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Abstract

A new technique is presented for computing the scattering by two-dimensional structures
of arbitrary composition. The proposed solution approach combines the usual finite ele-
ment method with the boundary integral equation to formulate a discrete system. This
subsequently solved via the conjugate gradient (CG) algorithm. A particular characteris-
tic of the method is the use of rectangular boundaries to enclose the scatterer. Several of
the resulting boundary integrals are therefore convolutions and may be evaluated via the
fast Fourier transform (FFT)in the implementation of the CG algorithm. The solution
approach offers the principle advantage of having O(N) memory demand and employs
a one-dimensional FFT versus a two-dimensional FFT as required with a traditional
implementation of the CGFFT algorithm The speed of the proposed solution method
is compared with that of the traditional CGFFT algorithm, and results for rectangular
bodies are given and shown to be in excellent agreement with the moment method.
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Chapter 1

Introduction

Two-dimensional problems have been studied extensively from both analytical and
numerical standpoints for many years. The demand for three-dimensional (3-D) methods
has increased in recent years, and as a result two-dimensional (2-D) methods are finding
their niche as testing grounds for 3-D applications. The step required to generalize a 2-D
method to 3-D is almost e';.lways large in analytical and geometrical complexity. Most
importantly, though, the demands in computation time and storage are often prohibitive
for electrically large 3-D bodies.” Vector and concurrent (i.e., hypercube, connection, etc)
computers are beginning to eleviate the first of these demands ([1]-[7] to mention a few

H

of the papers addressing thié); but storage demands remain problematic. A reduction in
storage requirements is therefore essential.

The traditional Conjugate Gradient Fast Fourier Transform (CGFFT) method (8],
(10] is one such frequency domain solution approach which requires O(N) storage. This
method involves the use of FFT whose dimension equals that of the structure under con-

. ‘sideration and therefore demands excessive computation time when used in an iterative

algorithm. With this in mind, a new solution approach is proposed for solving scattering



problems that address this difficulty. The proposed method will be referred to as the
Finite Element-Conjugate Gradient Fast Fourier Transform (FE-CGFFT) method and
was inspired by Peters [10].

The FE-CGFFT method requires that the scatterer be surrounded by a double rect-
angular box. Inside the box boundaries, the Helmholtz equation is solved via the finite
element method. The boundary constraint is satisfied by an appropriate integral equa-
tion, which implicitly satisfies the radiation condition. Along the parallel sides of the
box, this integral becomes a convolution and is, therefore, amenable to evaluation via
the FFT. The dimension of the required FFT in this method is one less than the dimen-
sionality of the stucture leading to an O(N) memory demand making it attractive for
3-D simulations.

The proposed method.is similar to the moment-method version developed by Jin
[11]. Jin’s method was in turn based upon work published in the early 70’s by Silvester
and Hsieh [12] and McDonald and Wexler [13], who introduced an approach to solve
unbounded field problems. The proposed method is also similar to other methods, a
few of which will be mentioned here. The unimoment method [14] uses. finite elements
inside a ficticious circular boundarS} and apleigehfunction expansion to represent thé
fields in the external region. The coefficients of the expansion are then determined
by enforcing continuity at the finite element (FE) mesh boundary. The coupled finite-
boundary element method [15] uses the finite element method within the boundary and
the boundary element method to provide the additional constraint at the termination
of the mesh. Unlike the proposed method, the solution was employed by direct matrix

inversion as in [11], and the outer mesh boundary was not rectangular to take advantage



of the FFT for the evaluation of the resulting convolution integrals. Further, only one
boundary was employed, and therefore an analytical evaluation of the Green’s function
was required.

In this work, we consider only rectangular structures and results derived from this
formulation are compared to those based on traditional moment method techniques.
Nevertheless, the proposed method is equally applicable to more complex geometries by

using available sophisticated finite element modelling packages.



Chapter 2

Analysis

Consider a cylindrical body of arbitrary cross-section and composition illuminated

by the plane wave

$7(p) = 247(p) = zeltr % (2.1)
as indicated in fig. 2.1 (A time dependence of e** has been assumed and suppressed.).
To evaluate the fields ;cattered from this object, two boundaries are placed tightly around

the body as shown in fig. 2.2. Inside the outer boundary, the Finite Element Method is

applied to solve the Helmholtz equation given by

V- [v(B)V#(P)] + kiu(p)é(p) = 0 (22)
where
#p) = Eip) (2.3)
P = (24)
uWp) = &) (2.5)
for E-polarization and
$7) = H.(p) (26)



Figure 2.1: Geometry of the scatterer

v(p) = er;_o) (2.7)
u@) = p(P) (2.8)

for H-polarization. Also, k, = w,/Ho€, i8 the wave number, and 4, and ¢, are the relative
permeablility and permittivity, respectively.

The appropriate boundary condition is enforced on the‘surface of the impenetrable
boundary, while the radiation condition is satisfied implicitly by evaluating the integral

equation
INC (== ——I__a_—l_—l__a__——l I}
o) = 670)- § {609 [0 - 40) [gmo?|}a @9)
on the boundary I';, where

6(.7) = -2 AD (Kl -7 (2.10)



(il e el ‘x
] :
5 | T
: 4
; Ll
’H % £
- LOEREEEE -
A

Figure 2.2: Partially discretized body

is the 2-D Green’s function in which ng)(-) denotes the zeroth order Hankel function
of the second kind. Furthermore, 5 and 7 are the usual observation and source position

vectors, respectively, and .
]
e

p-7= e-2P+ -y (211)

The normal derivatives are taken in the direction of the outward normal of T'..

2.1 Discretization of the Object and Field Quantities

In fig. 2.2, T, is the field/observation point boundary, and T is the integration

contour, which is placed midway between I'; and I',. Also, I'; denotes the contour



Definitions for Finite Element Mesh

N, = total number of nodes in the finite element mesh
N, = total number of elements in the finite element mesh
N, = number of nodes on I'; or I'y along the z-direction
Ny = number of nodes on I'; or I'y along the y-direction
N, = total number of nodes on I,

Ny = total number of nodes on T

Nap = Na+ Ny
Io= Z?:l Ly
Ts = Yoy T,
Te= i Ly

(%a; Ya;) - coordinates of a point on contour Iy,

(Zb;,yp;) - coordinates of a point on contour I'y,

Table 2.1: Definitions for the finite element mesh

enclosing the impenetrable portion of the scatterer. Herewith, each side of I‘a‘, Ty and
I'; will be numbered counterclockwise starting from the top side, as indicated in fig. 2.2.
The fields in the region between I';, and I'y satisfy (2.2) in conjunction with the required

boundary condition on I'y. The boundary integral equation (2.9) will be enforced on T,.

To numerically solve (2.2), it is required that the region within I'; be discretized.

