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Abstract. An actual sampling process can be modeled as a random process, which consists 
of the regular (uniform) deterministic sampling process plus an error in the sampling times 
which constitutes a zero-mean noise (the jitter). In this paper we discuss the problem 
of estimating the jitter process. By assuming that the jitter process is an i.i.d, one, with 
standard deviation that is small compared to the regular sampling time, we show that the 
variance of the jitter process can be estimated from the nth order spectrum of the sampled 
data, n ---- 2, 3, i.e., the jitter variance can be extracted from the 2nd-order spectrum or 
the 3rd-order spectrum (the bispectrum) of the sampled data, provided the continuous 
signal spectrum is known. However, when the signal skewness exceeds a certain level, 
the potential performance of the bispectrum-based estimation is better than that of the 
spectrum-based estimation. Moreover, the former can also provide jitter variance estimates 
when the continuous signal spectrum is unknown while the latter cannot. This suggests that 
the bispectrum of the sampled data is potentially better for estimating any parameter of the 
sampling jitter process, once the signal skewness is sufficiently large. 

1. Introduction and basic theory 

The growing demand for high performance signal processing systems requires 
new ways to improve signal resolution without making use of  costly high preci- 
sion components. One of  the popular approaches, which finds increasing use in 
A/D and D/A converters, is to trade amplitude resolution for timing resolution, by 
oversampling the signal at a high clock frequency with a low resolution quantizer, 
and using digital post-filtering. This type of  solution places more stringent con- 
straints on the accuracy of  the sampling clock, which now becomes one of  the key 
factors in the overall system performance, among other factors such as quantiza- 
tion noise, and various types of  electronic noise in the system. Any error in the 
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precise clock timing is referred to as jitter, and it is often modelled as a discrete 
wide sense stationary stochastic process. The sampled signal is generally assumed 
to be a continuous wide sense stationary process, independent of the jitter process. 

In most cases, jitter statistics are unknown or only partially known, so a method 
is sought by which we will be able to detect the existence of jitter, or estimate 
parameters of its statistics. One such method is based on the spectral estimates 
of the discrete (sampled) process, which are affected by the jitter. The effect of 
jitter in sampling on the spectrum and bispectrum of the discrete process was 
studied previously [1], [2], [8], [9]. Closed-form expressions for the spectrum and 
bispectrum of the discrete process were given, under the assumption that the jitter 
process is i.i.d. That is, the actual sampling times are of the form: 

t n = n T + e n ,  n = 0 , + 1 , 4 - 2  . . . . .  (1) 

where T is the sampling period and en is the error in the nth sampling time. The 
error terms, {gn}, are assumed to be i.i.d, random variables with unknown p.d.f. 
fe(e). We assume further that the continuous process being sampled is random, 
ergodic and strictly bandlimited, with the bandwidth smaller than half the sampling 
rate. Under this model, the spectrum is given by [1], [2]: 

lZf Sa((0) = Ss((0)[(I)((0)l z + ~ Ss(u)[1 - [eP(u)12]du, (2) 
Ts 

where Ss((0) is the discrete spectrum in the case of uniform, jitter-flee sampling. 
The bispectrum is given by [8], [9]: 

Bs((01, (02)qb((01)t:I:)((02)dP*((01 --I-092) (3) 
Bd ((01,0-)2) = + B 1 (091) + B 1 (o02) + B~((01 + o92) + B 0 (o91,092) E I T  

B1((01) + B1((02) + Bl(2Zg - o91 - (02) + B0 ((01, o92) E OT, 

where (o91, w2) is a bifrequency in the principal domain (PD) of the discrete 
bispectrum [3], which is further divided into the inner triangle (IT) and the outer 
triangle (OT) as in [6], and Bs((01, o92) is the discrete bispectrum in the case of 
perfect uniform sampling. The jitter by-product terms B1 ((0) and Bo are given by: 

Bl(o~) = ~ [l(p((0)l 2 - eo((0)ap(u),:rp*((0 + u)]Bs((0, u)du (4) 
--7"r 

and 

where 

Bo --  FF 1 [1 --1~((01)12 -It~((02)l 2 -1~((01 + 002)12 
(2re) z n ~r 

+ 2 0  (o91) ~ ((02) (I)* (091 -q-- 0)2)] Bs (wl, (02)dwl d(02, (5) 

rb ((0) = E {exp(j(0en/ T) } (6) 

is the characteristic function of the jitter. The results of the present work can be 
applied also to other models of the sampling process, such as the renewal process 
sampling, whose effect on the bispectrum was considered in [8]. 
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We have shown in [9] that the presence of jitter in the sampling process can be 
detected using the bispectrum of any ergodie strictly band-limited signal which is 
sampled at a rate greater or equal to the Nyquist rate, even if its second and third 
order (cumulant) spectra are unknown. By noticing that both 2nd and 3rd order 
spectra of a signal sampled in the presence of jitter depend on the original spectra 
and the characteristic function of the jitter process, we propose that parameters of 
the jitter p.d.f, can be extracted from the actual (estimated) spectra, provided that 
the original spectra are known. 

