real valued set function 

I: 2 s~ + [-oo, +oo], 

defined on all subsets 2 s~ of So, is called a Choquet So-capacity if it satisfies the 
following properties: 

(i) I is increasing, i.e., 

A C B ~ I(A) <~ I(B). (3.25) 

(ii) For every inceasing sequence {An I n E N} of subsets of So: 

i ( U  An) = sup/(An). (3.26) 
\ n 6 N  / n6N 

(iii) For every decreasing sequence {A,~ [ n E N} of elements of So: 

I(('] Anl = inf I(An ). (3.27) 
\ n 6 N  / n6N 

We have reached one of our main results. 

THEOREM 3.1. For each ~ E T and a ) O, a E *R, we have the following results: 

(i) ~ is a Choquet So-capacity. 
(ii) Every So-analytic set is capacitable with respect to capacity ~ (.). That 

is, for every A E A(SO), we have 

~ 

= sup{~ A Bm, BmESO and B c A } .  
mEN 

(3.28) 
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(iii) Every subset A of So belonging to a(So) is capacitable with respect to the 
capacity ~ whenever 0 < st(a) < oo. 

Proof. By Lemma 3.3 and Proposition 3.2, we know that ~ (-) is a Choquet 
S0-capacity. Therefore, (ii) hold by [10, Chapter III T19 Theorem]. (iii) is the 
consequence of (ii) and Lemma 3.6. [] 

DEFINITION 3.7. (i) A subset B of So is called 5-zero capacity, if we have 

Capl~)(B) ~ 0. 

(ii) A subset B of So is called zero capacity if Capl6)(B) ..~ 0 for some 
infinitesimal 5 E T. 

REMARK 3.3. For any B E So and 5 E T, we have 

re(B) <~ Cap~)(B).  (3.29) 

Therefore, for any zero capacity subset B of So, we have 

L(m)(B)  = O. (3.30) 

In regular Dirichlet space theory, we know the concepts of exceptional sets and zero 
capacity sets are equivalent, see [7, Theorem 4.3.1 ]. As the third part in this section, 
we will discuss the similar problem in our hyperfinite Dirichlet space theory. 

3.3. RELATIONSHIP BETWEEN FAMILY OF EXCEPTIONAL SETS AND FAMILY OF 
ZERO CAPACITY SETS 

LEMMA 3.7. Let {Bn I n E N} be a sequence of internal subsets of So. If 
limn~cr ~ 1 Bin) = O, then Nn~176 Bn is a 5-exceptional set, where 
~ E T .  

Proof. Since So is closed under finite intersection, we may assume that 
{Bn I n E N} is a decreasing sequence. Define a stopping time for each n E N, 

cr(~) B~(W) = min{t E T~ I X(w, t )  ~ B ,J .  

Because 

L(P){w I qt E T2(X(w, t  ) E Bn)} 

= ~ 13t E T2(X(w, t  ) e Bn)} 

= ~ Ei(w I 3t E T~(X(w,t)  E Bn))dm(i) 
0 

J, = o Ei 1 ( ~  <0 din(i) 
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fS  a(6) 
= Ei{w[(1 + 6)- B,, I~ >1 (1 + 6)-O/a)}dm(i) 

o 
(6) 

<~ ~ (1 -"I- ~)-(1[6) J din(i) 

= e. Ei(1 + 6)- n,,/ din(i) = e. e (Bn)(i) din(i) 

<. e . ~ = e .~ -+ 0, (3.31) 

where the last inequality comes from [3, Chapter 5, Section 5.3, Equation (35)]. 
From (3.31), we know the following 

{ ( L(P) w ] 3 t e T ~  X(w, t )  e N B n  =0.  
n = l  

(3.32) 

By the symmetric property of the Markov process X(t )  and (3.32), we have 

{ ( L(P) w ] 3 t e T ~  n X(w, t )  e ( ~ B n  =0 .  
n = l  

Therefore, the set N~=I Bn is &exceptional. [] 

THEOREM 3.2. I f  a subset A of  So is &zero capacity, it is a-exceptional. 
Proof Since Capl ~) (A) ~ 0, we can take a sequence of internal subsets 

{Bn I n E N} satisfying 

oo 
A C  ( '~Bn, 

n = l  

lim ~ '~)I Bm = O. 
rL---9oo 1 

(3.33) 

Using Lemma 3.7, we know that ['~=l Bn is &exceptional. Hence A is &exceptional 
also. This completes the proof of Theorem 3.2. [] 

LEMMA 3.8. Let t~l E T, 6i ~ 0, and A be a subset of  So. l f  A is at-exceptional 
and there exists an internal subset B of  So such that 

A C B, ~ < oo, (3.34) 

then there is an infinitesimal ao 6 T larger than al such that A is J-zero capacity 
for all a >~ 60. 
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Proof. By using Proposition 3.1, there exists a properly 51-exceptional set 

U N .ra,oDa. 
rnEN nEN 

For simplicity, we assume that Bra,n C B for all n, m E N, and for each m, the 
sequence {Bm,n I n E N} is decreasing with respect to n. In order to show that 
A is zero capacity, we first prove Anon Bra,n is zero capacity for every m.  From 
now on, we fix an m E N. 

By the assumption (3.34), we know that ~ < o0 for every n. 

Moreover, Cap~6~) (Bra,n) is decreasing with n. Therefore, we obtain 

~ ) - el~')(Bra,k+n))] 

= ~ as n --).c~. 

This means that {e~61)(Bra,n) [ n E N} is a Cauchy sequence with respect to 
o (~)(, the inner product C 1 �9 .). Let {Bm,n I n E *N} be a decreasing extension of 

{Bra,n I n E N}. By saturation, there exists an infinite element no E *N - N such 
that 

lim o[g}5~)(e~Sl)(Bin,n) - el 61) (Bra,no) )] = 0. 
n~oo 

On the one hand, we have that 

)(Bra,.o))] < 

(3.35) 

(3.36) 

By ([3], 5.1.9 Corollary on p. 232) we can find an infinitesimal 5m = 51kin for 

some km E *N such that e~ ~1) (Bin,no) E 79(s (6)) for all 5 >/5ra, 5 ~ 0, 5 E T~I. On 

the other hand, for every i E So, it is easy to see that {el~)(Bm,n)(i) ] n E N} is 
decreasing with respect to n. Denote 

era(i) = lim Oe~d(Bra,n)(i). (3.37) 
n - - - ) . ~  

Since UmeN MneN Bm,n is properly 51-exceptional, we know 

era(i) = 0 for every i ~ U A Bra,,~. (3.38) 
mENnEN 

In fact, for every M0 E [0, oo), we have 

e~)(Bra,.)(i) = Ei[(1 + 51)- r e , n ,  ] 

a (60 
= Ei[(1 + 51) (l(crm~,n)Mo) + l((rm,,~<Mo)) ] 

~< (1 -I- 51) -M~ q- Eil(am,,~<io) .  



POTENTIAL THEORY OF HYPERFINITE DIRICHLET FORMS 433 

By letting Mo sufficiently large, we know ( 1 + 51 )-M~ will be very small. Taking 
n sufficiently large, we see that (3.38) holds. 

Since el~l)(Bm,no(i) <~ e~)(Bm,n)(i) for every n E N,i  E So, we have from 
(3.38) that 

el~)(Bm,no)(i)~O forevery i r  U N Bm,n. (3.39) 
mENnEN 

Now we have 

~ ( Bm,no) ) = st(el J~)(Bm,n0)) = 0 

in L2(S0, L(So), L(m)) because 

\ r n E N  nEN / 

and elel)(Bm,,~0) E D(g (e)) for all 6 ) ~m,6 ~ 0,6 

el el) (Bin,no) is S2-integrable in the sense of ([3], p. 77, Chapter 3). 
Therefore, we have 

(~) E[5)(el6')(Bm,no),el (Bm,no)),~O 

Thus, we get 

o r;(~) c,~(~) e~6) t'~l ' "1  (Bin,n), (Bm,n))] ~ 0 

This says that 

E T~I, which implies 

for all ~/> 6m, ~ ~ 0, 6 E T6t. 

for all 6/> 6m, di ~ 0, 6 E T~1. 