This is done in a traditional manner when employing the finite element method. The

10



Definitions of Field Vectors (in terms of field unknowns at nodal points)

#,; = fields corresponding to the nodes on T,

#», = fields corresponding to the first N, or N, (whichever is appropriate) nodes on Ty,
¢4, = fields corresponding to the nodes on I',

¢1 = fields corresponding to region I enclosed by I' and Ty

#q = fields corresponding to the nodes on the 'y

Table 2.2: Definitions of the field vectors

global node numbering starts from the right endpoint of contour I';, and proceeds coun-
terclockwise. The numbering continues beginning at the right endpoint of contour I's,
and proceeds counterclockwise. Within I'y, the nodes are numbered from the lower left
corner and proceed column by column. The definitions pertaining to the FE mesh are
given in table 2.1. Each “node corresponds to an unknown field value to be determined.
It is important to associate the unknown field values corresponding to the various node
groups on contours I'; and I'y by using different variables The labeling scheme is given
in table 2.2, and this discrimination of the nodal fields is required, since they are treated

differently in the analysis.

2.2 Derivatioxi of the Finite Element Matrix

One of several approaches may be used to generate the finite element matrix, such as
the variational approach or the method of weighted residuals. In this development, we

will utilize Galerkin’s method, which is a special case of the method of weighted residuals

11



with the distinction that the testing functions are the same as the basis functions.

Proceeding with the finite element analysis, we may rewrite (2.2) as

5 [oE Db + 3 5 ez o(e.0)] + Bue,b@n) =0 (1)

the residual of which is given by

0 0 i} i}
R= -5 s g0 - g [oen)z o) - Buen)éen) @19
The field within I'; may be represented as a summation of piecewise continuous functions
and, thus, may be written as

#z,y) = E¢° (z,9) (2.14)

e=1

where ¢°(z,y) is the field within element e. It is expanded as

¢°(z,9) = 3 _ Ni(z,9)4} (2.15)
i=1
where N{’s are the standard shape functions (found in any standard finite element book),

¢;’s are the fields at the nodes, and n is the number of nodes per element. The weighted

residual equation for the eth element is defined by
/ NfRdzdy=0 i=1,..n (2.16)
Se

where 5¢ denotes the surface area of the eth element. Inserting (2.15) and (2.13) into

(2.16) yields

) : ( aNe) : ( aN?) ]
N§|-— — [ y—L -—lcguNF ¢%dzdy =0
Zl/./- [ 0z \ 0z dy \ 0Oy I

J=
i=1,2,.n (2.17)

12



Further, by using the identities

Nfa v?-& =-—a— 'ua—]vj-]v.e _v%c.?iv_l.
0z 0z Oz

Ne\ ON¢ ¢ ON¢
ned (,ONP) _ o (,0N] e\ _ ,ON:ONT
Oy 0Oy

and the divergence theorem

//;( av)ddy f (u@ + vy) - dl

where C* is the contour enclosing the eth element, (2.17) becomes
ONfON; = ONfONF 5 vene) e
Z/./e( Oz 62: 1/(")y By ~ KoulNi N7 | ¢jdzdy

- e aN'eA N; - . .
= E}Ce Nid; (”'@Lz + vaLy) adl i=1,2,..,n

This may be written in matrix form as

A9 = b°
where
(4%); = / / ) ( a;: i a;i 1 a;v i a;v ] k’uN‘N‘) dzdy
and
{6°}; = J_lf Nig; (v—aﬁz + v%N-!-Izy) adl i=1,2,..,n

For linear triangular elements, N7 are given by

Ne = (et + B2+ €fy)

13

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)



and

1 27 u
QF = ldet|q g ge | = (b2t — bict 2.26
- 2 e 1 Ty Yg _2( icj— Jct) (' )
1 2§ 5
ai = Ty — oLy (2.27)
b = y; -k (2.28)
¢ = zf -5 (2.29)

where (z¢,y$) is the coordinate of the ith node of the eth element. From (2.25)

ON¢ be
b - ¢ (2.30)
ON§ ct
o~ e (2.31)
Substituting these and the formula
q!
/ / (N3 P(Ng dady = 29°—————( e (2.32)

into (2.23), we find

S
e epne e, e 2
(4°);; = 4Qe(b b5 + cic}) — kou’ T3 % (2.33)
where
a;j = (2.34)
1 otherwise

In (2.33) we have assumed that u and v (the material constitutive parameters) are

constant within each element and are given by u® and v°, respectively. By summing over

14



all elements as implied by (2.14), we may write the overall system more explicitly as

- 11 7T
Aaa Aab 0 0 ¢a ba.
Asa A Ay O b 0
= (2.35)
0 Ap An An é1 0
0 0 Ai Aw Ld’d ] 0

In this, the values of the elements in the submatrix A,q are the contributions associated
with the nodes in group p which are connected directly to the nodes in group g.

One can easily show that the line integral contribution (see 2.24) of those elements
vanishes everywhere, unless the element has a side in common with I';. As a result, b°
contributes only from the boundary I'; of the finite element region, as indicated by the
presence of the vector b, in (2.35). Without a priori knowledge of the total field on that
boundary, b cannot be determine. We may, however, provide the appropriate condition
on this boundary by utilizing the integral equation (2.9). This amounts to replacing
the first block-row of the matrix (associated with ¢, on I';) with a discrete form of this

integral equation.

2.3 Evaluation of Boundary Integral

The boundary integral in (2.9) may be written as a summation of four integrals, one

for each side of the contour I'; as
INC (== - - d S
87) = $"(7) - { L [G(p, o z 47 - 47 )Wc(p,p )] dL,
+ (60715000 + 8015500
+ ./r [G(ﬁ,ﬁ')%;¢(ﬁ')+¢('ﬁ')-a%(?(ﬁ,7’”)] dle,

15



i} 0
= -] =I\ _ -\ _ - ] I .
+ /F . [G(p,p )—an,¢(p) ¢(P)5Gp:P )] d c4} (2.36)
where the derivatives along the z and y directions, denoted by 5% and #Zj’ respectively,

have been left in this form for the later convenience of determining them numerically.

More explicitly, we have

#(, Ya, ) = qbinc(m’yaé)

T
“
.
-

0 0
. [G(z -z, Yoy ,ycl)-én—y¢(z’,yc1) - ¢(z',yc,)5-y—,G(z - z',yaé yYer )] dz’

1
7] 0
[G(w, Zca) Yay ,y')5;:¢(zea ) + d(2es, y’)g;,G(z, Zers Yay s y’)] dy'

()
~»

C

7] i)
[G(-’II - .’I)’, yoé ayc:s)%;‘b(z” yca) + ¢(z" yca)'a_y;G(z - z,) yaé ’ycs)] dz’

=3

€3

i) 0
[G(.’L‘, Teyy yaé ay’)a_nx¢(zq, y’) - ¢(zcny')5a7G(z’zcuycé ’y’)] dy,}

g

4

(2.37)
and

$(ay,y) = ¢‘"°(wa3,y)

4

0 i}
T, [G(xaz y Z,, Y9 Ya )%‘;QS(Z’, Ya ) - ¢(I,, Yo )WG(znz ’ xl» Yy Yey )] dz’

' 9 9 ,

+ ‘/‘c2 .G(zai’zcvy"y’)'a';';d’(zcﬂyl)+¢(zm,y’)ﬁG(za3azcxvy—y’)] dy

+ [ |

b [ [Gleag ey =¥y g blos¥) = Bt Y Glaag 2y =) &
[‘q i 02’ [~} ) anz (%) (TR ] az, OZ, Cq)

(2.38)

~3

0 0
G(ara2 2y, ye.)a—ny-¢(z', Yos) + H(2', yc,)-a-y-,G(za3 ,z’,y,yca)] dz’

«

where the first subscript on x or y refers to the contour (a, b or c), and the second refers

to the contour number (see fig. 2.2 and table 2.1). It is noted that the arguments of the

16



Green’s functions have been modified to imply a convolution when appropriate, and this
representation will be used throughout.