If 0_ is a parameter vector that is sufficient for a parametric model of the jitter 
p.d.f., then the p.d.f, of the actual sampled data depends on the p.d.f, of the con- 
tinuous process that is sampled, the sampling period T and the parameter vector 
0__. Any optimal estimation of 0, such as the maximum likelihood (ML) procedure, 
should be performed directly on the data vector X (see Figure 1). However, since 
X is generally a non-linear function of 0 and highly dependent on the random, con- 
tinuous signal x ( t ) ,  we propose to apply an estimation procedure on B(X)--the 
bispectrum estimates, since it was successfully used for the detection of jitter [9]. 
Such a procedure is essentially suboptimal (unless B(X) is a sufficient statistic of 
X, which is generally not true), but may be much simpler. However, if we assume 
that the continuous signal 2nd and 3rd order spectra are known, why not use the 
estimate of the spectrum of the sampled data S(X) which is usually much simpler 
to calculate? Both spectrum-based and bispectrum-based estimation procedures 
are possible and suboptimal, so their relative performance should be evaluated. 
We do that by comparing the performance achieved by the spectral-domain-jitter- 
estimation and the bispectral-domain-jitter-estimation. The performance measure 
we use is the Cramrr-Rao lower bound in each domain. First, we calculate the 
spectral-domain Cramrr-Rao bound (SDCRB) which assumes the spectrum esti- 
mate S(X) as the input data and provides a lower bound on any unbiased estimate 
of 0__ given that data -0 (S) .  Then, we calculate the bispectral-domain Cramrr- 

Rao bound (BDCRB) which assumes the bispectrum estimate Ii(X) as the input 
data and provides a lower bound on any unbiased estimate of/9 given that data 

- 0 ( B )  (see Figure 1). Each of these bounds cannot be smaller than the Cramrr- 
Rao lower bound on any unbiased estimate of 0_ given the actual data X as the 
input data - /)(X).  However they indicate the best possible performance of the 
jitter parameter estimation, when a certain nth-order spectral-domain (n = 2, 3) 
estimate is used as the input data. Therefore, by comparing SDCRB and BDCRB 
one can tell which domain should be used in order to obtain higher estimation 
performance. 

For derivation of the SDCRB and BDCRB we need two sets of assumptions. 
In the case of the spectrum we assume that the process which is sampled is a 
stationary, zero-mean, Gaussian process. In the case of the nth order spectrum, 
n > 3, we assume that its estimates are unbiased and normally distributed with 
positive definite covariance matrix. This later assumption is asymptotically cor- 
rect [3], [4] are practically useful, since for any complex Gaussian vector of mean r/ 
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Figure 1. Optimal and suboptimal maximum likelihood estimation of jitter parameters. 

and covariance I~, the Cramt r -Rao  lower bound matrix on a parameter vector 0_ 
is given by j - l ,  where J ,  the Fisher information matrix, satisfies: 

Jij = 2Re ~ + trace ~ / /  . (7) 

Obviously, it is not possible to assume asymptotic Gaussianity of  the 2nd order 
spectrum estimates. 

In this paper we characterize the jitter process by a single parameter-- i t s  vari- 
ance, o -2 = E { ( e n / T )  2} = 0. This model is valid for any small jitter that has zero 
mean and is symmetrically distributed [8], [9], since for tr 2 < 1: 

C020 -2 0320 
(co) _~ 1 - ~ = 1 - - -  (8) 

2 2 
The results, however, can be generalized to any parametric model of  the jitter p.d.f. 

In Section 2 we derive a closed-form expression for the SDCRB on the variance 
of the jitter process and we illustrate the results by some examples. In Section 3 we 
repeat the derivation for the BDCRB, and in Section 4 we compare the performance 
of the two estimators if indeed the bounds are achievable. In [10] we present a 
possible bispectral-domain estimator of  the jitter variance, and in [14] we compare 
its performance against the BDCRB by means of Monte-Carlo simulations. 