6/> 6m, ~ ~ 0, 6 E T~ 1 . (3.40) 

By saturation, there is a ~o ~ 0, ~0 E T~ 1 larger than all ~m, m E N. Therefore, 
it follows from (3.40) that for tf/> ~o 

Capl6)(OBm,n)..~O forall m E N .  (3.41) 
\ ] nEN 

By Proposition 3.2 (i) and (ii) and (3.41), we obtain 

(un / (on) o (~o) ~ ~<~176 Bm,n <~ ~_, Cap, Bm,n =0 .  
\ m E N  hEN / rn=l  

Therefore, the set A has &zero capacity. [] 
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THEOREM 3.3. For 6l E T, 61 ~ O, let A be a subset of So. l f  A is 6l-exceptional 
and there exists a sequence of internal subsets {Bn I n E N} of So such that 

A C U Bn and ~ < OO V'n, E N, (3.42) 
nEN 

then there is an infinitesimal 5o E T larger than ~1 such that A is 6-zero capacity 
for all ~ >1 t~o. 

Proof. It is followed from Lemma 3.8 and Proposition 3.2 (ii). [] 

4. Measures of Hyperfinite Energy Integrals 

We know that for o~ E*R,a  > /0and~  E T, 

e(6) (u, v) = g(6)(u, v) + a(u,  v). (4.1) 

Each of these forms generates a norm (possibly a seminorm in the case oL = 0): 

lul  ) = [8(6)(u, u)] (4.2) 

Denote by Fin~)(H) the set of all elements in H with finite norm 1. ). By 

defining u ~,~) v if [u - v[~ ) ~ 0, the space 

0/-/(6) = F i n ~ ) ( H ) / . ~ )  (4.3) 

is a Hilbert space if ~ > 0 with respect to the inner product 

( [u ]~)  , [ v ] ~ ) ) ~  ) = ~ v)] ,  (4.4) 

where [u]~ ) denotes the equivalence class of u under the norm I" I~ ), and (., .)~) 
denotes the related inner product. 

DEFINITION 4.1. Let # be a hyperfinite positive measure on So. For 6 E T, if 
there exists a constant C E "~0, oo) = *R+ such that 

N 

fs luC )l ,Cds) = luCs ) I c[E}6)(u,u)] 1/2 (4.5) 
0 i = i  

for every u E H, we say that/~ is of ~-hyperfinite energy integral. Moreover, if 
there exists C E *R+ satisfying (4.5) and ~ < oo, # is said to be of ~-finite energy 
integral. 

Afterwards, we will identify a hyperfinite measure/~ on So with the measure/~ on 
S defined by/2(s0) = 0, ~(si) = #(si) for all si E So. 
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THEOREM 4.1. A positive hyperfinite measure # on So is of  d-hyperfinite energy 
integrals iff for each a E *R, 0 < st(a) < o0, there exists an element u E H such 
that for every v E H, 

g(*)(v, u) = fSo v(s)#(ds). (4.6) 

Moreover, i f#  is of d-finite energy integral, we have u E Fin(a 6) (H). 
Proof. Follows from the Riesz's representation theorem. [] 

REMARK 4.1. We call u in Theorem 4.1 a-potential of/t associated with C (6) (.,-), 

and denote it by Ua(~)#. 

DEFINITION 4.2.Fix a E *R,a /> 0 and d E T. An element u E H is called 
hyperfinite a-excessive associated with E (6) (., .), if 

u(i) >1 O, O'~u(i) <. (1 + ad)u(i) (4.7) 

for every i E So such that re(i) # O. 

In order to develop our theory, let {G (*) I - ~  < fi < 0} be the resolvent of 

E (*) (., .), i.e., it is defined by 

o o  

G(J) = (A(~) _ fi)-I  = ~ ( Q *  + f~d)kd. (4.8) 
k=0 

Hence, we have for a 6 *R, 0 < a < l /d,  

(~) 
(1 + ad - Q ) G _ ,  = d(a + A(6))G(2) = 6. (4.9) 

THEOREM 4.2.For d �9 T, and a �9 "lR, a >>. O, and u �9 H. The following 
conditions are equivalent: 

(1) u is hyperfinite a-excessive associated with ~(6) (., .). 
(2) There exists a hyperfinite positive measure Iz on So such that 

g(~) (u, v) = f~ v(s)#(ds) for all v �9 H. 
d ~  0 

(3) C (~) (u, v) >>. O for all v �9 H, v >>. O. 
(4) u is an a-potential of  E (~) (., .). 
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Proof. (1) =~ (2). Assume that u is hyperfinite o~-excessive associated with 
8(~) (., .). Define a hyperfinite positive measure # on So by 

#(so) = 0 , # ( s i ) =  ~((1 +o~(i)u(i)-Q~u(i))m(i)  for i E So. 

Since 

#(si) = �89 + oL(i)u(i) - Q~u(i))m(i) 

= (A(~)u(i) + o~u(i))m(i), 

(4.10) 

we see that for every v E H,  

N 

C(~)(u, v) = ~'~(A(~)u(i) + au(i))v(i)m(i) = f~ v(s)#(ds). 
i=1 JOb 

(2) ~ (3). Easy! 
(3) ::, (1). Since 

~.(~)(lul - u ,  lul - u )  

= E~)(1~,1, I~,1) - 28(~a)(1 u] - u ,  u )  - c (~ ) (u ,  u )  

~< -28('~)(u, lul - u) <~ 0, 

we obtain 

E ~ a ) ( l u l - u , M - ~ )  = 0 .  

This implies that u(i) >1 0 for every i E S such that re(i) r O. 
Furthermore, it follows from (4.9) that for any v E H,  

((1 + o~(i - Q6)u,v) = (u, (1 + c~ - Q'5)v) 

= 8(6)(u, (1 + a(i - Q~)a~)~v) = 8(.~)(u,(iv). (4.11) 

Fix i E So. Let v E H be an internal function defined by v(1) = (fil, l E S. Then 
we have from (4.1 l) that 

(1 + ~(i -Q~)u( i )m( i )  = 8(~)(u,(iv) >10. 

Therefore, the internal function u is hyperfinite s-excessive associated with E (6) (.,.). 
(2) r (4). Follows from Theorem 4.1. [] 

We denote by "r0((i) the family ofaU internal positive measures on So of (i-hyperfinite 
energy integrals. Set 70 = U{T0((I) I (i is infinitesimal, (i E T}. 
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PROPOSITION 4.1. For ~ E T, a hyperfinite positive measure # on So is of  
6-hyperfinite energy integral iff for  any a E *R, 0 < a < 1, there exists an 
a-excessive function u associated with C (~) (., .) such that 

#(i) = ~-((1 +c~cS)u(i) - Q 6 u ( i ) ) m ( i )  foral l  i E So. (4.12) 

Moreover, i f  ~ E H satisfies above equation also, then u(i) = ~(i) for  all i E So 
with re(i) 7~ O. 

REMARK 4.2. Let u satisfy (4.12), then we have 

g(~)(u,v) = / _  v(s)#(ds)  forall v ~ H. 
0 

Proof of  Proposition 4.1. ~ Easy to see from Remark 4.2. 
:=~ Assume that # is of 6-hyperfinite energy integral, let u = U~6)# E H satisfy 

(4.6). Then we have 

#(i) = (G~)- lu( i )m(i)  = �89 + tS)u(i) - Q~u(i) )m(i).  