The normal derivatives of ¢ may be evaluated via the central difference formulas

atlae) = % 201 - 8z d)] +0(AY (239

G0l a0) = 160200 - (e’ )] + O(&) (2.40)

where A is the displacement of I'; from I'y (A is usually less than one tenth of a wave-

length). Substituting (2.39) and (2.40) into (2.37) and (2.38), we obtain

$(2,9a,) = (2, %, )

1
3

/F [K;‘G(w - z’,yag 190, )0(z', ¥ay) — KFG(z - z',yag yYer )O(2', U, )] de’
<1

|
—— w

[KI G(z,z,, Ya ¥)H(2a3,9') - K3 G(z,zc,,yaé ¥ )8(zs,, y’)] dy'

[K;G(z - zlayaé ,yc3)¢(2,, 3/03) - Ky_G(z - 2’, ya; ,yca)¢(3’”yba)] dz’

[K;‘ G(z,zq,yag W)(2as,y) - KT G(z,zq,ya; ,y')cb(mb“y')] dy’}

+
S5~

(2.41)

and

¢(za3 9 y) = ¢‘nc(zdz ’ y)

——

/F [K; G(2a, & Uy Yo )O(2, Yoy ) — K G(2a, v Y, Y6, )0(2, 1,y )] d’
a

K:G(zcz 9302’3/ - y,)¢(zapy,) - K;G(zaz azcw Y- y,)¢(xbg7y,)] dy,

+
5 S5—

:
K} G(2a, 123Uy Yoy )O(2', ¥as) — K G(2a, 12 Y, Yoy (2, by )] da’

(K;G(maz 1Tegr Y — y,)¢(z¢v y,) - K:G(zdz 1Zeqr Y — 'yl)¢(zbuy')] dy’}

+
5~

(2.42)

17



in which

1 10

KF=x%55- (2.43)
1 190

K;E = K + Ea—y’ (2.44)

Assuming a pulse basis expansion for the nodal fields (centered at the nodal positions

along contours I, and T'y), a midpoint integration may be performed for the evaluation

of the integrals in (2.41) and (2.42), to obtain

¢(zi’ ya:l,) = ¢£nc(xivydg )

Nz
{AZ [K;G(zi - zjvyag yYey )¢(zj,ya1) - K;G(ﬁ, = zjyyaé ’ycl)¢(2j7ybl)]
J=1

Ny,

+ A Z LK:G(zi’chyaé ?yj)dzdz’yj) - K;G(ziazcwyag ’yj)¢(zbg,yj)]
i=
N ¢ -
+ A E K;-G(zi“‘ xjvya; ’y63)¢(zjvyas) - K;G(Z,' - 3j,ya:1’ ,yl-‘s)‘ﬁ(zj:ybs)]
j=1"
Ny
+ A Z K;G(zi’zo‘u%é 1 ¥i)$(Zay, Yj) = K:G(zi?za’yﬂ; ’yj)¢(qu»yj)]

(2.45)

and
$(zay %) = ¢‘"°(”°2 %)

Ny
- {AE [K;G(zaz v 25y Yir Yer )Ty Yay ) = K;G(zdz y Zjs Yis y¢=1)¢(zi’ybx)]
i=1

N,
+ AZ [K:G(zdz 1Teqy Yi — yj)ﬂzazvyj) - K;G(zdz 1Zer Yi — yj)¢(szyj)]
j=1
N,y

+ A Z [K;G(zﬂz vzjvyi7ycs)¢(zj1yds) - K;G(zﬂz ,z,',y;, yc3)¢(zj" ybﬁ)]
i=1

18



N:
+ A Z [K;G(zaz sZegs ¥i = Y5)H(Tayr ¥5) — K;.G(zaz 1Zegy Ui = Y5 )P(Tnys yj)] }

j=1
(2.46)

In these z; and y; denote the ith matching/testing points corresponding to the nodal
locations on I'y, while z; and y; denote locations on I'y. We recognize some of the terms
in (2.45) and (2.46) as discrete convolutions amenable to numerical evaluation via FFT.

The subsystem (2.45) and (2.46) may be written more concisely as

.- - - - -

L
Pay g an Ta SankRe To, Pay
¢“2 - i,;c _ Ta—sz S::zba T:;bs a-szRV ¢“2
Py :;,;c ;;bx R, T:;ba S:; bs Ta-; by Pas

[ ba || e || Tan St,Ry Ty, abe | | e |

Sab Tak  SanBe T, %W
+ T:; by S:z ba Ta—a bs S:; bs RV ¢;>2
SenBe Tk, Saw Ta %,

i Th, SamBy Tose  Siw || % |

(2.47)

with the various parameters to be given explicitly later. The matrices R, simply re-
verse the order of the unknown vector so that the convolutions may be performed prop-
erly. This is required solely because of the employed counterclockwise nodal numbering
scheme.
Since
1=1,2,3,4

(¢;"’) last (¢;”')ﬁrst . (2.48)
1=2,3,4,1

19



the vector

[ o o o]

(2.49)

can be related to the actual unknowns on the contour T'y via a transformation D) as

¢y = Dyds

and (2.47) may then be written as

or

where

and

I+ l;aa =

T-

(I+ Laa)pa — Las Doty = gine

T-

azby

a3by

aghy

a b

+
szx

S+

a3 bl

T+

a4 b]

[ ABI ] 2 = ¢iﬂ.c
3

a1b3 a1by
I+Sh, T aaby By
R, T,  I+505, Tas

StmBy Tis T Sa ]

0-152 :xbsR” T:;bc
Siwe Tob  SawBy
Re TSy, Siw T

a3 a3by

SiBy Taby  Saw,

20

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)



After replacing the first block row of (2.35) with (2.51), the complete system may be

finally written as

I+ L, —-LypDy O 0

to be solved via the CG algorithm.

