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A brief review is given of a class of simple statistical-meachanical models for
surface diffusion, applicable to the limiting case where diffusional "hopping'
is controlled by the thermal activation rate of the adsorbed particle. A theo~-
retical result of Reyes, for the pre~exponential or "'frequency" factor, is dis-
cussed and compared briefly to experiment.

[IprBOIMTCA Kpalku# 0030p KIacca IPOCTHX CTATECTUIECKO~
MEXaHWIeCKUX Mogmeaell moBepxXHoCTHOR muddysmi, NpuMeHm—
MHX B IPENENBHHX CAyYadX, Korms IuddysuoHHHE "mpHmHn"
KOHTPOJHPYOTCA CKOPOCTB TEPMUYECHKOR aKTUBAIZ 8ICop-
OMPOBAHHHX yacTiml, TeopeTudecKue PesyabTaTH Pefica oTHO-
CUTEJBHO IPEIsHKCIOHEHIMANBHOT0 MEOKATENS WM "Y4acToT--

HOTO" (aKTopa OGCYHIRNTCA ¥ CPABHUBANTCA C SKCIIEDIMEH-
TAJIBHHMI 3HAYEHUAMIL .

INTRODUCTION

The translational diffusion of physically adsorbed species on solid surfaces is
known to play an important role in the kinetics of surface processes such as sinter-
ing or crystal growth and, perhaps, as well in the rates of some solid catalyzed re-
actions [1, 2]. It is generally believed that the predominant mechanism for surface

.diffusion is Brownian (*random-walk") motion of the adsorbed species, sustainedby
thermo-molecular agitation or vibration of the substrate [1, 2, 3].

The estimation of diffusion rates, by means of the classical microscopic de~

scription, requires a knowledge of the relevant diffusion coefficients, which in the

simplest case of a (macroscopically) isotropic surface, reduce to a single diffusivity,
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D, (area/time), say. Measured surface diffusivities usually exhibit the "Arrhenius"
temperature dependence typical of "activated" transport phenomena [3], such as

bulk diffusion in condensed phases, i.e.
D=Doexp{-E/RT}, @

where the activation energy E and pre-exponential factor D0 are independent of, or
weakly dependent on, temperature T.

The earliest theoretical descriptions [2, 3] of this phenomena are {o be found
in the works of Lemnard-Jones [4, 5] and of Taylor and Langmuir [6], who portray
it as a random walk of the particle over the potential~energy surface associated with
vthe substrate. In the, "activation-limited" case, where the random-walk is limited by
the rate of activation leading to escape from a "potential well", one has in the classi-

cal way [3, 5]
1
D= T 2 i 2

where y (time—l) is the mean frequency of escape and 22 is the mean-square dis-
placement or step-size. As a first approximation, 12 can presumably be treated as

a constant and equated with some characteristic surface (or "lattice") dimension,
such as the mean~-square separation of the potential wells, whereas the unknown quan-
tity of primary importance is the frequency or rate of escape 7 - Consistent with (1),
the latter can be expressed as

3 =3, exe (-E/RT), &)

such that the pre-exponential factor in (1) becomes

. @

In the simple model, the correlation or prediction of surface diffusivity rests
mainly on the possibility of relating E, {2, and 3, to the molecular properties of
the substrate and the diffusing species.

Equation (3), like (1), has a form predicted by the classical "transition-state"

theory, and given an appropriate potential-energy surface to describe the intermolec-
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ular forces between substrate and adsorbed particle, one can in principle assign ap-. -
propriate values of the activation "barrier height" E (in addition to the mean-square
potential-well separation distance €2) .

However, even if it were possible to estimate E (and !2) with sufficient accu~
racy, which generally is not, there still remains the problem of relating the fre-
quency factor 3 in (2) to molecular properties. Owing to its well known limitations,
transition-state theory [3] does not provide generally reliable estimates of 3o and
one must turn to a somewhat more detailed, if approximate statistical~mechanical
theory, which is the main subject of this note.

In particular, we should like to report here on some heretofore unpublished
progress [7] on a model for Brownian motion of a particle coupled to a ('crystal-
line'y lattice, which starts from equation (2), and employs the statistical mechanics
of weakly-coupled systems to derive y , the frequency of escape over a potential bar-
rier.

The earliest such treatment is that of Lennard-Jones and Strachan [8], who
derived an expression for the phonon-induced quantum-mechanical transition prob-
ability {or frequency) between the discrete energy levels of a particle in a potential_
"well" or "valley" on a two-dimensional crystalline surface, a treatment which is
limited to single~phonon excitations. In a later work, Reyes [7] has treated clas~
sical versionof this model, using the methods for weakly-coupled (classical) systems,
developed by the Kirkwood [9] and Prigogine [10, 11] Schools.

As indicated in the early work of Lennard-Jones and Strachan [8], this type
of theory does not really describe Brownian motion in the spatial sense but, rather,
the motion of a particle amongst the energy levels in a potential well, leading ulti~
mately to escape. As such, the theory isof same type as that proposed by Christensen
[12], and elaborated on by Bak and co-workers [13, 14] to describe the kinetics
of chemical reaction, wherein "annihilation” or escape over a potential barrier is
taken as the criterion for reaction.