2. Cram6r-Rao lower bound in the spectral domain 

As we have seen, the existence of  timing jitter in the sampling process affects the 
estimated spectrum. Due to the fact that signal processing in the spectral domain is 
simpler than in the bispectral domain, it is worthwhile to compare the performance 
attainable in each domain by means of the Cramt r -Rao  bound. 
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2.1. Derivation of  the SDCRB 

To simplify the analysis, we assume that the sampled continuous process {x(t)} is 
real, stationary Gaussian, with zero mean and finite bandwidth. We assume that 
we are given N samples of {x (t)}, taken at time instants corresponding to the i.i.d. 
jitter model (1): 

{x(n)} = {x(0),x(1) . . . . .  x ( N -  1)}, n = 0 . . . . .  N -  1. (9) 

Performing the discrete Fourier transform (DFT) on the samples: 

N-I 2yrk " . 
X(ogk) = x(i) e-J~ ok = --~-; k = 1 . . . . .  N/2 .  (10) 

i=0 

The DFT can be arranged as a vector: 

X = [X(Wl) . . . . .  X(WN/2)]T; dimX = N / 2  x 1. (11) 

X is a zero mean, complex Gaussian vector with positive definite covariance matrix 
~, which tends asymptotically in N to a diagonal matrix (see [5]): 

E{X} = 0; Cov{X} = E(XX*} = X. (12) 

The diagonal elements of I] are related to the spectrum in each frequency: 

Y]ii = E{IX(wi)I 2} = 2zrNSd(Wi) + O(1). (13) 

Since we are assuming that the sampling instants are affected by the jitter 
process, the spectrum Sd(w) in (13) depends on the jitter characteristic function 
(see (2)). Denoting explicitly the dependence of the characteristic function on 0 
(the jitter variance), we obtain: 

if sd(~o; 0) = s,(oJ)l@(o); 0)12 + ~ Ss(u)[1 - I*(u; O)12]du, (14) 

where Ss(O)) is the signal discrete spectrum for 0 = 0, i.e., perfect sampling at a 
rate greater or equal to the Nyquist rate. In this case, 0 affects only the covariance 
matrix N (0). Using (12) and (13), we can write down the likelihood function of 0 
given X, i.e., the likelihood function in the spectral domain: 

Pl (X; 0) = zr-N/2IZ (0) [-I exp[--X* I:-I  (0)X] (15) 

or by taking the logarithm and using (13): 

N / 2  

logpl(X; 0) = N logrc-~-~log[2rcNSd(wi; 0 ) ] -  Z IX(~~ . (16) 
2 i=1 i=1 27rNSd(C~ O) 

IX(~~ is the periodogram at frequency wi, which can be defined, for convenience, 2zrN 

as the spectrum estimate ~S(wi). Differentiating (16), the maximum likelihood 
estimate 0ML is obtained: 

O log Pi (X; 0) N/2 1 OSd(09i; O) 
a0 = y]~ s~(o,i; 0) a0 (~(o,i)  - s~(o~/; 0 ) ) 1 ~  = o. (17) 

i=l 
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Finding an analytic solution for/~ML is quite difficult. However, the estimate can be 
found iteratively, with the Newton-Raphson or Scoring algorithms. The Cram6r-  
Rao bound for an unbiased estimate of 0 can be found easily: 

{ 8210gpl(X;O)] = ~N/21IOSd(O)i;O)]2 ; wi = 2Jri 
J(O) E 

002 I "7"T S~(wi; O) L ~ U 
(18) 

In (18) we used E{S(~oi)} = Sd(wi; 0). For large N, the sum (18) can be inter- 
changed with an integral, therefore, 

a(o) = ~ 30 do) = - -  do.  0) L ao 
(19) 

The same result can be obtained by using Bangs formula (see [13]). Calculation 
of (19) is done by substitution of Sa(w; 0) from (14), and is usually computed 
numerically. 

2.2. Numerical examples 

In order to illustrate the results developed above, we assume a signal with flat 
spectrum S and a few common distributions of  the jitter process. We consider four 
kinds of  zero-mean, symmetrical jitters with variance o -2 - E { ( e J  T)2}: 

a. Gauss ian j i t t e r - - (Pg(~O)=  exp ( - ~ )  

1 
b. Exponential jitter - -  ~e(o)) -- 0)20"2 

1 +  2 
sin w~/3a 2 

c. Uniform j i t t e r - -  ~u(w) -- 
w~,/3o- 2 

d. Discrete j i t t e r - -  qbd(Og) = cos(wo-). 