The Elements of ﬂBI

Adir Ay ]

Pa
&
é1

¢;’nc

(2.55)

The elements of AB! defined above may be evaluated via the discrete Fourier trans-

form. Specifically, we have

albl¢bl "‘DFT_I -DFT[G a?/auyb‘)iG( ’yanybl)]DFT[¢b1

+
Sasbl ¢b1
3 3

0252

m’ ¢5, = DFT™!{ DFT[G( za,,zb, ROEXE] (za,,zb, yY ]DFT[ng,,2
in which DFT denotes the discrete Fourier transform operator. Also

G(z’ z,’ y’ y’) =

21

= DFT™! DFT(G(z, yaaaybl ) £ Gy(z, yaa’ybl ]DFT[¢51

{
{

¢b, = DFT™! {DFT[G z,,,,zb, - G,(z,,,z,,, ,y)]DFT[qsb,
{

(2.56)

(2.57)

(2.58)

(2.59)

ZIEO(k(p - o) = =L HO) _ — )
LEO(kolp - o) = LB (ko/(z - 2P + (1= ¥)?)  (260)



A0
Gx(z’z,’y’yl) = 3 G(E z,y,y)

B (ko/E =2V + (v - v))) ,
V-2 +(y-v) (z-2)  @8)
Gy(zaz,7y’y,) = gaa,G(z .’t 'Y ¥ )
g, B (kT T = v))
T T e Y

= -%Am

(2.62)

Special cases of the convolution operators for the chosen mesh are given as

(2 - 7 mpwivi

B (koy [Ty =2, + (4= ¥7)
zai _zbz) +(y_y'

Gz(zaz 1 Thy Y — y,) = i(_l)Ako
F 8

Izaz = Th, |
1 1

Ta,
{ 4 (260)

(koo =27+ ey =, )

Gy(z—-1',ya,, =:E—1Ak,,
y( y% yb:l,) ( 8) (z_z,)2+(ya§_yb§)

|Yay — s, |
3 3

{32(254)

and the corresponding expressions for G are implied by the arguments in the previous

two equations.

The cross-term element submatrices are given by

[Talbg] = G(zi’zbzaycg,yj)iGz(ziyzbz,yag,yj) (2.65)
[m,] = G(zaz,%‘,yf,yb%)iGy(zaz,zj,ys,ybé) (2.66)
with
Ga:(zi,l'bz +Yay 1¥3)

—J l (4 1 2 G; J {zb?
= x(—=)k, |zi — zp, |A (2.67)
) ;;(ze ~ by )i+(y¢; —4) : b,
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and

Gy(zazvzj,yiaybé)

(2) 2 ._ 7)

P (koy f(@ay =237 + i = w, )
(-""aa z;)* + (v - yb;)

= __ko - yba
£ b= w1 {y (2.68)

1

where again the corresponding expressions for G are implied by the arguments of the
previous two equations. Making the substitutions
(z; — 2p,)? = (i—.5)%A% (2.69)
4

(vay —95)" = §*A7 (2.70)

= [(z; - Zg )2+ (yag —y;)% = Ay(i-.5)%+ 2 (2.71)

and

(2, —2j)? = ;A% (2.72)
(ye—yz,é)2 = (i-.5)%A? (2.73)

= fleag 2 (- = AP+ (274)

we may write G; and Gy as

i HO(kAVG= 57+ 12
Go(2i,Tb 1 Yay 1 ¥j) = (—’)ko;(f—————— T_T‘"‘) li- 5l {’“‘ (2.75)
4 3 8 1-.5 +] zb4

] H(z) om
Gv(zlz v L3 Uiy ybl ) :t(— ——(ﬁ_ﬁ——)lt - 5|A {Z:s (276)
1

to be used in the actual implementation of the system. Since each of the above relations
are similar, we are required to store only one of them and alter the signs accordingly. It

should be noted that, however, this is not the most efficient method of storage. Storing
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only a few of the cross term values and using an interpolation scheme will reduce the
storage considerably. Of course, an interpolation table of (2.75) and (2.76) will lead to
a substantial reduction in memory at the expense of some computational efficiency.

Assuming that the positive sign is chosen in equations (2.75) and (2.76), we have

Tat o= 7;Eb1

Toin = Toin

Tazbs T}ba

o = Ton

3 3
(2.77)
Choosing the positive sign for the (2.63) and (2.64), we also find

a;bl sa;bé

ey = Sag

| Saby = Saspy

;e Sy =Sty
h (2.78)

Thus, the elements of AB! may be written as

I+85, Th,  SinR T,

7;251 I+ 6-252 7::53 S:;bARV

T+ Le=
Sa;b; 7::52 I+ 0-363 7::64
i Ttubl S:«b:R'” 7:53 I+ adu ]
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8:1 by 7;:52 Sa—x ba R, 7;:54
Ton  San Tab SanBy
L ab =
- + -
a3 51 R. 7:13 by Sﬂs ba 7:!3 by
| T SamBy Ty Si

(2.79)

The elements of the adjoint of AB! required in the implementation of the CG algorithm

are

(I+ Laa)* =

(LapDp)* =

h6o) (Th) ORISR (Th)
@hP T+ (T RSH,)
RIS (T T+Gm) (T
Thy ESL) ThS T+
T st @z RSz @) |
To)r (L (T ESay)
RISL ) (o) (Shy (T
(Ton)*  RISoe) (T)®  (Shy)

2.4 A CGFFT Algorithm

The CG algorithm to be employed for solving the system (2.55) is as follows

Initialize the residual and search vectors

= Ilgn 0 o ol 3=l
A¢®
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D = b-s
s = A%
7%= lsli

pO = 47

PV = 5O

Iterate for k = 1,..., N,

Vs =

¢(k+1) —

P+

Y =

Y =
p(k) =

p(k+1) —

Ap®

Il s 113

7.

48) 4 ok)p®)
r(8) _ o0k
| 74113

Acr(k+1)

I's 113

7!

Terminate when k = Ny or /2 < tolerance.

(2.83)
(2.84)
(2.85)

(2.86)

(2.87)
(2.88)
(2.89)
(2.90)
(2.91)
(2.92)
(2.93)
(2.94)
(2.95)

(2.96)

The individual operations associated with the AB! matrix-vector products are quite

numerous and, therefore, will not be shown explicitly. However, it can be shown that

the total system may be decomposed into a summation of two matrices; one involving
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operators associated with the boundary integral and another involving the elements of

the finite element matrix. The system matrix may then be written as

where

and

-

{sB1} =

{sFE} =

{s} = {sB1} + {sFE}.

For the adjoint operations, we have

and

{sB1} =

{srE} =

I+ Laa LapDy
0 0
0 0
0 0
[ 0 0 0
Apa  App  Abr
0 An An
i 0 0 Ag
[ 14 e, 00
DiLy 00
0 00
i 0 00
0 A3, O
0 Af Ah
0 Afy Ah
|0 0 A

27

a
AdI

-

00

a
dd |

21

22

23

i

22

23

24

24

41

22

23

24

2
22
23

24

(2.97)

(2.98)

(2.99)

(2.100)

(2.101)



In each case, the operation is performed such that only the resulting vector {s} need

be stored.
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Chapter 3

Computational Considerations

This method is efficient in terms of memory usage and computation time. We discuss

each of these aspects in detail below.

3.1 Storage Efficiency

The fundamental advantage of this method is the reduction of storage requirements,
so that the scattering b); ele.ctrica.lly large bodies may be evaluated. To show that the low
storage requirement of O(Vy) is assured, we refer to tables 3.1 and 3.2. These contain a
list of all major memory consuming'v‘a,ria.bles. A summarized list is also given in table 3.3.
Specifically, table 3.3 includes _]:he meniory requirements pertaining to the finite element

.
matrix (FE), fast Fourier tra.n-sfqﬁns (FT), boundary integral cross terms (Cross) and
conjugate gradient variables (CG). N, is one less than the number of elements connected
to a particular node, and a typical value of 5 is used here.