Therefore, for any c~ E *R, 0 < a < ~, v E H, we have 

= 

= 

= r:_(~) ct,v_(~)~ Hence by Theorem 4.2, w ,_,_a~, . ,_l j- lu)  is o~-excessive associated with 
g(~) (., .). Furthermore, we have 

#(i) = ~((1 +a5)w( i )  - Q~w(i))m(i)  forall i E So. [] 

PROPOSITION 4.2. For ~ E T, and a E *R, ~ >10. Let u E H be a hyperfinite 
a-excessive function associated with g(~)(., .). Then for  every i E So, re(i) 7 ~ O, 
we have 

u(i)>>.O,(u+flG(~6.)_au)(i)>~O foral l  /34 ( a - � 8 9  (4.13) 

Proof. For/3 E (o~ - ~, 0), we have from (4.7) and (4.8) that 
OO 

/3C('~)_,~u(i) = /3 y~((Q'~ + ( - a  +/3)5)kS)u(i) 
k=O 

>1 /3~u(i) y]~(1 +/35) k = -u ( i ) .  
k=O 
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Hence 

u(i) + #a(~)_~u(i) >1 O. 

PROPOSITION 4.3. For 6 E T, 
Define a measure # on So by 

Is(s) : u(s)l(m(s)#O) for  s E 80. 

Then Is is o f  6-hyperfinite energy integral. 
Proof  Define 

f ( s )  - ~ ) )  ,(m(s)#O) for s E 8o, f ( so)  = 0 .  

For any u E H ,  we have 

Hence,  Is is of  6-hyperfinite energy integral. 
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[] 

let u be a hyperJinite positive measure on So. 

[] 

T H E O R E M  4.3. For a E *R, 0 < s t (a)  < oo and 6 E T. Let # be a hyperfinite 
positive measure of  6-finite energy integral, and u be an a-potential o f  IS associated 
with C (~) (., .). Define 

g~(i) ~(~({) nG (~) ~'"" = - - n - ~  (~)), 

Then for  every v E F in~  ) (H),  we have 

(i) or , E(~) ~,~ ~ - ~ g n ,  v) --+ (~176 as n ~ oo. 

(ii) If u E D(E(6)), let ~ "J ~ v and ~ E D(E(~)), 

L l im 9n(i)v(i)  din( i )  = ~(i) d#( i ) .  
~.--.+,~,o 

n = 1 , 2 , . . .  (4.14) 

Proof (i) First of  all, we have 

os ,G O) �9 t _ ~ g ~ , v ) =  ~  = ~  

= o(<(n + a)~, - (n + a)2G(J)._.~,,.>) 

+~ (-au + a2G(J)n_au + 2naG~)n_au, v> ). 

(4.15) 

(4.16) 

(4.17) 
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It follows from ([3], p. 238, 5.1.19 Theorem) that 
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o . a ~ 2 , ~ ( ~ )  , [((n + ~)u  - (n _ ~ U_n_~U, v) + ,,(u, v)] 

--+ E(~)(~176 as n --4 cr (4.18) 

Moreover, let {ekll ~< k ~< N} be an orthonormal basis of eigenvectors for A (~), 
and let aa be the kth eigenvalue. Notice that if u --- ~N=l uaea, v = ~ff=l vaea, 
we have 

N 
G ('~) u = ( A  ( ' ~ ) + n + a ) - l u  y ~  Uk 

- n - c ~  = e k "  
k=l ak + n + ot 

This implies that 

N 2 a k  + o~ 
. :  U k V  k . ( - 2 ~ u  + (a  2 + 2n~)G(~_)n_~u, v) - ~  Y~ ak + n + 

k = l  

Therefore, we get 

~ + (c~ z + 2na)G(J)_au, v)l 

~ ] 
~< n(12e(a)(u,v)l+lc~(u,v)l) 

~ 0  as n - - + ~ .  (4.19) 

From (4.17), (4.18) and (4.19), we know that (4.15) holds. 
(ii) From the proof of (i) we get 

lim 9n(s)v(s )m(ds)=~ )(u,~) = ~(s)#(ds).  
n'--)'OO 0 

[] 

PROPOSITION 4.4. For ~ E T, let # be a positive measure of &hyperfinite energy 
integral, then for every L(#) measurable subset A of So, we have 

Proof. For simplicity, we assume that ~ ~) (A) < cr 
If A is internal, we have 

(4.20) 
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~ = 1A(S)ll(ds) <. e ~)(A)(s)#(ds) 
o o 

= c 1 te 1 (A), 

,,~<~, ,,l~'(~)(e~')(A),e~ ~) ] 
~< L V.-1 ~<.l . ,<.1 .Jv . - I  (A))j  

: ~ [qs ' )#,  U~ ')/~) qCap~ '> ( A ) ] .  

Now it is easy to see (4.20) holds for all L(#) measurable subset A. [] 

COROLLARY 4.1. Let # be a positive measure of ~-finite energy integral on So, 
then L(#) charges no set of ~-zero capacity. 

Proof. It is clear from Proposition 4.4. [] 

On the other hand, we have the following characterization theorem. 

THEOREM 4.4. Let A C So be an A(So)-measurable set (in particular, A E 
a(So)) and ~ E T. We have 

(1) For any # e "to(5), L(#)(A) = 0 ==~ ~aplJ) (A) = 0. 

(2) For any I~ E Too(8),L(#)(A) = 0 ~ %Tap~J)(A) = 0, 

where'roo(~) = {# �9 "r0(~)l#(S0) = 1,~ < o~} and 

IIU~ a)~lloo = max{IU~ a)/z(s)l Is ~ So}. 

Proof. (1)Assume that oo/> ~Capl ~) (A) = a > 0. Since A E ,/{(So), it follows 

from Theorem 3. l (ii) that A is capacitable with respect to the capacity ~ ~) (.). 
That is 

~176 N B n ,  BnESO and B c A } .  
n E N  

Therefore, there exists a sequence {Bn In E N} of decreasing internal subsets of 
So such that 

N B~ c A, ~ ~> ~ B~ ~> ~ > O. 
n=l  
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Let {Bnl n E *N} be an internal decreasing extension of {Bnl n E N}. Then there 
exists an infinite 7 E *N - N such that 

a ~<OCapl6 ) Bn =~ ~< c~. (4.21) B~, C A, 0 < ~- 1 

Set B = B.y. Consider the internal function el 6) (B). Notice that if i ~ B, then 

(1 + 5)el6)(B)(i)= (1 + 5)Ei[(1 + if) -a~)/6] 

N 

= ~ el6)(B)(j)q}~ ) = Q~el6)(B)(i), (4.22) 
j----1 

where a ~  ) = min{t E T~iX(w,t ) E S}.  I f i  E B, then 

N 

(1 + 5)el6)(B)(i) = (1 + 3)/> ~ el6)(S)(j)q}] ) = Q6el6)(S)(i). (4.23) 
j----1 

It follows from (4.22) and (4.23) that the function el ~) (B) is hyperfinite 1-excessive 
associated with C (~) (-, .). Define a hyperfinitr positive measure # on S by 

#(s0) = 0 ,  #(8i)= ~((1 +ti)el6)(B)(i)-Q6el6)(B)(i))m(i),  i E So. 

Then we have 

#(B)  = fs0 #(ds ) = E~6)(1,eI6)(B)) = CapI6)(B). 

This contradicts to the assumption ~L(#)(A) = 0. Hence ~ 6) (A) = 0. 
(2) Assume that 0 < ~ ) = a ~ oo. By the proof(l) ,  we see that there 

exists an element u E "r0(5) such that (replace # in the proof of (1) by u) 

0 <~ ~< c~, Capl6)(B) = u(U) = u(So) 

and U~)p(i)=el6)(B)(i)  ~ 1 

for any i E So, where B is an internal set contained in A. Define #(-) by 

u(.) (4.24) 
# ( . ) -  Capl6)(B)" 
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Then we have 

But 

#(So) = 1, # E ~o(5) and 

~ = " ( m a x  U~6)v(i) ~ ~ 1 ) 
kieSo \ieSo Cap~5)(B)] ~< Cap~6)(B) 
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< oo. (4.25) 

1 = ~  ~< ~ <~ 1, i.e., L ( # ) ( A )  = 1. 