First, we calculate the discrete spectrum Sd(og; 0) from (14) and its derivative 
with respect to 0 in each case. 

For Gaussian jitter distribution we obtain: 

, f  Sa(w; O) = Se -~ + ~ S[1 - e-~ 
JT 

= 2"-n + 1) - erf0r ~/0) . 

The derivative with respect to 0 is: 

00 27r + erf(zr"v/-O) 20 0 e-Tr2~ " (21) 
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For symmetric exponential distribution we obtain: 

Sa(o); O) = S 
1 _ 

1+~___s 2 + 1  ~ 1 + -  5- 

ose(o); o) 
80 

2 ~  1 ( Jr___ 3_ 
_ - s  

- tg -1 Jr ~ + 2 0 ( 1 + ~ 2 )  " 

For discrete jitter distribution we have: 

Sd(W; O) = S cos2covCO+ 2 

(22) 

(23) 

sin 2rr ~/'ff ] 
4zr Vrff j .  (24) 

o) sin 2o9~/0 1 (cos 2~r ~/-~ _ si_n 27r ~/0 ~ ] osd(o); o)  = s . (25) 
O0 2~/-0 40 2zr ~/'0 ] J  

The case of uniform distribution was checked as well, but calculations of the 
sampled spectrum and its derivative were done numerically. In all four cases, the 
calculation of the bound in (19) was carried out by numeric integration, in which 
the integration interval [0, Jr] was divided to 50 subintervals. 

The following figures present the normalized SDCRB vs. the parameter 0. The 
normalized SDCRB is defined by: 

SDCRBno~n -- (26) 
0 

namely, the ratio between the minimal standard deviation in 0 estimate and 0. The 
number of samples is N = 1E4, assuming that it is sufficiently large for asymptotic 
behavior of the spectral estimates. We note that the normalized bound in (26) is 
equivalent to the square root of SDCRB for log 0 estimate. 

Figure 2 shows, that for small values of 0, the normalized bound decreases when 
0 increases. In addition, the bound exhibits a similar behavior for the distributions 
that were checked. When 0 is smaller than - lOdB (= 0.1), the bound decreases 
linearly on a log scale, because J- I (0)  is nearly constant for small values of 0. 
It indicates that large values of 0 can be estimated with higher precision than 
small values. However, when 0 increases, j -1 (0) increases as well. The result 
is that for 0 larger than - l O d B  the normalized bound goes through a transition 
region and then starts to increase monotonically. The explanation for this effect 
may be that when 0 is large reversal of samples becomes more frequent. For 
example, assuming uniform jitter, we will have samples reversal when there is 
an overlap between two adjacent sampling intervals. This occurs at 0 = 1/12, 
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Figure 2. Normalized CRB for jitter estimation in the spectral domain (SDCRB). 

which corresponds to a maximal deviation of half the sampling period. We also 
note the difference between the continuous and discrete jitter distributions. In the 
latter case, the bound continues to decrease for large values of 0. The reason 
for that may be understood from (14), which describes the sampled spectrum and 
contains two terms. The first is simply the original spectrum attenuated by the jitter 
characteristic function I~ (09; 0)12. The second term is a "white noise" contribution 
to the spectrum. In the case of a continuous jitter distribution, I~ (09; 0)1 goes to 0 
when 0 increases. Therefore, the original contents of the signal disappear, while 
the white noise term becomes the significant spectral term. For this reason, it is not 
possible to get a precise estimation of 0, because most of the information in the 
signal is lost in the sampling process. This loss of information is indicated by the 
increase in the bound. On the other hand, in the case of discrete jitter distribution, 
the characteristic function is periodic in cr --- ~/-0. As can be seen from (24), 
only half of the spectrum is "whitened" when 0 increases, while the other half is 
retained. This means, that part of the information still remains, therefore, precise 
estimation of 0 is theoretically still possible, as is evident from the figure. 

Clearly, values of 0 larger than - l O d B  are not common in practical situations. 
For all values of 0, the bound is lowered when the sample size N is increased (the 
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normalized bound is inversely proportional to the square root of N). 
We have noted previously that J(O) is nearly constant for small values of 0. 