To put the quantities of table 3.3 in terms of N, the total number of nodes, we

consider two special geometries. The mesh in fig. 3.1 corresponds to a penetrable

body, while that of fig. 3.2 corresponds to an impenetrable structure tightly enclosed
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by the picture frame. Within each special case two extremes are considered; a mesh
corresponding to a square object (N; = Ny) and a long strip (N; >> Ny ). In each case,
N, is assumed to be large.

Alluding to table 3.4 the total storage is O(N,) for the square region, but is some-
where between O(N,) and O(N?) for the (N; >> N,) case. This is based on the
assumption that all cross terms are individually stored, but by using an interpolation
table, the O(N,) memory requirement can be assured regardless of the value of N, with
respect to Ny. In table 3.5, more dramatic results for the storage of the cross term are
listed. In this case, all of the unknowns are on the outer two boundaries, so it appears
that the storage is O(N?) for the square case. One must note, however, that the factor
multiplying the N, term may be quite small. The strip case, on the other hand, requires
an O(N?) storage. This case would be an unlikely candidate for the use of this method,
since that structure wouid be handled much more efficiently via a direct implementation
of the CGFFT method. As noted above, the storage of the cross terms may be brought
down to O(N,) for all cases by using an interpolation table, and this will certainly be

necessary in a 3-D implementation.
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Memory Consumption

variable | type | count B comment

Mesh

Xg R A X coordinate of global nodes

Yg R A Y coordinate of global nodes

Nglob |1 3N, Néeded for FE matrix formation
Pointers

ABint |1 Ny Points to observation and integration points
Pnodes |1 Pnum Points to nodes on conducting bodies
dmatl |1 Ny — Ng Element material properties

Finite Element Matrix (FE)

Ar C |~ (Eﬁ2ﬂ)(Ng — N,) | Non-zero values of FE matrix

col I ~ (-h—’f-,‘;*—l)(Ng — N,) | Column pointer of FE matrix

Tow I N, - N, Pointer to rows of FE matrix
Conjugate Gradient (CG)

Phiz C [N, Unknown vector

CG1 C | N Residual vector

CG2 C N, Search vector

CG3 C [N, Temporary vector

q C MAX(Ng, Ny) Temporary vector

phiinc | C N, Incident field vector

Table 3.1: List of major memory-consuming variables
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(

code

variable

type

I Memory Consumption (continued)

o

count comment

Fourier Transforms (FT)

FTHx1
FTHx2
FTHx3
FTHx4
FTHy1
FTHy2
FTHy3
FTHy4
FT
WR

WI

C

& "8 O O a o a a a a

-2Nv

2N, Fourier transform along x-direction
2N,
2N,
2N,
2N,  Fourier transform along y-direction
2N,

2N,

2MAX(Nz,Ny) | FT of unknown sub-vector

2MAX(N;,N,) | Temporary array

2MAX(N;,Ny) | Temporary array

Cross-Term Matrices (Cross)

PQp

PQm

C
C

~ MAX(N;, Ny)

~ MAX(N;, Ny)

Legend

R = REAL*4
C = COMPLEX

I = INTEGER*4
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v A\ A 4

Figure 3.1: Example of the mesh of a penetrable structure

Figure 3.2: Example of the mesh of an impenetrable structure
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Major Memory Consumption (N > N,)

Item | Type Count

FE | COMPLEX | (85t)[N, - 2(N: + Ny)]
FT | COMPLEX | 12N, + 8N,

Cross | COMPLEX | 2N?

CG | COMPLEX | 4N,

Table 3.3: Summary of major memory consumption

Major Memory Consumption: Penetrable
Item |N,=N,  |N.>>N,
FE | (B5E)(H, - 4V/F;) | (B5)N,(1 - wk3)
FT | 20/N, — 12N, /(N, +2)
Cross | 2N, 2(N,/N,)?
CG | 4N, 4N,
total | ~ 9N, ~ Axts)? + b5pf + TN,

Table 3.4: Summary of major memory consumption: filled mesh
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Major Memory Consumption: Impenetrable
Item | N; =N, N: >> N,

FE | (&)N,/2 (Betl)N, /2

FFT | 5N,/2 3N,

Cross | N2/32 N2/8

CG | 4N, 4N,

total | ~ N2/32+4 8N, | ~ N2/8+17TN,/2

Table 3.5: Summary of major memory consumption: open mesh

3.2 Computational Efficiency

Since the primary importance of this method is storage reduction, a comparable level
of efficiency with alternative methods is a bonus. A method for which a fair comparison
may be made is the standard CGFFT. This requires a 2-D FFT, which is slower than
using multiple 1-D FFTs for large bodies. We compared the two methods for a specific
penetrable scatterer using an Apollo 3500 without code optimization. The p‘eftinent )

CPU times are compared in table 3.6. The comparison provides only a relative measure

of the speed difference.
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Body Properties FE-CGFFT CGFFT

]

Composition | Dimensions | T/I (s) | I Total | T/I(s) [I || Total

dielectric 22 x 2A 8.6 155 || 1333 | 170 33 || 5610

& =4-3.1

Legend

T/I = time/iteration

I = number of iterations

Table 3.6: A comparision of computation efficiency of the FE-CGFFT with the CGFFT

method
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Chapter 4

Far Field Computation

The scattered fields may be computed as

#7) =~ § {667 [5500)] - o) [ ;2667 } v (@1

Using the discretization scheme developed earlier, we have

¢*(e,y) =
- {/I" [K;G(I, 3’93/’ Yer )¢(Z,, yal) - K;G(@,.’D', Y5 Yey )¢(.’E', Yoy )] dz’
a
+ /F (K2 G(2,262, 9,4 )20, ¥') = K7 G(,800,9, )21, V)] dy
2

+ /F (K G2, 2',4,9)8(2" vas) - K G(2,2',9,9e0 (s )| d’

<3

+ /1_: [K;G(z’zq’ya y')¢(za.,y') - K:G(Z,Iq,y, y’)¢(zbuy,)] dy’}
)

(4.2)
where the definitions for KZ and K. ;‘: are as specified previously. Letting
z 1 1-‘,'+% ' ’
B(2,9,9.) = = G(z,z',y, yc)dz (4.3)
A ;-4
1 utd
ﬂy(zazcv y) = K A2 G(z’zc, Y, y,)dy' (44)
7 R 2
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G(w Te, Y,y )dy’ (4.6)

. 1
reww = [0 o', 30d (45)
Ty
1
Y -
7(z7mC’y) 2

_A
2
A
2
/ _a
2

(4.2) becomes

¢°(z,y) =
N,
- {Z (182, ¥y Yey) = V(2,9 Yeu )1 {Bar }i — 187 (2, 43 ¥er ) + Y7 (2,9 Yey )] {01 }5)
=1
Ny
+ Z([ﬂy(m’mc’n y) + 7y(x’m02’y)] {¢¢12 }J - [ﬂy(zymcwy) - 7y(x’x62’y)] {¢b2}])
j=1

Nz

+ Z ([/Bw(x,y’yca) + 71:(37’ y’ycs)] {¢a3}j - [ﬂz(z,y’yca) - 7x(may,yca)] {¢b3 }J)
=1
Ny