This contradicts to our assumption L(#)(A) = 0. We have proved that 

(4.26) 

~ = 0. [] 

THEOREM 4.5. For ~ E T~, we assume that the Dirichletform (E (~) (., .), 7)(E(6))) 
has the following property: 

VA C So, ~ = oo 

3 B c A  such that 0 < ~ < oc. (4.27) 

Let ~o(t~) be the family of all positive measures of ~-finite energy integrals. Then 
the following statements are equivalent for A E ,A( So ) (in particular, A E or(So)): 

(1) A is zero ~-capacity, i.e., ~ 6) (A) = 0. 
(2) Forany # E ~0(tf),L(#)(A) = 0. 
(3) For any # E ~oo(ti), L(#)(A) = O, where 

Proof. (1) =~ (2) ::~ (3)is clearby Corollary 4.1.Wecan show (2) =~ (1)and 
(3) =~ (1) in the same way as the proof of Theorem 4.4. B 

5. Internal Additive Functionals and Associated Measures 

For /i E T, we have introduced the hyperfinite m-symmetric Markov chain 

(12, X (6) , {jr~6)it E T~}, {Pili E S}) in Section 2. The hyperfinite Dirichlet form 
associated with X (~) is given by (2.29) in Section 2. As in the study of standard 
Markov processes, we define a family of translation operators {Otlt E T} of ft. 
That is, for each t E T, Ot is a map from f~ to f~ defined by 

w e f~ =~ Otw E f~ and for any s e T, Otw(s) = w(s +t).  (5.1) 
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Hence for each (i E T, we have a family of translation operators {0~ ~) It E Tj} 

induced by {Ot[t E T},O~ ~) = Ot for any t E T~. In other words, for each 

t E T~, 0~ 6) is a map from f~ to f~ given by 

w E [ 2 : : ~ 0 ~ ) w E f ~  andforany sET6,0~)w(s)=w(s+t) .  (5.2) 

DEFINITION 5.1. For any (i E T, we call an internal *R-valued function A(w, t) 
or At(w), t E T~, w E f~, (i-internal additive functional (abbreviated by (I-IAF) if 
it satisfies the following two conditions: 

(1) For each t E T~, At(w) is nonanticipating with respect to the filtration 

(~, {~'~)lt e T~}), i.e., At(.) is .T~Qmeasurable. 
(2) For each w E f~, we have 

A(w, O) = O, A(w, t + s) = A(w, s) + A(O!~)w, t) for any t, s E T~. (5.3) 

PROPOSITION 5.1. lf A(w, t) is a (i-internal additive functional, then there exists 
a hyperfinite measure  #(a) on SO (not necessarily positive) such that #(A) (i) = 0 
whenever m( i) = 0 andforall n E *N, f ,  h E H, 

n 

s h(i)Ei ~ f(X(~)(k(i))(A(w, (k + 1)(i) - A(w, k(i))dm(i) 
o k=O 

n 

= k~=O/S ~ f(i)Eih(X(~)(k(i))dlz(i)(i. (5.4) 

Proof. Define 

#(A}(0) = 0 ,  

Then 

f t(A)(i  ) = ~EiA(w, Qm(i), 1 <~ i <~ N. 

n 

fs  h(i)Ei ~ f(X(~)(kS))(A(w,(k + 1)5) - A(w, kS))dm(i) 
0 k=0 

n 

= k~ofSo= h(i)E'f(X(6)(k6'w))A(O~)w'(i)dm(i) 
n 

= k~O/SO: h(i)Eif(X(k(i))Ex(k~)A(w,(i)dm(i) 
n 

= ~ofS= o f(i)EiA(w, 5)Eih(X(kS))dm(i) 
n 

- -  Ergo__ 

(5.5) 

[] 
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PROPOSITION 5.2.Let Iz be a hypetfinite measure on So satisfying #(i) = 0 
whenever re(i) = O. Then for each t~ E T, there exists a ~-IAF A(w, t) such that 
(5.4) hold. 

First of all, let f (s) u u___(~ Proof. = , ,~J l(m(s)r For each u E H, we have 

fso u(s)d#(s) = fsoU(S)f(s)dm(s) = s 

Define 

A(w,O) = 0 ,  

k 

a(w, k3)=3y~f (X(~)(w, ( l -1)~) )  for k E * N ,  k~>l .  
/=1 

It is easy to verify that A(w, t) is a ~-IAF. Moreover, for each i E So, 

�89 6)m(i) = ~Eif(X(~)(w,O))~m(i) = f(i)m(i) = #(i). 

Therefore, it follows from the proof of Proposition 5.1 that (5.4) holds. [] 

For ~ E T, let A(w, t) be a ~-IAF. Define 

1 
e(a) = ~--~E(a(w,5))2~-~ fsoEiAZ dm(i). (5.6) 

We call e(A) the energy of A. Furthermore, we define mutual energy e(A, B) for 
5-internal additive functionals A and B by 

e(A, B) = ~-~E(A(w, 6)B(w, 3)). (5.7) 

Let AA(w, k3) be the forward increment of A(w, t) at time k6, i.e., 

AA(w, k6) = A(w, (k + 1)3) - A(w, k6) for k E *N. (5.8) 

We define the quadratic variation [A] : f~ x T~ --+ *R by 

[A] (w, 0) = 0, 

n--1 

[A](w, n3) = y~(AA(w, k6)) 2 for n E *N, n > 0. (5.9) 
k=0  
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Because 

[A](w, (n + m)5) 
n - I  n+m--1 

= ~ ( A A ( w ,  kS)) 2 + Y~ (AA(w, kS)) 2 
k=0 k=n 
n - I  m - 1  

= ~(aA(~o,k~)) 2 + ~2 (aA(~o,(k +n)~)) 2 
k=0 k=0 

n--1 m--I  

= Z(aA(~~ + }2 (aA(0-~~ k~)) :, 
k=O k=O 

[A] is a positive 5-IAF. By Proposition 5.1 and its proof, we know that/Z([A] ) ( i )  = 

1Ei(A(w , 5))2m(i) is the hyperfinite positive measure associated with [A] in the 
sense (5.4). We call #([A]) the energy measure of A. It is obviously from (5.5) and 
(5.6) that 

e(A)  = �89 (5.10) 

Let u E H. For 6 E T, define a 6-IAF A [ul (w, t) by 

AM(w,t)  = u(X(~)(w,t)) -u(X(~)(w,O)) for t E T~. (5.11) 

Then 

e(AM) = ~-~E(A[U](w,5)) 2 

= ~ E [ u ( X ( ~ ) ( ~ , 5 ) )  - ,~(X(~)(o~,0))] ~ 

1 N 

---- 2--5 ~_oEi(u(X(~)(w,_ 5)) - u(i))2m(i) 

N N 1 ~ ~(u(i )  ~(~)):q~)m(~) 
25 i=o j=o 

N N N 

26 i=1 j=l i=1 

N 

= $(6)(u,u)-  ~-~ y~(u(i))2q}6o)m(i). (5.12) 
i = l  
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THEOREM 5.1.For u E H, f E H, let #(u)(.) be the energy measure of A [u]. We 
have 

(1) #(~,)(i) = ~Ei(AM(w, 6))2m(i) 

1 N = ~ u '  2 (~) �9 -~ ( u ( j ) -  (z)) qij re(z). (5.13) 
TO'~- 

(2) f s  f(s)#(u)(ds) = 2g(~)(uf'u) - g(~)(u 2, f) .  
0 

(5.14) 

Proof. (1) Easy ! 
(2) On the one hand, we have 

fso 1 N N 2 (6) �9 f(s)l~(u)(ds) = ~ Z Z f(i)(u(j)  - u( qij m(z). 
/=0 j=0 

(5.15) 

On the other hand, we have 

2g (~) (u f, u) - g(6)(U2, f) 

= 2_ (u(i)):f(i)m(i) - ~(u f ) ( j )u ( i )q~)m( i )  
(~ i=1 j = l  

1 (u( i ) ) z f ( i )m( i ) -  ~-'~(u(i))2f(j)q )m(i) 
i=l j=l 

1 v--,N 1 
= _ )~(u(i))Ef(i)m(i) - 

N N 

i = l j = l  

i N i N N  

= ~ ~(u( i ) )a f ( i )m( i )  - -~ ~_, y~(2u( j )  - u(i))u(i)f(j)qJ~)m(j) 
---- i=1 3----1 

1N ( N ) 
= ~ ~ f ( i ) m ( i )  (u(i)) 2 - y~'(2u(i)-u(j))u(j)q~ ) 

= j = 0  

N N 

5 i=1 j = 0  
(5.16) 
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By (5.15) and (5.16), we get (5.14). D 

6. Fukushima's Decomposition Theorem 

6.1. DECOMPOSITION UNDER INDIVIDUAL PROBABILITY MEASURES Pi 

LEMMA 6.1. For 5 E T, let v be a positive measure on So of S-hyperfinite energy 
integral. For any u ~ H, t E T6 and e > O, we have 

Pv(wlqs E T~(lu(X(6)(w,s))[ >1 e)) 

~< 2(1 + 5)t/6[e~t)(U~6)u,U~6)u)s ' (6.1) 
E 

where Pv(') = Yso Pi(.) dv(i). 
Proof. Let A = {i E So [ u(i)/> e}, define 

a~)(w) = min{t E T6lS(w, t )  ~ A}. 