This asymptotic value of J(O) can be found easily by approximating ~(w; 0) by 
the second moment (assuming the jitter has zero mean): 

0920 
@(0); 0) --~ 1 - --~---, 0 < <  1. (27) 

Using approximation (27) in (14), we obtain the sampled spectrum as: 

1 F Sa(0); O) ~-- Ss(w)[1 - 0)20] + ~ Ss(u)Ou2du (28) 
7[ 

and its derivative 

1 F OSd(0); O) _"~ _0)2S~(~o) + ~ Ss(u)u2du. (29) 
O0 7[ 

Substituting (29) in (19) and neglecting the dependence of Sd(0); O) on 0 in the 
denominator, we get: 

fo ( if_- N 7[ 1 -0)2S~(w) + S~(u)u2du d0), 0 ---> O. J(O) ~_ ~ s~(0)) ~ 
(30) 

In the case of a flat spectrum, (30) becomes: 

N f o T [ (  ~_2)2 27r4N 0._~0" (31) J(O) "~ ~ - - 0 )  2 + d w  = 4----5-' 

Figure 3 compares the asymptotic bound (31) to the exact bounds, which were 
calculated numerically in Figure 2. The figure demonstrates that the exact bounds 
indeed approach the asymptotic bound when 0 is small. At 0 = - 2 0 d B ,  the 
difference between the bounds is not larger than ldB.  

In this section we have developed the expression for the Cramrr-Rao bound in 
the spectral domain, we have graphically analyzed its dependence on 0, and we 
have related its behavior to the effect of spectrum whitening. Next, we will repeat 
the analysis in the bispectral domain and compare the results. 

3. C r a m r r - R a o  lower  bound  in the bispectral  d o m a i n  

3.1. Derivation of the BDCRB 

In the previous section we have calculated the CRB in the spectral domain, as- 
suming that the sampled process is Gaussian. In this section we will find the CRB 
in the bispectral domain, by invoking the asymptotic Gaussianity of the bispectral 
estimates, as done in [9]. We have seen that the bispectral estimates vector, r/, is 
asymptotically complex Gaussian (see [ 11]): 

rl ~" Nc(l~(O), ]~(0)), (32) 
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Figure 3. Exact vs. asymptotic normalized SDCRB. 

where r/(0) is the expectation of the estimator, and E (0) is the covariance matrix. 
The expectation/~(0) is related to the original bispectrum, Bs(ool, ~o2), and to 0 
by the characteristic function of the jitter: 

I Z l ( O )  = Bd(OOi ,  ogj ,  O)  

= B s ( o ) i ,  O) j )dP(O)i ;  0 ) d P ( O ) j ;  O)~P*(O)  i --[- O)j; O)  q'- Bl(~oi; O) 

+ Bl(COj;O)+B~(ogi+ooj;O)+Bo(O), o9i,o9 j EIT  (33) 

=Bl(ooi;O)+Bl(~Oj;O)+Bl(2zr-ooi-~oj;O)+Bo(O), ooi, oJj EO T 

For all l ---- 1 . . . . .  P and where IT and OT are, respectively, the inner and outer 
triangles in the principal domain of the bispectrum PD [6], and dim/x(0) = P • 1, 
~3 (0) is asymptotically diagonal [9], and is given by: 

M 
S I t ( O  ) = - ' K - - - ~ S d ( O ) i ;  O ) S d ( O ) j ,  O ) S d ( O . )  i " ~  ( D j ' ~  0 ) ;  O ) i ,  ( / ) j  E P D ;  1 = 1 . . . . .  P .  

(34) 
Recalling the definitions in [9], P is the number of bispectrum estimation points 
(P = M2/12L 2 in the PD), K is the number of records, M is the number of 
samples in each record (N = MK), and L is the size of the averaging window. 
Bs ((.oi, (.o j)  is the bispectrum in the case of perfect sampling (0 = (3). 
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The calculation of J(O) can be done by writing down the Gaussian p.d.f, of the 
estimates and proceeding as in (18), or more conveniently using Bangs formula: 

J(O)=2Rel 00 ( 0 ) - - ~  +trace Z ( 0 ) ~  

= .fi (0) + J z ( o ) .  (35) 

Substitution of (33) and (34) in (35) yields for the first part: 

I ou*(o)  u(o) ] 
J1(0)=ZRe / O0 Z - I ( 0 ) ~  / 

[ O Bd(wi, ooj; O)12 1 
= 2  ff-]~ -frO m K--"-~L Se(o.)i; O)Sa(o)j; O)Sd(r -J7 o)j; O) ~oi ,mj EPD 

(36) 
and for the second part: 

( 1 
~ K-~ se(coi; O)Sd(o)y; O)Sd(cOi + O)j; O) COl, wj EPD 

1) �9 0--0 ~ Sd(o)i; O)S~(coj; O)Sa(wi + coj; O) (37) 

w~ ,wj ~PD 00 

wi,o~jEPD ~ ( 0  log Sd(O)i;o.O 0) + 0log Sd(O)J,O0 0) + 0log Sd(O) iO0 ~- O)j; O))2 . 