+ Y (6%, 7e,,¥) —_7y(x,wc“y)] {#a}i — [8%(z,2c0,9) + 77 (2,26, Y)] {¢b4}j)}

3=1
4.7)
valid for all observation points (z,y). The specialize (4.7) to far zone computations, we

must introduce the appropriate asymptotic expansion for the Hankel functions implied

in (4.3)-(4.6). In doing so, we have

B(:0:%ey) = jfo(p)fl(o,yc;)ef"“f“‘" (4.8)
ﬂ”(z,xcz,y) = jfa(P)fz(ﬂ,zci)ej"°””i“o (4.9)
(@9 8e,) = —fo(p)fl(e,yc§)koAsineef”“f“‘" (4.10)
(2,2ep,y) = -fo(p)fg(e,zn)koAcosﬁejk"yi’ina (4.11)
4 4
where
1 2] —jkop
= —=|— ° 4.
#0) = 3\ (412
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JkoYey sin @

f1(9,yc;) = -e 3 (4.13)
ikoTe 6
f2(0,zcz) = "eJ ”ic"s ' (4.14)

4

in which (p,8) imply the usual cylindrical coordinates of the observation point. Substut-

ing expressions (4.8)-(4.11) into (4.7), we obtain

¢y(2,y) = —folp)
Ne |
{Z (I + koA sin 8] {pa, }; — [ — koA sin 8] {Bs, };) f1(6, yc, )% <=

=1
Ny
+ D ([F — koA cos 8] {¢a, }; — [j + koA cos 6] {86, }7) f2(8, 3oy )eiFo¥i sin?

J=1

Z([J — koA sin 8] {day }; — [ + kol sin 8] { s, }5) fi (8, e, )T o7
J=1
N

2

+ Z([J + kol c0s 0] {$a, }; — [ — koA cos 6] {ov,};) f2(8, 2, )€’k°y’sm9}

Jj=1
(4.15)
The echowidth is defined by
o |¢°[*
o= pl-!-»nolo 211'p|¢’.ncl2 (4.16)
and from (4.15) we have
1 ik ikot; cos 8
=[S+ kBsin) (g} - L - koAsind] {8 );) fi(650)
o J=1

Ny o
+ E ([j = koA cos 0] {¢a, }; — [J + koA cos 0] {¢s,};) fz(g’xcg)ejkoy,' sinf

N:t
+ S (5 - kolsin] {pay }j — [ + kol sin 8] {84 };) f1(8, ¥y )& cosd

Jj=1
2

Z

E [ + ko c0s 0] {ba, }j — [j — koA cos 8] {5, };) fa(8, zc, Je?ke¥s

(4.17)
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Chapter 5

Code Validation

The scattering patterns from several rectangular structures are presented. The echo
width is computed for each structure and compared to the results of the moment method.
The bodies are discretized at a sampling rate of 20 samples/free-space wavelength.

Results are presented for the following cases:
o perfectly conducting bodies (figs. 5.1 and 5.2)
o partially and fully coated perfectly conducting cylinders (figs. 5.3 - 5.8)

e composite body (fig. 5.9)

In each figure, the discretized geometry is shown along with the corresponding results.
As seen in all cases, the generated patterns using the FE-CGFFT formulation are in

excellent agreement with the moment method data.
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Figure 5.1: E, backscatter from a .25 X 2A body.
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Backscatter Echo Width/A (dB)
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Figure 5.2: H, backscatter from a .25 X 2\ body.
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.25 x 1. A Coated Perfect Conductor (E-pol)

30.0 * T T T 1
+ | —— FE-GCFFT
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T
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B
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0.0 15.0 30.0 450 60.0 75.0 90.0

Angle (deg)

Figure 5.3: E, backscatter from a .25 x 1A perfect conductor with a A/20 thick material

coating containing the properties ¢, = 5. — j.5, 4, = 1.
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.25 x 1. A Coated Perfect Conductor (H-pol)
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Figure 5.4: H, backscatter from a .25 x 1) perfect conductor with a A/20 thick material

coating containing the properties €, = 5. — 3.5, u, = 1.
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.25 x 1. A Coated Perfect Conductor (E-pol)
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Figure 5.5: E, backscatter from a .25 X 1) perfect conductor with a A/20 thick material

coating containing the properties ¢, = 5. — 5.5, 4, = 1.5 — 7.5.
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.25 x 1. A Coated Perfect Conductor (H-pol)
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Figure 5.6: H, backscatter from a -25 X 1 perfect conductor with a A/20 thick material

coating containing the properties ¢, = 5. — 5.5, 4, = 1.5 — j.5.
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Figure 5.7: E, backscatter from a .25 x 1)\ perfect conductor with two A/20 thick top
material coatings. The lower layer has the properties ¢, = 2. — 5.5, = 1.5 — .2, and

the upper layer has properties ¢, = 4. — 7.5, u, = 1.5 — 5.2.
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Figure 5.8: H, backscatter from a .25 x 1\ perfect conductor with two /20 thick top
material coatings. The lower layer has the properties ¢ = 2. — 5.5, 4, = 1.5 — 5.2, and

the upper layer has properties €, = 4. — 7.5, pr = 1.5 — 5.2
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Figure 5.9: H, scattering from a composite body. Both the perfect conductor and the
dielectric body are A/2 in each dimension. The material properties are €, = 5.— 5.5, ur =

1.5 - j.5.
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Chapter 6

Conclusions and Future Work

A procedure was developed for computing the scattering by 2-D structures. This
procedure combined the boundary integral and finite element methods, and the result-
ing system was solved via CGFFT. The main advantage of the new approach was a
- reduction in memory demand to O(N) compared to O(N 2) required with traditional
solution techniques. A deta.i-led map of the storage requirements was presented, and the
principle memory consuming arrays were discussed. Also, the computational efficiency
of the technique was examined and found favorable. To yalidate the proposed solution
approach, several backscatter patterns were presented and compared with results based
on traditional solution methods.

A goal is to extend the technique to 3-D applications. In this case, the cross terms
must be efficiently stored using an interpolation table to ensure an O(N) storage re-
quirement. Also, the use of a simple boundary (as in [15]) in the application of the
boundary integral equation would be desirable for additional storage reduction. Higher
order elements are further of interest to increase the CG convergence rate. Second order

elements are also within the solution domain of Maxwell’s equations and would allow
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a more accurate evaluation of the normal field derivatives. In addition, there are other
numerical difficulties that must be addressed in 3-D applications. The modeling of the
fields near corners of the scattererrequires some care (an obvious approach is to avoid
placing a node at the corner location). Also, the field discontinuity at material transi-
tions must be handled properly. The standard basis functions ensures continui‘ty across

a boundary, but this will require some modification.
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Chapter 7

Program Manual

In this section, brief descriptions of the 'pre-processing programs (mesh generators)
and the main processing program are provided. They have been executed on an Apollo

workstation an IBM 3090-600E and a Cray Y/MP.

7.1 Description of FECGFFT

The main processing program, FECGFFT, is a menu driven program which allows
the user to load the desired pre-generated mesh file, choose the type of computation
(E- or H-polarization,backscatter or bistatic echo width), generate the desired data and

store the resulting output. Some initial post-processing is also performed. For instance,

if the near-field values on the grid are stored (this option is only available for bistatic
computation), an additional file may be generated for a contour plot.