Then we have 

P,(wl3s E T~,s <<. t(u(X(6)(w,s)) >1 e)) 

= fsoPi{wl  (l + 6)-~(~)/6 >~ (l + 6)-(t/6) } du(i) 

<~ ~oEi [(1+ 6)-~'(~)/6(1+ 5) t/6] dr(i) 

= (1 + 5) t/~ fSo e~6)(A)(i)dt'(i) 

= (1 + 5)t/~e~')(U~)v,e~6)(A)) 

~< (1 + 5) t/' [s ') u, U~ '> u)s '> (e16> (A), e~')(A))] ,/2 

(1 + 5)t/6 t f  u~" u~" ~" J r e ( ' ) ( "<%' "<%)~( ' ) (~"u ) ' l n  
~< e 

where the reason for the last step holding is 

,~6)(e~6)(Z),e~6)(Z))<~ ,5~6)([ul,e [u[.) <~ ~'~')(u,u).  

Hence we can prove Lemma 6.1 by using the same argument to - u .  [] 
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PROPOSITION 6.1. For 6 �9 T, assume that (8 (~) (., .), ~D(C0))) satisfies condi- 
tion (4.27) of  Theorem 4.5. Let u, {u.ln �9 N} be the elements in H and ~ E T. 
Suppose that 

~  u n - u )  -+O as n - ~  c~. 

Then there exists a subsequence {Unk [ k E N} and a ~-excepthgnal set B such 
that for all i �9 So - B ,  t �9 T~ fin, 

L(Pi)(unk (X (6) (w, s)) converges uniformly to u ( X  (~) (w, s)) 

in s on T~ as n--~oo) = 1. (6.2) 

Set 

Proof Let {nk I k E N} be a subsequence satisfying 

~ (Unk -- u, Unk -- u) <<. 2 -4k. 

Ak(Q = {w [3s E T~(IUnk(X(6)(W,S)) --u(X(~)(W,S))] >>. 2-k)}. 

For u E ~0o(~), we have from Lemrna 6.1 that 

~ ~ ~ U~8)v)]l/2). 

Hence 

L(Pv)(Ak(t))  < oo. 
k=l 

By the Borel-Cantelli lemma, we get 

L(P , )  At(t = 0. (6.3) 

Set A(t) = N~=l U~k Al(t). From Theorem 4.5, Proposition 3.1 and (6.3) that 
there exists a 6-exceptional set B(t) such that 

L(Pi)(A(t)) = 0 forany i �9 S o -  B(t) .  

Now let us select a countable subset {t,~in �9 N} C T6 such that t,~ ~ n. We 
define A oo oo = Un=l A(tn), B = Un=l B(tn).  It is easy to see that Proposition 6.1 
holds. [] 

LEMMA 6.2. For ~ �9 T, let A be a 8-IAF and #(a) (i) be the hyperfinite measure 
defined by (5.5) in Section 5. Then for any v �9 H, we have 
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E(~)(ft, v) = fso[v(i) - Eiv(X(5)(t))]d/~(A)(i) forall t E Ts, 

where ft(i) = EiA(w, t). 
Proof. If k = 1, then 

$(~)(f~,v) = ~ (v(i) - QSv(i))f~(i)dm(i) 

= fso(V(i) - -  Eiv (X  (6) (5)))  dlt(A)(i  ). 

Assume that (6.4) holds whenever k ~< n, then 

C(6) (f(n+l)5, v) 1 L -~ -~ (v(i) - Q~v(i))EiA(w, (n + 1)5) dm(i) 

-- -~ (v(i) - Q6v(i))(EiA(w, nS) 

+EiA(On~w, 5)) din(i) 

so(V( i) -- Eiv( XCS) cns) ) ) dlt(A) ( i) 

1 
+-g fso(Ea,(X(~)(nSl) - Eiv(Xff)((n + 1)5//) 

• EiA(w, 5) din(i) 

= fso[V(i) -- F_,iv(X(~)((n + 1)5))] d#(A)(i). 

(6.4) 

[] 

LEMMA 6.3. For 6 E T, let A(w, t) be a positive 5-IAE For all positive measure 
v on So of&hyperfinite energy integral, we have 

E~(At) < (1 + t)llU[~)vlloo#(A)(So) forall t E T~. (6.5) 

Proof. It follows from Lemma 6.2 that 

s t) = f s  EiA(w, t) dr(i)  r162 
o 

= fso[U~)v( i ) -  Ei(U~)v(X(S)(t)))]d#(A)(i) 

+ fSo f t( i)U~)v(i)dm(i) 

<~ IIU~)vIIoo[tt(A)(So) + Loft( i)dm(i)].  (6.6) 
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Noticing that 

~o f (k + l )6( i ) din(i) = fso EiA(w, (k + 1)5) din(i) 

= ~o EiA(w, kS)dm(i )+ fso EiA(Oa,w, ti)dm(i) 

<~ fSo EiA(w'ktildm(i) + fSo EiA(w, Sldm(i), 

we can show 

so ft(i din(i)  ~< t#(A)(So). 

From (6.6) and (6.7), we obtain (6.5). 

(6.7) 

o 

DEFINITION 6.1. An internal process A: f t x  T -~ *R is said to be a martingale 
with respect to (f~,Jr~),Pi,i E So) if w -+ A(w~t) is ~ )  measurable for all 

t E T,,  and for all s, t E T6, s < t, and all B E ~.J6), 

Ei(1B(At - As)) = 0. (6.8) 

It is easy to see that if [w]l 6) is the equivalence class of w defined by (2.20) in 
Section 2, then a nonanticipating process A(w, t) is a martingale iff 

AA(~, t )Pi{~} =O. (6.9) 

PROPOSITION 6.2. For ~ E T, let A, {An In E N} be 8-internal additive function- 
als. Assume that ~ - A) ~ 0 as n ~ oo, and for each i E So, {f~, .T~ ~) , A(t), 
An(t), Pi} are martingales for all n >>. 1. There exists a subsequence { Ank (t)lk 
N} and a ~-exceptional set B such that for all i E So - B, t E T~ n, 

L(Pi)(wlA,,k(w,s ) ~ A(w,s) uniformlyon T~) = 1. (6.10) 

Proof. By (5.10) in Section 5, we know 

~ --~ ~ - A)] --+ 0 as n ~ c~. 

For simplicity, we suppose that ~ ) (So) < 2 -3k (taking a subsequence if 
necessary). Since A, An, n >/ 1 are martingales with respect to Pi, i E So, we get 
from Lemma 6.3 that for all v E r00(5), t E T~n: 

o [E, (An (t) - A(t))2] = o (E ,  (JAn - A] (t))) 

~< ~ + t)llU(6)vll~2-3k]. (6.11) 
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From (6.11) and Doob's inequality (refer to [3, 4.2.8]), we get 

~ fA.(8)- A(s)l/> E -k) .< ~ A(s)l) 2] 
s<.t " s<~t 

<~ ~ - A(t)) 2] ~< ~ + t)llU~6)vlloo2-k]. 