The summations in (36) and (37) can be converted into integrals, by changing the 
discrete summation variable into an integration variable 

2zrL 2zrL 
o91 = ~ i; w 2 = y j .  (38) 

Therefore, the integral form of (36) is obtained as: 

M 2 2KL2 f f  OBa(cOl,o~2;O)2. 
J l (0 )  = 4yr2L2 y D 00 

1 
Sd(wl; O)Sd(W2; O)Sd(wl + w2; O) dwldw2 (39) o 

27r2 D 00 Sd(091; O)Sa(o)2; O)Sa(wl + 092; O) 
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and for (37) we have: 

M2 f fp (OlogSd(wa;O) OlogSd(w2;O) 
J2(0)- 4 9 2 L  2 D 00 "2i"- 00 

O log Sd(Wl + 092; 0)~ 2 
+ O0 /I dmldW2. 

(40) 

We observe that expression (40) depends on the choice of M and L, which varies 
according to the estimation method we use. Generally, when a lower bound depends 
on a parameter, it should be chosen so that it maximizes the bound (minimizes 
J (0)), because then the bound is informative. Whenever the bound is minimized, it 
indicates the optimal performance we might expect, in case the bound is achievable. 
In our case, the choice of the free parameters is dictated by the condition that 
the estimator is unbiased and consistent. The estimation bias increases with L, 
therefore, L should be as small as possible. On the other hand, in order to have 
a consistent estimate, L should be large enough so that the estimation variance 
tends to zero, i.e., L 2 > M (see [9]). The choice L = ~ satisfies the conditions 
stated above. Strictly speaking, for consistency one needs L -- M c where c < 
0.5. Practically, however, c = 0.5 can be assumed. In addition, in order to have 
maximal resolution in the bispectral estimation (minimal resolution bandwidth), 
L / M  should be minimized; therefore, M should be maximized. Clearly, the relation 
N = M K  leads to the choice K = 1, which implies M = N. Therefore, the 
conclusion is that the requirements for unbiasedness, consistency and maximal 
resolution are satisfied by setting: 

M = N; L ---- ~"N. (41) 

This choice minimizes the bound and indicates the best performance that may be 
achieved by using the bispectrum. Substitution of (39), (40) and (41) yields the 
asymptotic expression for J (0): 
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J (o) = Jl (o) + Jz(O) 
N f {  OBd(Wl,w2;O) 2 1 

= 2~r 2 aat 'D O0 Sd(O)l; O)Sd((.02; O)Sd((.O 1 ~- 092; O) dwld~ 

N f ~ [OlogSa(Wl;O) OlogSd(w2;O) 

0 log Sa(Wl + o)2; O) dwld~O2. (42) 
+ 00 

Analytic calculation of (42) is difficult, but it can be done numerically. 

3.2. Numerical examples 

To illustrate this result, we will assume that the sampled band limited process has 
flat spectra 

Bs(Wl, 092) = B; Ss(w) = S. (43) 

We will calculate the bound for the same jitter distributions as in the previous 
section. The computation is tedious, and it was done by integrating (42) numeri- 
cally, using expression (33) and (14), respectively, for Bd(wl, o92; O) and Sa (co; 0). 
These computations were carried out with MATLAB. 

It can easily be seen that for the process defined by (43) the bound (42) depends 
on the ratio y -- IBI2/S 3, which is defined as the skewness, so we shall refer to 
this quantity in the sequel. 