The following menu is produced by FECGFFT during its execution.

*kkkkk  Main Menu  *kkkikk

Pre-processing

(1) Load Finite Element Mesh File
(2) Set new CG parameters



Analysis

(3) E-polarization (Backscatter)
(4) H-polarization (Backscatter)
(5) E-polarization (Bistatic)
(6) H-polarization (Bistatic)

- - - e - - - - - - - - - - - - - - .-

L e L T

Post-processing
(7) Generate 3-D plot file

- - - - - = - - - - - - - - - -

Test Routines
(10) Element node ordering

(11) Test integral matrix: scattered fields
(12) Free-space field comparision

- - - - - - "> = = wn = - - - -

Item (1) allows the user to load a mesh data file generated from one the mesh gen-
erators to be discussed later. Actually, any mesh generator may be used, but the file
must contain the correct information and format. This information can be found by
examining the module MLOAD.

Item (2) allows the user to change the CG residual error tolerance value and interval
for printing the iteration number and the associated residual error.

Items (3) and (4) are selected for the generation of backscatter data for E- and H-
polarization, respectively. When either of these is selected, the starting angle, stopping
angle and angle increment will be prompted. The file name for the far-field data is also
requested. A response of “none” will produce no file. A prompt for the pad size will then
be requested. The suggested response of “1” will automatically determine the proper
pad size. When the program has finished generating the desired data, it returns to the

main menu.

Items (5) and (6) are selected when bistatic data for E- or H-polarization are desired.
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When either of these is selected, the incident angle will be prompted followed by the
starting angle, stopping angle and angle increment. The file name for the far-field data
is requested, followed by a file name for storing the nodal field values. A prompt for the
pad size follows as before.

Item (7) allows the user to generate data in MPLOT format for contour plots. At
the present time, only rectangular bodies will work for this option.

Items (10)-(12) direct the user to test routines, not used for normal operation.

The pertinent files which contain groups of subroutines associated with the accom-

panying description are as follows:

file name brief description

fe_cgfft.ftn main program

fe_vec_sub.ftn - vector operation subroutines
fe_io_sub.ftn file i/o routines
fe_test3_sub.ftn near-field test routines
fe_cross_sub.ftn cross-term subroutines
fe_matrix_sub.ftn FE matrix routines
fe_test5_sub.ftn node order test routine
fe_fft_sub.ftn FFT routines
fe_three_sub.ftn three-dimensional plot data generation
fe_field_sub.ftn near/far field computation
fe_ftest_sub.ftn free-space test routine
fe_summary-sub.ftn | generates session summary
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These files must be compiled and linked prior to execution.

7.2 Mesh Generator for Curved B(;dies

This program is under development for various specific types of bodies. It may,
however, be used to generate a mesh for virtually any desired body. The mesh generation
is accomplished by first dividing the region between the impenetrable surface (if any) and
the rectangular enclosure into first, second or third order serendipity elements. These are
subsequently mapped to a square domain, subdivided and mapped back. Examples of
these are shown in fig. 7.1. It works well for modelling regions with curved boundaries,

but generally produces more unknowns than necessary for the solution method.

An input file to this program may be generated either with option (2) from the main
menu, or manually. Selection of option (3) from the main menu processes this file and
places the results in a specified output file. The output file is then used as input to the

program FECGFFT.

Running the program produces the following menu:

(1) Preferences
(2) Create an input file
(3) Process an existing input file

(5) Plot routine
(10) Quit

Item (1) has not been incorporated as of yet. The selection of Item (2) produces the

menu:




Figure 7.1: Typical serendipity elements used in the region descretization process
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Input File Creation Menu

(1) Conducting Strip

(2) Rectangular Coated Slabs
(3) Coated Ogive

(4) Circular Cylinder

(10) Return to Main Menu

Only Items (3) and (10) are operational at this time. Selection of (3) yields the menu:

(1) Enter geometry
(2) Modify geometry
(3) RETURN '

Choosing Item (1) results in a series of prompts outlined as follows:

1. a,b for the coating, where a = height of the arc and b = half-length as indicated

in fig. 7.2
2. the relative permittivity and permeability of the coating
3. a,b for the conductor
4. sampling interval (in wavelenths) at the integration boundary
5. number of circumferential samples in the free-space region
6. number of circumferential samples in the material
7. arc distance along coating
8. arc distance along conductor

9. comment to appear in the input file
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Figure 7.2: Arc used for part of an ogival structure.

10. input file name

Upon completion of the session, a file is generated to be used at the input to FECGFFT.
Selecting Item (3) results in a prompt for the input and output filenames.

Manual generation of.the input file requires that the scattering body be surrounded
by a rectangular boundary displaced appr;)xima.tely one element from the body. The
region within the rectangular boundary and the impenetrable body surface (if present)
is then subdivided into either linear, qﬁadratic or cubic elements, examples of which are
given in fig. 7.1. Note that every node and side of each element is numbered as indicated.

The output file contents are listed as indicated in tables 7.1 and 7.2 with the variable
and descriptions in table 7.3. The first four lines are self explanatory. The next group
of lines contains the coordinates of the nodes, and the order of these pairs determines
the global node numbering scheme. Two real numbers followed by a “C” are assumed
to be in cylindrical (r,f) coordinates centered at the previously specified value. An “N”
following the “C” will change the center coordinates to z.,y.. Immediately after the

node coordinates definition, the elements or “blocks” are defined. The local/global node
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relationship defines the block. This format is repeated for each of the N, elements.
The elements must then be connected by specifying thg sides of adjacent elements. This
avoids the time-consuming task of comparing the coordinates of every node to the others
for spatial commonality. The impenetrable and integration boundaries designation are
present for a similar reason. Finally, the material properties are requested. The order of
these determines the number to be used in determining the element material property

number. The free-space value is always present.
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Line number

Contents of Line

1 Comment

2 N, 1,0

3 frs fas 3, fa fs

4 Ny

5 x,y (or 1,0,C or 1,8,CN,z, y.)

N.+4 x,y (or r,0,C or 1,6,CN,z, y.)

Nn+5 Comment (1-st Block)

N,+6 0, 0, M,

Nn+7 Ny, Ny, Oy

Nn+8 1,1

Nn.+9 L-GQ1),LeG?2),...,L G0
Nn+ N.+3 | Comment (N,-th Block)

Nn+ Ne+4 | 0,0, My,

Nn + Ne+5 N,;ve, Na;"” On.