At the outset, then, it can be anticipated that the model can provide only an ap-
proximate description of spatial fransport, which, inter alia, doesno take proper ac-
count of the complete geometry of potential energy surfaces and the associated parti-
cle trajectories. Nevertheless, it might be hoped to provide useful approximate re-

sults or to suggest more defined treatments.
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{CLASSICAL) BROWNIAN MOTION IN ENERGY SPACE OF A PARTICLE
COUPLED TO A LATTICE

To date, the only reasonably complete (classical} statistical-mechanical treat-
ments of a particle coupled to a lattice in thermal equilibrium, are those given by
Bak et al. [15] and also by Prigogine and co-workers [11, 13] for "‘weakly anhar-
monic" coupling. Their derivations, based on the time-dependent perturbation of the
Liouville equation developed by Brout and Prigogine and co-workers [10, 111, lead

to a particle "diffusion equation in energy space of the form

% .2 s(1+——a—)q> (5)

oT ae o€

where ¢ (e,v )} is the energy distribution function of the particle, and ¢ , v are the

dimensionless forms of the particle energy E10 and the time t:

£ =Ep/kT
= t/tr

Here, tr is a characteristic ("'relaxation') time which in principle canbe derived from.
the (harmonic) vibrational frequency spectrum of particle and lattice and the coeffi~
cients of anharmonicity (i.e., the third-order derivatives of potential energy with re-
spect to displacements from equilibrium of particle and lattice), by formulae which
are given by Prigogine {11] and which shall not trouble to repeat here, We note,
however, that with the assumption of a purely harmonic lattice, the approximation

of a Debye spectrum of vibrational frequencies, and other approximations of the type
used in the quantum theory of solids, Bak et al. [15] offer an explicit and simple ex~
pression for the characteristic time tr'

It should be pointed out that all the above~mentioned derivations of equation (4)
are based on a one-dimensional model involving an infinite linear lattice, having the
associated normal harmonic vibrational modes, and an essential one~dimensional
particle~lattice interaction. Since, however, equation (4) is specialized to the energy
distribution this limitation is perhaps not as severe as certain others. At any rate, a
more correct equation for a three~dimensional model could probably be derived in a

similar way, should the basic success of the one~dimensional theory warrant it.
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As pointed out by Bak et al. [13, 14] and also by Prigogine (pp. 758.) [11],
equation (4) has precisely the form given by the phenomenological theory of Brownian
Motion elaborated on by Kramers [16], if the particle "friction coefficient" {force
per unit momentum) is taken to be

1
n== (6
T

As further pointed out by Bak and Andersen [13], this offers limited support
for Kramers’ theory, which they propose to account approximately for the effects of
strong anharmonicity of particle binding. They thus obtain an appropriately modified
form of (4) involving an energy-dependent frequency w (¢} to account for the non~li-
near vibrational behaviour of the particle.

At any rate, given an exact or an approximate equation, such as (4), to describe
the time evolution of the particle energy distribution ¢ {e,T ) one is then in a posi-
tion to estimate the rate of "annihilation'" or escape of particles over a potential bar-
rier. Thus, following Bak and co-workers [13, 14], one takes, for a barrier height
E, the following asymptotic form for the frequency 3 in (2),

o d IE* ae]
7 = -Lim — {inl], ¢(e.7) del}, o)

[

where ¢ is a solution to the evolution equation, e.g. (4), subject to an arbitrary ini-
tial condition at t = 0 in (0,e*) and a boundary condition

¢ (9*7 t) =0 (8)
at the “'top" of the barrier, where Ep = E and

e =¢*= E/KT. 9

In the cas2 of equation (4), Bak et al. [13] show that the solution for ¢ reduces,
by separation of variables, to a Sturm-Liouville system involving the confluent hyper-
geometric equation, on the interval (0,£*). The corresponding eigen~value problem
determines a discrete spectrum of "relaxation” times depending on ¢¥, the largest of

which determines the limit in (7). In this way, one finds that
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*

3 - e e o)
T

where tr is the characteristic time of equation (4) and f(c¥) is a factor accounting for

finite barrier height (i.e., for the boundary condition in (8) with e* < oo), such that
f(e*) — 1for €* — co

A plot of f(c*) has been given by Reyes [ 7], and for ¢*= E/KT = 3 one may take f = 1,
with less than 15% error.

Thus, by means of (10), the frequency y is seen to have a form consistent with
the temperature dependence of equation (3), and on setting the factor f equal to unity
in (10), one has, byequations(2) and (10), the desired result for surface diffusivity:

2 E
D= -Er— (—Er-) exp (-E/KT), a1y

and hence, for the pre-exponential factor in (1):

o =T G 12

which are the formulae proposed by Reyes [7}

ESTIMATION OF MODEL PARAMETERS AND APPLICATION TO SPECIFIC
PHYSICAL SYSTEMS

In the form (12), one sces that the value of the pre-exponential factor .depends
on the details of the (anharmonic) lattice-particle potential energy through the charac-
teristic time constant tr' As mentioned above, Prigogine [11] has proposed a gen-
eral expression for this quantity, while Bak et al. [15] have proposed a greatly sim-
plified form based dn a purely harmonic lattice and certain other approximations,
whose exact validity is somewhat difficult to assess.