Figure 4 presents the normalized bound in the principal domain of the bispec- 
trum (PD), for each of the jitter distributions, with N -- 1E4, and 2/ ---- 1. We 
observe that there is much similarity between the bispectral bound and the spec- 
tral bound (compare with Figure 2). The explanation given above for the peculiar 
character of the bound can be applied in this case as well; in the case of continuous 
distribution, the original bispectral components gradually disappear when 0 in- 
creases, while the "white noise" component becomes more significant, especially 
when 0 > 0.1. Therefore, the relative estimation variance increases with 0. In 
the case of discrete distribution, that constant component is identically zero, but 
the higher order term B1 (w) absorbs part of the original bispectral components. 
As before, part of the information in the bispectrum is preserved even for large 
values of 0. This has to do with the fact that the characteristic function O(w; 0) 
is periodic, and does not tend to zero. Therefore, as the figure clearly shows, the 
relative accuracy of the estimate is improved for large values of 0. 

Figure 5 shows the normalized bound in the bispectrum, in the case of Gaussian 
jitter. In this figure we study the contribution of each subdomain of the bispectrum 
to the bound, by limiting the integration region in (42) to the inner triangle (IT), 
the outer triangle (OT), and the whole principal domain (PD). Here too, we set 
N = 1E4 and y = 1. The figure shows clearly that most of the information 
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available in the bispectrum is obtained from the IT. For small values of 0, the 
performance of the IT bound is approximately 4dB (2.5 times) better than that of 
the OT bound. This result is not surprising, because in the IT the jitter becomes 
noticeable, both by its influence on the original bispectrum and by the appearance 
of the distortion terms B1 (co) and B0, whereas in the OT the estimation is based 
only on the distortion terms. In addition, there is a 3 to 1 area advantage to the IT. 
The transition region of the OT bound occurs for slightly larger values of 0 than 
for the IT bound. Later we will compute these bounds when 0 tends to zero. 

4. Relative performance 

In the following figures we will make a direct comparison between the spectral 
bound (19) and the bispectral bound (42). Figure 6 shows the bounds obtained in 
each of the two spectral domains, in the case of Gaussian jitter and a Gaussian 
process, i.e., y = 0 and N = 1E4. Clearly, a Gaussian process has zero bispectrum, 
so we do not expect to have a performance gain by using its bispectrum. The figure 
indeed supports this statement. It shows that although the two bounds have a very 
similar character, the bispectral bound always lies above the spectral bound in the 
range of values of 0 shown. This result means that if the bounds are achievable, 
it is not possible to obtain better performance by using the bispectrum instead 
of the spectrum. This conclusion is true for a Gaussian process, as well as for a 
non-Gaussian process with zero bispectrum. Since the bispectrum of a Gaussian 
process is identically zero, the information conveyed by the bispectrum is due to 
the dependency of the covariance matrix I] on 0 (see (40), and the right-hand side 
of (42)). Evidently, this information is smaller than the information contained in 
the spectrum. On the other hand, the spectral CRB is not the global bound because 
it is not computed directly from the samples, so there may be some significance 
to the bispectrum, and HOS in general, even in the Gaussian case. 

Figure 7 presents the bispectral bound for several values of the skewness y, 
with Gaussian jitter and N = 1E4. The bound was calculated for three values of 
y: 0, 1 and 10. Obviously, when y increases the bound is lowered, because the 
term which depends on the bispectrum in (42) increases as well. For the purpose 
of comparison, the spectral bound is shown as well. It is quite clear from the figure 
that when y < 1, the bispectral bound is still higher than the spectral bound, 
whereas at y ~ 1 the bounds are about the same. When y increases further, the 
bispectral bound becomes lower. In the vicinity of y = 1, the two bounds may 
intersect in some points, but when y is much larger or much smaller than 1 there is 
no intersection of the two curves, which means that one of the bounds is superior 
for all values of 0. The conclusion that can be drawn from the discussion above, 
is that it may be advantageous to estimate parameters directly from the bispectral 
estimates, if the signal has sufficiently large skewness, or better yet, to use a 
combination of the spectrum and bispectrum to improve estimation performance. 
How to combine both spectra in an optimal fashion has not yet been explored. 
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As was the case with the spectrum, here too J(O) tends asymptotically to 
a constant value, as 0 approaches zero. Again, we approximate the characteristic 
function �9 (w; 0) using (27), assuming the process has flat spectra (see (43)). In the 
evaluation of (39) we neglect the dependency of Sa(09; O) on 0 in the denominator. 
In addition, the derivative of 80(0) can be neglected, because Bo(O) is proportional 
to 03 (see [8]). Writing down the bispectrum derivatives with respect to 0, we 
obtain: 

8(co 2 + co2 2 + (09~ + co2) 2) 