Nn+N.+6 | 1,1

Nn+ Net7 | LeG(),LeG(2),...,L e GOn,)

Table 7.1: Beginning portion of the input file format
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Line number

Contents of Line

Np+ Ne+8
Np + Ne+9

N, + N.+10

Nn + Ne + Nc+9

Comment (Connection)
N,

. o k
€iy 3]'1 €k, S

. o k
€4, 8j7 €k, 31

N, + Ne+ N.+10
Np+ Ne+ Netll

Nn+ Ne+ Nc+12

Nn +Ne + Nc+Nbc+11

Comment (Conducting Boundary)
Ny

. ot
6,, 8]’

. ol
eg, 8j

Np+ Ne+ N+ Nyp+12

Comment (Integration Boundary)

Nn 4 Ne+ Ne + Np+13 Ny
Ny + Ne + Ne+ Nyc+14 i, 8}
. .
Nn+ Ne+ Ne+ Ny + Nipi+13 €y 85
Np 4+ Ne+ No+ Ny + Npi+14 Comment (Material Property Table)
N + Ne + No + Noo + Nyit+15 N,
Nn + N+ N, + Ny + Npi+16 Re{e }, Im{e,}, Re{pr}, Im{p,}

Ny + Ne+ No'+ Ny + Nyi + Np+15

Re{e:}, Im{e.}, Re{u,}, Im{p,}

Table 7.2: Remaining portion of the file input format
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variable | type | description

N, I total number of modelling elements

f I put element numbers on mesh (1=yes, 2=n0)

fa I put node numbers on mesh (1=yes, 2=no)

f3 I put material numbers on mesh flag (1=yes, 2=no)
fa I surround mesh with scale (1=yes, 2=no)

fs I generate PostScript file (1=yes, 2=no)

N, I total number of nodes

(z,y) R,R | cartesian coordinate pair

(r,6) R,R | cylindrical coordinate pair

(2eyYe) R,R | coordinates of arc center

M; I material number of ith element

NS{ I number of samples on side ¢ of element j

0; I order of ith element

LeGi)|1 global node number of ith local node

N, I total numl¥er of element sides in contact

€; I element number

sf I side 4 of element j

Nic I number of elements adjacent to conducting boundary
Ny I number of elements adjacent to integration boundary
N, I number of entries in material table

Table 7.3: Variable description and FORTRAN declaration type.
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Figure 7.3: The mesh of a conducting circular cylinder.

Example

The following file is an example of a perfectly conducting cylinder of radius .5 A in

free space. A figure of the resulting mesh is shown in fig. 7.3.

gili'cglar cylinder 8 Aug 1989
2,2,2,2,2

40,

.5,90.,CN,0.,0.

.5,112.5,C

.5,135.,
.5,157.5
.5,180.,
.5,202.5
.5,225.
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.525,90.,C
.64,135.,C
.525,180.,C
.64,225.,C
.525,270.,C
.64,315.,C
.525,0.,C
.64,45.,C
.55, .55
.275,.55

, .55
.275,.55
.55,.55
.55,.275
.55,0.
.55,-.275
.56,-.55
.275,-.55

- .55
275 -.55
.55,-.55
.55,-.275
.55,0.
.55,.275
-ST BLOCK

OIIIIIIIO

5,27 16,24,26, 17
LOCK
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N

Qv « O

39 13,22,38,23,12
LOCK
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The program contains the following files:
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file name

gen.ftn

brief description

main program

gen-sub.ftn

contains associated subroutines

fe_grid-ttz_sub.ftn

for plotting a mesh with rectangular
elements on the Apollo screen using

graphics primatives

fe_grid_sub.ftn

for plotting a mesh with triangular
elements on the Apollo screen using

graphics primatives

fe_post_sub.ftn

for generating a postscript version

fe_grid_sub.ftn

These programs should be compiled with the SAVE option and linked before execution.

7.3 Mesh Generator for Rectangular Bodies

This program is useful for generating the mesh associated with coated rectangular

bodies. Executing the program preduces the following menu:

*x%*x Mesh Generation Menu *kxx

(1) Conducting Strip
(2) Composite Bodies
(3) View an existing file

(10) Quit

' Ttem (1) should be ignored, since the data file it generates for the strip does not

distinguish between the nodes above and below the strip. It is thus invalid for H-
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polarization computations. Item (2) allows the user to generate a rectangular composite

body. Upon its selection, the user is promped for the following items:

1. the size of the square building block cell (in wavelengths)
2. the permittivity and permeabilities of the various material layers for the structure

3. the length and width of the main scattering structure in integer multiples of the

initially specified building block size in 1.
4. the type of scattering body (conductor or material)

5. the number of layers for each side plus the material number from the material table

generated in 2.

6. the number of cells between the scattering body and each of the four boundaries

(usually 0, unless a larger grid is desired)

7. the name of the output file to be used by the FECGFFT program
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Figure 7.4: The mesh of a rectangular partially coated cylinder.

Example

To generate a .5\ X 2) conducting body with a .1\ material coating of ¢, = 5. — j.5

and p, = 1.5 — 5.1 over sides (1) and (2) (see fig. 7.4, the following output is displayed:

*kkx Mesh Generation Menu *kxx

(1) Conducting Strip
(2) Composite Bodies
(3) View an existing file

(10) Quit
2

Enter del (size of building block) in wavelengths
.05

Enter dielectric materials to be used [(-1.,0.) to quit]
(Remember, Imaginary parts <=0.)

Epsilon 1 = (1.000000,0.0000000)

Mu 1 = (1.000000,0.0000000)

Enter Epsilon 2

(5.,-.5)

Enter Mu 2

(1.5,-.1)

Enter Epsilon 3

(-1 . ’0 ~)

Enter length and width of main body in units of del
40,10

Main body composition: (0) Conductor (1) Dielectric
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2 | | 4
I I
3

Enter Onumber of dielectric layers sides 1, 2, 3, 4:
2,2,0,0
Index Epsilon Mu

1 1.000 0.000 1.000 0.000

2 5.000 -0.500 1.500 -0.100

Material property number for: Side 1 layer 1

Material property number for: Side 1 layer 2

Index Epsilon Mu
1 1.000 0.000 1.000 0.000
2 5.000 -0.500 1.500 -0.100

Material property number for: Side 2 layer 1

2Material property number for: Side 2 layer 2
2Number of rows and ctolumns of blank cells surrounding the body
Oégnerate PostScript file? (1=yes, 2=no)
2Enter file name for data storage
test_out

*%x*% Mesh Generation Menu ki

(1) Conducting Strip
(2) Composite Bodies
(3) View an existing file

(10) Quit

The output file test.out contains the mesh information required by FECGFFT.
Item (3) provides for viewing the plot on an Apollo screen. Upon its selection, the
user will be prompted for a file name. Entering the interactive mode results in the

following menu:

- - - - - - o - - - - -

Interactive Mode Menu
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- - - - - - ——— - - - oo -

(1) Max and Mins

(2) Picture orientation
(3) Picture size

(4) Picture offset

(58) Tick spacing

(6) Legend contents
(7) Legend offset
(8) Legend label size

(9) Label contents

(10) Label size

(11) Number size

(12) Number format

(13) Print option flags
"(14) View on screen

(15) Get hard copy

(16) PsPreview hard copy
(17) Reset default values

(20) Return to main menu

Currently, options (6)-(10) have not yet been incorporated. The remaining items are
self-explanatory.

The programs contains the following files:

file name brief description

mgenlin_nc_new2.ftn | main program

fe_grid_sub.ftn for plotting a mesh with triangular
elements on the Apollo screen using

graphics primatives

fe_post_sub.ftn for generating a postscript version

fe_gridsub.ftn

which should be compiled with the SAVE option and linked before execution.
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