It is easy to show Proposition 6.2 by using Borel--Cantelli lemma, Theorem 4.4 
and Theorem 3.2. [] 

DEFINITION 6.2. (1) We call an internal function in H S-bounded if there is a 
positive constant C such that lu(i)l ~< C for all i E So. 

(2) An internal function f :  T6 --+ *R is called S-continuous if f (8)  ~ f ( t )  
whenever s .~ t and s and t are nearstandard. 

LEMMA 6.4. For ~ E T, u E Fin(H), define a ~-IAF A 6 by 

A~(w, O) = O, 

n 

A*(w, n J ) = J ~ ) - ~ u ( X ( w , ( k - 1 ) t S ) ) ,  n E N ,  n>~ l. (6.12) 
k = l  

Then there exists a properly &exceptional set BCSo such that for all i E So - B, 

L(Pi){w I A6(w,.) is S-continuous} = 1. (6.13) 

Proof. First of all, we assume that u is S-bounded. We have for any to E f~, 

IAn(to, t) - A~(to, s)l ~< t - sl(max lu(i)l + 1). 
iESo 

This implies that A e (to, t) is S-continuous. 
Next, we suppose that u E Fin(H).  For each n,  denote 

B .  = (s  ~ S011~,(s)l t> n} 
and define 

o'B,~ (w) = min( t  E T~ IX( t )  ~ Bn}. 

Then 

P(wlSt ~ T~(X(w, t )  ~ B,~)) 

= P(wl~Bn(w ) <. 1) 

<~ n -2 f [u(i)] 2 din(i).  
Jso 
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Therefore, we get 

L(P)  (w,3 t  E TJ ( X ( w , t )  E N B n  = 0 .  
n = l  

This implies that {s E S0l~ = oc} is a (f-exceptional set. Let B be a properly 
5-exceptional set containing {s E Sol~ -- (Proposition 3.1). For each 
n E N, define 

an(w) = min(t  E T~ I lu(X(w,t)) l  >/n}. 

Then for each w Ef t ,  A~(w, .) is continuous in [0, an(W)) for every n. 
Moreover, for each i E So - B, we have 

L(Pi){wl~ $ c~ as n --+ cx)} = 1. 

We have shown Lemma 6.4. [] 

THEOREM6.1. For 5 E T, assume (C(6)( �9 , .),D(s satisfies (4.27) in 
Section 4. For any u E :D(C(5)), there are two 6-internal additive functionals 
M [u] (w, t) and N[ u] (w, t) such that 

(1) A[U](w,t) = MiUl(w,t) + N[U](w,t). 

(2) For each i E So, M [u] is a martingale with respect to (f~, {.T'~ ~) }, Pi). 
(3) e (N [u]) ~ 0 and E[N[U]](t) ~ O for all t E T~ n. 
(4) There exists a 5-exceptional set ACSo such that for  all i E So - A, 

~ 2 < c~ foral l  t E T 2  n, 

L(Pi)(w I Nt"l(w,.)  is S-continuous) = 1. 

(6.14) 

(6.15) 

Proof Define 

N [u] (w, O) = O, 

AN[~](w,t)  = Q~u(X(~)(w,t)) - u ( X ( ~ ) ( w , t ) ) ,  t E T~, (6.16) 

and 

M [u] (w, t) = u ( X  (~) (w, t)) - u ( X  (~) (w, 0)) - N [~] (w, t). 

For each t E T6, we have 

M [u] (w, t + 5) - M [u] (w, t) 

(6.17) 

= u ( X  (~) (w, t + 5)) - Q~u(X (~) (w, t)). (6.18) 



POTENTIAL THEORY OF HYPERFINITE DIRICHLET FORMS 453 

It is easy to see from (6.9) and (6.18) that (fl, .T~ a) , M [u] (w, t), Pi) is a martingale 
for each i E So. Furthermore, have 

N 
1 i~_l(Q6u(i) _ u(i))2m(i) E(Ag[u](t))  <. 

= g(6)(u,u - Q6u) ~ o. (6.19) 

From (6.19), we obtain 

E[N[~I](t) <~ tg(6)(u,u - Q6u) ~ 0 foreach t E T~ n, 

and 

e (N [u]) = E(N[U](w,~5)) 2 <<. ~ E ( u , u -  Q6u) ~ O. (6.20) 

Therefore, we deduce from (5.12) in Section 5 and (6.20) that 

e (M ['~]) = e ( a  ['~] - U ['~]) ~ e ( a  ['~]) ~< s u). (6.21) 

By using Lemma 6.3 and (5.10) in Section 5 and (6.21), we get for any v E Too(6), 
t E T  fin, 

~ (E~ (M t'l (w, t))2) 

= ~ .< ~ + t) llU(%llo~u(:~:.~l~ (So)] 

= ~ + t)][U~6)v]loo2e(M[U])] 

~< ~ + t)HU(O)vlloo2e(6)(u,u)] < exp. (6.22) 

Therefore, it follows from Theorem 4.4 and (6.22) that there exists a 5-zero capacity 
set Al CS0 such that 

~ < cx~ forall t E Tff n, i E S 0 -  a l .  (6.23) 

Put un = Ql/nu, ?2 E N, then 

A N  [u"] (w, t) = O6un(X(w, t)) - un(X(w,  t)) 

= -6A(6)un(X(w,  t)). (6.24) 

First of all, we have 

so(A(6)Un(i)) din(i) 

1 
= r (un, A (6) un) -= r (un, (u,  - Q6un)) ~. (6.25) 
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By the proof of ([3], 5.1.4 Proposition and 5.1.7 Lemma), we have 

E (un, - Q%n) 

<. s un) - s un, Q6un) <~ n6s ('~) (u, u). (6.26) 

Thus we get from (6.25) and (6.26) that 

so(a(6)u,(i)) din(i) ~ ~163 u)) < oo. (6.27) 

Therefore, we know from (6.27) and Lemma 6.4, for each n E N, there exists a 
properly &exceptional set BnCSO such that for all i E So - Bn, 

L(Pi){wiN[U"](w,.) is S-continuous} = 1. (6.28) 

It follows from (6.21) that 

~176 as n - + ~ .  (6.29) 

(6.29) and Proposition 6.1 and Proposition 6.2 imply that there exist a subsequence 
{nk I k E N} and a 6-exceptional set B such that 

L(Pi)(~2o) = 1 forall i E S o - B ,  (6.30) 

where set fro = {w E f~ I Unk(XO)( w, 8)) and M[U"k](w, s) converges uniformly 
to u(X  (~) (w, s)) and M[U](w, s) on each S-bounded subset of T~, respectively}. 

0(2 Set A = B U A1 U (U,~=l Bn), then we see Theorem 6.1 (4) hold from (6.23), 
(6.28), (6.30) and Theorem 3.2. [] 

6.2. DECOMPOSITION UNDER WHOLE MEASURE P 

In the following, we shall consider similar decomposition as Theorem 6.1 under 
the whole measure P.  We will see that we may work under quite weak conditions. 
Just as Lemma 6.1, we have 

LEMMA 6.5. Let X be a hyperfinite Markov chain and C(., -) its Dirichlet form. 
For ~ E T, all u E H, t E T6 and e > O, we have 

P( ,13  e < 2(1 
e-~ 1 (6.31) 

REMARK 6.1.The proof of this result can be found in [3], 5.3.6 Proposition, p. 257. 

COROLLARY 6.1. Let u, Un, n E N be elements in H, and assume that 
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~ U - U n ) - + O  as n--+oo. 

There is a subsequence {un~ } such that for a.e.w, unk (X (~)) converges uniformly 
to u( X ( 6) ) on all S-bounded subsets ofT. 

Proof By Lemma 6.5 and basic measure theory. [] 

DEFINITION 6.3.A Dirichlet form s .) is normal with respect to 5 E T if 

(Q~u, u) >i o. (6.32) 

THEOREM 6.2.For 6 E T, let us assume that (g(6)( �9 , .),D(C(~))) is a normal, 
hyperfinite Dirichlet form. For any u E D(C(6)), there are two ~-internal additive 
functionals M[ u] (w, t) and N ['~] (w, t) such that 

(1) A[U](w, t) = M[U](w, t) + N[U](w, t). 
(2) M [u] is a ik2-martingale with respect to (f~, {5 v(~) }, P).  
(3) N [u] is S-continuous and E[N [u]] (t) ~ O for all t E T~ n. 