2 

[ (~2  097r o93) ]  (~2  aBl(co;0) _ 8 BO - - +  = B 
00 ao 2 

0(coi +~176 

(44a) 

2 + 
(44b) 

Substitution of the approximation (44) to (39), and integration over the inner 
triangle, yields after lengthy calculations: 

J~(O)rr-Nl~12ffrr( 27r2S 3 CO2 q- CO2 -1- (COl "~- CO2)2 47 Yg2 2 

('03 "q- 0")3 "~ (COl "Jr- 0-)2)3 ) 2 
+ 12zr - (cot + co2)~r d091dco2 (45) 

/ 

g ]/J'f 4 ( 307~ 
- -  7-29 9 7 -  30 1 " 2 " 3 5 8 N y "  

(2zr - col - 0)2) 3 )2  
-~7~ d 091d co2 

/ 
(46) 

For the outer triangle we get: 

u, ,2 f f ~ JI(0)OT -- 2zr2S3 T \12Zr + ~ + 

--~ 0.042 Ny. 

N f s  2 2 2 J2(0)rr = ~ 2  (--~ -- 602 - (091 + ~ + 7r2)2d091d092 -- 

To calculate (40), we use (29) for the spectral derivative and we obtain in a similar 
way the asymptotic value of J(O), again neglecting the dependency of Sd(CO; O) 
on 0 in the denominator: 

NTr 4 
(47) 

60 

Nzr 4 N j joker 2 2 (48) J2(0)OT = ~ 2  (--091 - -  CO2 - -  (2rr - (.01 - -  w2)2d091dw2 - -  180 

Combining equations (45)-(48) we finally get the asymptotic J(O) in the bispec- 
trum as: 

Nyr 4 
J(O) = 2.4 Ny + 4--~" 0 -+ 0. (49) 
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We can now compare the asymptotic J (0) in the spectrum to that of the bispectrum 
((31) and (49)), in order to find out for what skewness ), they become equal. This 
turns out to be: 

7r 4 
?' - - -  - 0.90. (50) 

45 �9 2.4 

This result agrees with what we have seen earlier in Figure 7. It is interesting to 
note that in the case of a Gaussian process, the asymptotic bispectral bound is 
exactly twice the spectral bound. 

Finally, it should be pointed out that a direct comparison of the spectral and 
bispectral bounds has to be done with caution. The reason is that the result per- 
taining to the asymptotic spectral bound is valid only in the case of a Gaussian 
process, while the result concerning the asymptotic bispectral bound is valid for 
the non-Gaussian as well as the Gaussian case. Therefore, the comparison that 
we have made in this section involved two different processes, and not the same 
process. Generally, the Gaussianity assumption is taken as the worst case, in terms 
of the information we have about the process. It is quite possible that the spectral 
bound for a certain non-Gaussian process may be lower than the Gaussian bound. 
Therefore, we may need a higher skewness y than the one calculated in our ex- 
ample (50) in order to justify the use of the bispectrum. If this is the case, then the 
use of the bispectrum may be less favorable than we might have expected. Clearly, 
this is an important issue that has to be checked before considering the use of the 
bispectrum, and HOS in general, in place of or in addition to the spectrum. 

5. Discussion and conclusions 

In [9] we have shown that if we are given samples of a strictly bandlimited, contin- 
uous, ergodic process taken at a rate that is nominally not smaller than the Nyquist 
rate, then it is possible to detect the presence of jitter in the sampling process 
by testing the resultant bispectrum. In this paper we show that if the samples are 
taken from a process with known spectrum/bispectrum, then the variance of the 
jitter process can, in principle, be estimated with an accuracy that increases with 
the signal skewness. The question is, is it possible to estimate parameters of the 
jitter distribution from the sampled bispectrum even if the signal spectra (spec- 
trum/bispectrum) are unknown, but the process is known to be strictly bandlimited? 
Our conjecture is that the answer is positive, at least in the case of small jitter. A 
possible procedure is to detect the presence of the jitter on the outer triangle of 
the bispectrum and use the statistic to obtain a 1st order estimate to its variance. 
Then, using this estimate, the original spectra can be recovered. These spectra can 
be used again to improve the estimate of the parameter, by taking advantage of 
the whole principal domain and not just the outer triangle. This procedure can 
be done iteratively and we believe that at least for processes with smooth spec- 
trum/bispectrum, this proposed algorithm converges in probability to the correct 
value of the parameter. However, this conjecture has still to be investigated. 
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