On the other hand, Reyes [7] has derived a fairly explicit expression in terms
of lattice parameters. In his treatment, which follows closely that of Bak et al. [15],

he assumes a purely harmonic lattice with only nearest neighbor interactions between
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lattice points, whereas the adsorbed particle is assumed bound to a particular lattice
point, a hypothetical "surface' atom¥, by a Morse potential,

r
U) =U_(l-e 9 )2, (13)

where U_, is the dissociation energy, o the characteristic length scale, and r thedis~
placement from the equilibrium separation of particle and lattice point. Ultimately,
however, in the work of Reyes [7] this potential is effectively replaced by the sim~

plified, small-r expansion

- I,2 xr
Ulr) = Uy ()2 1+ ),

14

mw 21'2 )

:.__—o-—._ 1+.£)
2 ( o1

Here,
U,
—2)
o4

w?=2
o m
is the associated harmonic (or low-energy) frequency of the "unperturbed" adsorbed
particle, with' m denoting the particle mass. Equation (13) corresponds to the usual
anharmonic approximation for the lattice~-particle coupling terms, while accounting
for a weak non-linearity in the "unperturbed" particle vibration.

On replacing the resultant energy-dependent w (¢ } particle frequency by an ef-
fective, constant average frequency w Reyes [ 7] obtains the following result for the '

time constant tr in (12):
1 e %% \ ’ w
f o= ——— - = y2
r 200 mw 1= w ) (19
(] s} c

*While Reyes [7] purports to treat the special lattice point as a ""surface atom",
be in fact employs the vibrational modes for an infinite lattice without edge ef-
fects and chooses to regard this as the "neglect of the surface mode on the lat-
tice".However one does this, it amounts to making no distinction between the
infinite and semi-infinite linear lattices. (cf. Lennard-Jones and Strachan [8],
who make the same type of approximation.)
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where m, is the mass of a lattice particle and W, is the maximum lattice vibrational
frequency, related [7] to the speed of sound c and the interatomic spacing in the lat-

tice d by

2¢
= 1
W, =7 (16)

By then using the somewhat arbitrary value

® =, [ 1- —:ETO-O @
in (15) and by further equating the diffusion step size { in (12) to the lattice parame-
ter d, Reyes [ 7] obtains an expression for the pre-exponential factor Do, in terms of
quantities that can be estimated for several systems that have been studied experi-
mentally. He has performed calculations of the pre-exponential factor D for some 17
systems, for which diffusion data were available and estimates of the other parame-
ters could be made.

Without repeating all the results here, we note simply the two extremes of

agreement of the theoretical formula with experiment which, as it turns out, both

involve self diffusion:

For the system Ni on Ni (diffusion data from Ref. [17], random surface crys-
talline orientation, temperature range 1073-1473 K, observed E = 39.2 kcal/r_nol,
calculation made for E/RT = 0.4) the observed D, = 2.1 %102 cm?/s and the cal-
culated D0 = 3,57 x10-2 cmz/ 8, which must be regarded as very good.

On the other hand, for the system Fe on Fe (diffusion data from Ref. [18],
random surface crystalline orientation, temperature range 1203-1308 K, observed
E = 40 keal/mol, calculation made for E/RT = 16. 0) the observed D, = 5.4x105 cmz/ s
and the calculated D0 =1.15 x10-1 cmz/ s, which corresponds to Do (calc.)/Do (Exp) =

- 2.13x10"",

Other calculations, some for foreign metallic atoms on metallic substrates,
range between these extremes, the closest agreement (within one to two orders of
magnitude) occurring for experimental values of D0 on the order of 10-1 to 10—3 cm2/ s,
and the worst agreement corresponding to the larger experimental D0 values, on the

order of 1 to 10° cmz/s.
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There are, of coiurse, numerous plausible reasons for the lack of success of
the above simple model. It is somewhat doubtful that the exact form of the one-di-
mensional particle~lattice potential is important, since Bak and Andersen [13] have
shown that more complicated forms of the energy~-distribution equation, based on
Kramers’ phenomenological theory of Brownian motion with strongly anharmonic bind~
ing of the diffusing particle, lead to essentially the same orders of magnitude of dimen-
sionless escape rates gtr over a potential barrier.

More plausibly, it would seem that the type of "activation-limited" model dis-
cussed here does not provide an adequate model of spatial transport. Hence, as al-
ready anticipated in the very earliest works of Lennard-Jones [5] and Langmuir [6],
it will probably be necessary to develop statistical-mechanical models which account
properly for "time of ﬂight", or mean~square displacement ?2, by means of an ap-
propriate description of particle-lattice potential energy surfaces and translational
momentum exchange. In this respect, a theory of spatial transport, akin to the "*high-

energy" particle limit considered by Bak et al. [15], would be desirable.
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