Proof The proof of this result is something like that of Theorem 6.1. We 
remind that the detail demonstration was given in [3]. Hence we do not discuss it 
so carefully here. [] 

7. Internal Multiplicative Functionais 

7.1. INTERNAL MULTIPLICATIVE FUNCTIONAL 

DEFINITION 7.1. For 5 E T, an internal function M(w, t), t E Tt, w E [2, is said 
to be a 5-internal multiplicative functional (abbreviated by 5-IMF) of X (~) (w, t) 
iff 

(i) For each t E T~, Mr(.) is ~'~Qmeasurable. 
(ii) For each t E T~,w E f~,M(w,t) E *[0, 1]. 
(iii) For each w E f~, we have 

= 1, M( ,t + s) = Vt, (7.1) 

REMARK 7.1.Let A(w, t) be a non-negative 5-internal additive functional. We can 
define a 5-IMF M(w, t) by 

M(w, t) = exp(-A(w,  t)) for all w E [2, t E T6. (7.2) 

It M(w, t) is a 6-internal multiplicative functional, let us define a family of 
operators {Ptlt E T~} on H by 

Pt f ( i )  = E i { f ( X  (6) (w, t))M(w, t)}. (7.3) 
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Then we have for all t, s E T~, i E S, 

pt+sf(i)  = E i { f ( X  (~) (w, t + s))M(w, t + s)} 

= Ei{f(X(6)(O~6)w,t))M(w,s)M(O!6)w,t)} 

= Ei{M(w, s)Ex(,)(~,~)[f(X (~) (t))Mt]} 

= psPt f ( i ) .  
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Hence, (pt[t  E 
(X (~) , M).  Moreover, we have for all f E H, 

P~ f( i)  = E i [ f (X  O) (w, O))M(w, 0)] = f(i) .  

In particular, we have 

P~  = 1. 

Since M(w, 6) is ~'J~)-measurable, we have 

N 

M(w, 6) = ~ lfQ(ij)(w)Mij, 
i , j = O  

(7.4) 

T6} is a semigroup. We call it the semigroup generated by 

(7.5) 

(7.6) 

(7.7) 

where [~](ij) = {wlw(0 ) = i and w(6) = j} and {M#li,j = 0,  1, 2 , . . . ,  N} is 
a family of positive hyperreals. Moreover, Mij E *[0, 1]. Therefore, the transition 

(6) matrix "tPij I i, j = 0, l, 2 , . . . ,  N} of {pt  I t E T~} is given by 

pO) ,~(~)M-. Mij e *[0,1], i , j  = 0 , 1 , 2 ,  ,N. (7.8) i j  = ~li j  ~3~ " ' "  

From (7.8), we know for all non-negative internal functions f E H,  

Pt f ( i )  <~ Qtf(i) ,  Yi e S, t ETa. (7.9) 

7.2. SUBORDINATE SEMIGROUP 

DEFINITION 7.2.A semigroup {pt ] t E T~} of positive linear operators from 
H to H is said to be subordinate to {Qt [ t E T~} iff Ptf( i )  <~ Qtf( i)  for all 
t E T~, f  E H , f ( i )  >. O,i E S a n d P  ~ = I. 

THEOREM 7.1.Let {pt  I t E T~} be a semigroup on H. Then the following two 
conditions are equivalent: 

(l)  { pt  I t E T~ } is subordinate to { Qt I t E T~ }. 
(2) There exists a 6-IMF M(w, t) of X (~) (w, t) generating {pt  I t E T~}. 
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Proof. (2) =~ (1). It follows from (7.6) and (7.9). 
(e) 

(1) r (2). Let lPij I i , j  = 0, 1 ,2 , . . .  ,N}  be the transition matrix of semi- 
group {pt  I t 6 ~} .Then  for each f �9 H,  we have 

Q~ f(i)  ~ (6) . = qij f(J) ,  (7.10) 
j = l  

N 

P6 f(i)  : ~-~p~) f ( j ) .  
j = l  

(7.11) 

Since {pt  ] t E T~} is subordinate to {Qt I t E T6}, we can see 

p(6) q~),Vi, j 0,1,2,  , i j  ~ = " ' "  N. (7. 1 2) 

Define 

M(i , j )  t 'ij 1. (~)-~0 ' (7.13) =_(~) t % , - )  
t l i j  

where we define ~ = 0, a �9 *[0, oc). Put 

M(w,O) = l, M(w, 6) = M(X(d)(w,0), X(a)(w, 6)). (7.14) 

For all i �9 S, we have for any f �9 H,  

N 

Ei[f(X(~)(w, 6))M(w, 6)] = ~-~f(j)M(i,j)q}~ ) = P6 f(i).  (7.15) 
j = l  

By using mathematical deduction, we define 

M(w, (k  + 1)6) = M(w, k6)M(O~)w, 6) forall k �9 *N. (7.16) 

It is easy to show that M(~ ,  t) is a 6-IMF generating {pt  I t �9 T~}. 

7.3. SUBPROCESSES 

In Section 2 we define m-symmetric Markov process X (a) (w, t) associated with 

the hyperfinite Dirichlet form s Let {fi, . ~ 6 )  y(6)(3, t), ~ 6 ) / 3  i}t~T~ 
be a Markov process with state space (S, S). We call Y(~)(&, t) a subprocess 
of X (6) (w, t) iff the semigroup {/3t I t E Ta} of y(6) (&, t) is subordinate to 
(Qt It  �9 T6}. 

Let y ( 6 ) ( 3 ,  t) be a subprocess of X (6) (w, t). From Theorem 7.1, there exists a 
6-IMF M(w, t) of X ('~) (w, t) such that 

~if(y(6)(~, t ) )  = Ei[f(X(6)(w,t))M(w,t)] forall t E T6, (7.17) 
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where Ei (') is the expectation operator corresponding to y(6)(9, t). 
Now we are interested in the following question. Given a cf-IMF M(w, t), could 

we construct a subprocess y(6) (w, t) such that (7.17) holds? The answer is yes! In 

fact, let ~ = f~,~6) = jr~6),y(6)(w,t) = X(6)(w,t),O%tt 6) = 0~6). Furthermore, 
(6) let {pt  I t E T6} be the semigroup given by (7.4), and ~tPij [ i , j  = 0, 1 ,2 , . . .}  

be the transition matrix of {pt I t E T6}. Define for w E ~ = f~, k E *N, 

k - I  

Pi([W]k6) = 5iw(O) H p(w(nS),w(Cn + 1)(f)). 
n----0 

(7.18) 

It is obviously that (7.17) holds with respect to y(6)(w, t). We call y(6)(w, t) the 
(6) canonical subprocess associated with (X (6), M). We notice that "tPij I i, j = 

0, l, 2 , . . . ,  N} need not have the regularities (2.1) and (2.2) in Section 2. 

7.4. FEYNMAN-KAC FORMULAE 

Let {q~6) I i = 1 ,2 , . . . ,  N} be a 1 x N matrix satisfying 

_(6) 0 <~ q}6) <<.,~ii , i = 1 , 2 , . . . , N .  (7.19) 

Define a transition matrix p(6) = 'tPijr (6) I i , j  = 0, 1,2, . . . ,  N} by 

p(6) _(6) -(6)x.. for i , j  = 1 2,. ,N, i j  ~ -  t l i j  - -  ~1i ~ 'z3 ~ " "  

pC6) .(6) q~6) io = "~io + for i = l , 2 , . . . , N  and 

p~) = 1, ,~(6) ~'i0 = 0 for i = 1 , 2 , . . . , N .  (7.20) 

Let {pt  I t E T6} be the semigroup with p(6) _ ~tPijr (6) I i, j = 0, 1 ,2 , . . .  , N} as 
its transition matrix. Then we have 

t THEOREM 7.2. (i) The semigroup { P ] t E To} is symmetric with respect to m. 
(ii) The Dirichlet form associated with p(6) and m is given by 

N 

gCO)(u,v) = $(6)(u,v) + ~ u(i)v(i)q~~ �9 
i= l  

(7.21) 

(iii) There exists a tI-IMF M(w, t) such that for any f E H, i E S, t E To, 

Pt f(i)  = Ei[ f (X  (~ (w, t))M(w, t)]. (7.22) 

Proof. (i) and (ii) are obvious. (iii) is followed from Theorem 7.1. [] 
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8. Transformation of Hyperfinite Dirichlet Forms 

In this section, we assume that 

qii = 0  forall  i =  1 , 2 , . . . , N .  (8.1) 

In fact, this assumption will not affect our theory.The reason comes from the proof 
of [3, 5.3.3 Proposition]. Actually, for general Dirichlet form C(.,  .) in (2.17) in 
Section 2, we define 

r~(i) --- ( 1 - q i i ) m ( i ) ,  qii = 0  forall  i = 1 , 2 , . . . , N .  

Moreover, i f i  = 1 , 2 , . . . ,  N and qii <( 1, define 

qij for j r  jE{O, 1,2,...,N}; 
q i j  = 1 - -  q i i  

if i = 1, 2 , . . . ,  N and qii = 1, define 

q i j=O for j # 0 ,  i a n d q i 0 = l .  

Besides, let q'00 = 1, q0j = 0, j = 1, 2 , . . . ,  N.  It is very easy to verify from 
Beurling-Deny formulae that the Dirichlet form associated with ~ and Q) = 
{qij [ i , j  = 0 , 1 , 2 , . . . , N }  i sE( . ,  .). 

Let �9 be an internal nonnegative function in H.  We define a quadratic form in 
the following way 

1 
Er  = ~-~ ~ ( u ( i ) - u ( j ) ) ( v ( i ) - v ( j ) ) ~ ( i ) ~ ( j ) q i j m ( i ) .  (8.2) 

l<~i<~j<~N 

It is easy to see that Cr �9 , .) has Markov property defined in Section 2. Thus by 
[3, 5.3.3 Proposition] there exists a transition matrix P = {fiij I 0 <. i, j <~ N )  
and a symmetric measure r~(.) such that 

8~'(u, v) = fSo u ( i ) ( v ( i ) -  Pa%(i))~-~ d~( i ) .  (8.3) 

In the following, we will find the P and ~ .  From (8.3) and the Beurling-Deny 
formulae, we have 

gr (u, v) = --~ (u(i) - u(j) )(v( i) - v(j) )~ijCn(i) 
LI<i<j<~N 

+ 

i = l  

(8.4) 
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Comparing (8.2) and (8.4), we must have 

~(i)eg(j)qom(i ) = / ~ 0 ~ ( i )  foraU 1 ~< i , j  <~ N, 

~io~n(i)=O for all i = l , 2 , . . . , N .  

Therefore, we get 

N 

Cn(i) = ~ i j ~ n ( i )  = ~ ~(j)qij~(i)m(i) + fiii~n(i) 
j=o jr 

= Ei[~(X(At))]~(i)m(i) + ~ii~(i). 

Define 

fi00 = 1, 

= 0 
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(8.5) 

(8.6) 

(8.7) 

j = l  

From (8.11) and (8.12), we get 

/3i0 = 0 for all i r 0. (8.13) 

In the following discussion, we suppose that 

Ei[~(X(At))] > 0 for all i = 1 , 2 , . . . , N .  (8.14) 

Hence we have from (8.11) that for all f E H, 

E~[( /~) (X(At) ) ]  (8.15) 
P f ( i ) =  Ei[~(X(At))] 

~ i ~ 0  = I. (8.12) 

i~o~ = 0 for i = 1 , 2 , . . . , N ,  (8.8) 

for i = 1 , 2 , . . . , N .  (8.9) 

Hence from (8.7), we obtain 

Cn(i) = Ei[r (8.10) 

For i = 1 , 2 , . . . , N ,  if Ei~b(X(At)) r O, we see from (8.5) that for all j = 
1 , 2 , . . . , N , j r  

qor qo~(J) (8.11) 

For i = 1 , 2 , . . . , N ,  i fE / [O(X(At) ) ]  = 0, we can define~ij ,1 <~ j <~ N, j  r  
arbitrarily such that 

N 
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Let {/3t ] t E T} be the semigroup generated by/3. Then it is easy to see that 
{/3t i t E T} is subordinate to {Qt i t E T}. By using Theorem 7.1, there exists 
an IMF M(w, t) of X(w, t) generating {/3t I t E T}. From (7.15) in Section 7, we 
know that 

M(w, At) = ,~(X(w, At)) 
Ex(,o,o ) [~(X((At))]" (8.16) 

Therefore, for all k E *N, we have 

k if(w, (l + 1)At) (8.17) 
M(w, (k  + 1 )At )=  l ' I  Ex(w,iAt)[r ]" 

l=0 

On the other hand, let (I) be an internal function in H satisfying (8.14). We define 
M(w, t) directly by (8.17). Then we have the following 

THEOREM 8.1. Assume that the hypotheses (8.1) and (8.14) hold. Then 

(1) The semigroup {(QV)t I t E T} generated by M(w, t) is symmetric with 
respect to the measure Ei[c~(X (At) )]r = ~(i).  

(2) s ~' (., .) is the Dirichlet form associated with { ( QV ) t i t E T} and ~ (.). 

Proof. Easy! t3 

Acknowledgement 

I have benefited a lot by the work under Prof. Sergio Albeverio at Ruhr-University 
Bochum, Germany, from April 1992 to July 1994. Moreover, I thank the very 
stimulating discussion with Prof. Tom LindstrCm at University of Oslo, Norway, 
in 1993.The kind suggestion by the referees is appreciated for the improvement 
of both English and presentation of the paper. In particular, the reminding of the 
referees has led to the essential improvement of Lemma 3.8 and Theorem 3.3. 

References 
1. Albeverio, S. and Fan Ru-zong: Hyperfmite Dirichlet Forms and Potential Theory, book in 

preparation (1996). 
2. Albeverio, S., Fan Ru-zong, R6ckner, M. and Stannat: 'A Remark on Coercive Forms and 

Associated Semigroups', In Partial Differential Equations and Mathematical Physics (Series: 
Operator Theory: Advances and Applications, Vol. 78, eds. M. Demuth and B.W. Schulze, 
Birkhfiuser Verlag, Basel/Switzerland), 1995, 1-8. 

3. Albeverio, S., Fenstad, J. E., HOegh-Krohn, R., and LindstrCm, T: Nonstandard Methods in 
Stochastic Analysis and Mathematical Physics, Academic Press, New York, 1986. 

4. Albeverio, S. and Ma Zhiming: Necessary and Sufficient Conditions for the Existence of m- 
Perfect ProcessesAssociatedwith Dirichlet Forms, Lecture Notes in Mathematics 1485, 374-406, 
Springer, Berlin, 1991. 

5. Blumenthal, R. M. and Getoor, R. K.: Markov Processes and Potential Theory, Academic Press, 
New York, 1968. 



462 RU-ZONGFAN 

6. Fan Ru-zong: 'Nonstandard Construction of Symmetric Strong Markov Processes Associated 
with Dirichlet Forms', Proceeding of II1 International Conference on Stochastic Processes, 
Geometry and Physics, Locamo, Switzerland, Eds. Sergio Albeverio et al. 247-277, 1995. 

7. Fukushima, M.: Dirichlet Forms and Markov Processes, North-Holland, Amsterdam, Oxford, 
New York, 1980. 

8. Fukushima, M. and Takeda, M.: 'A Transformation of Symmetric Markov Process and the 
Donsker-Varadhan Theory', Osaka J. Math. 21 (1984), 311-326. 

9. Ma Zhiming and ROckner, M.: An Introduction to the Theory of Non-Symmetric Dirichlet Forms, 
Universitext, Springer-Verlag, 1992. 

10. Meyer, P. A.: Probability and Potentials, Ginn Blaisdell, Massachusetts, 1966. 


