Abstract-The theoretical analysis of an enclosed air-bridge is presented. This
includes a derivation of the Green'’s function in the x and z directions which is used
to find the current distribution on the conducting strips of the air-bridge. Boundary
conditions at the interfaces are applied and the numerical technique Method of
Moments is used to solve the integral equation for the unknown current. Upon
derivation of the current distribution on the ,g:bndii'étbrs, an ideal transmission line

model is applied to obtain the scattering pararﬂétéxé of the structure.
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1 Introduction

Millimeter wave technology concerns itself with that portion of the electromag-
netic spectrum between 0.3 Ghz and 300 Ghz, corresponding to wavelengths of
1000 mm to lmm. Effective quasi-static techniques have been developed for the
lower frequencies (0.3 Ghz to 3 Ghz) but for the higher frequency part of the
spectrum, a full-wave analysis must be employed.

Millimeter and microwave systems may be overshadowed by infarred and optical
systems but limitations to the latter, in particular their disadvantages in fog, dust,
rain, and nighttime viewing support further development of the former. As with
many technologies, the number of applications will increase with the passage of
time.

The typical millimeter microwave integrated circuit contains associated active
and passive elements interconnected by transmission lines. In integrating these
components together, various discontinuities arise where evanescent fields and sur-
face waves play an important role in their operation. Work has been done to model
these discontinuities with lumped elements but the numerical techniques used to
derive equivalent circuits are either frequency bound or dependent.

Here we present a full-wave analysis, which in not frequency bound or depen-

dent, to analyze an air-bridge structure. The resultant expressions and methods

used are general enough to be applied to an array of three dimensional problems.
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Figure 1: Air-bridge in enclosed microstrip.

2 Evaluation of the unknown current

In our problem the current distribution on the structure of interest must be
determined accurately. Then by the use of an ideal transmission line model, the
scattering parameters can be evaluated. In obtaining the current distribution,
Pocktnigton’s integral equation is solved numerically.

The formulation of the Pocktnigton’s integral equation and the solution for the
given structure are presented in the following work. Our structure under study is

shown in Fig.1.



2.1 Formulation of the Integral Equation

Through the manipulation of Maxwell’s equations !

VxE=—-jwuH (1)
VxHs=jwuE+7 (2)
V.eE=p (3)
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along with the representation of the magnetic vector potential A

<l
x|

A= : (5)

one arrives at an expression relating current and the magnetic vector potential
VA + k¥A = —ul. (6)

When the current J is represented by a dirac delta function in equation (6), the

Green's function becomes a solution as shown by the equation
VG +k2G = —ul§(F - 7). ()

To obtain a unique solution that applies to the specific geometry as shown in
Fig.1, one must apply the characteristic boundary conditions of the structure. Note
that we have introduced the dyadic form as we need to be able to describe fields

which are produced by a current of arbitrary orientation.

!throughout this report an ¢’“* time convention is assumed and suppressed



For the case of a single x-directed current, the unit dyadic T takes on the form;
1 =iz (8)

The vector representation of this current is
J=6F-F)i. (9)

Equation (9) represents a dipole directed in the x-direction and parallel to the
interface between regions II and III. It has been shown by Sommerfeld that the
magnetic vector potential of this structure needs to have two components so that
the appropriate boundary conditions are satisfied. This dictates that A must have

one component parallel to the current source and another parallel to the interface;

2 . . ’
A =Alz+ Az (10)

The integral equation which relates the magnetic vector potential to the current

of interest is written as

T=p///vai-7dV (11)

where the dyadic Green’s function C is uniquely defined by the structure under

investigation and takes on the general form

A a
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G =| Gl Giiy Gl.it

| Giit Giiy Giit

3j denotes for which region (I, II, or III) the equation applies as defined in Fig.2



In the case of a single directional current in the x-direction, the dyadic equation

has only two components,
2z *

=G it + G iz (12)

From equations (1)-(5) our electric field is related to the magnetic vector po-

tential by
E=YXH_ 1 o (uxT)=—"—ka+vv.73 (13)
Jwe Jwep Jwep
therefore
1 6 (6A, 6A
Eg P . . ; —_— T z
jw [A + ( ot )] (14)
1 6 (A, 6A,
Ey = =)W [_(k')"'_y (3‘; —57)] (15)
1 & [8A; ObA,
E, = —jw [A, + (k,-)’E ( 32 52 )} (16)
and through Maxwell’s equations,
16A,
H, =1 (17)
H oy
1 (6A; 6A,
Hv-;(z'- ax) (18)
1 [6A
H,=-—- = 1. 19
p ( by ) 19)

2.2 Derivation of Green’s function

For our structure pictured in Fig.1 (an air bridge on an enclosed thin microstrip),
we require only the derivation of the Green'’s function for an x- and z-directed cur-
rent. For the variation of current in the y-direction, we have assumed a Maxwellian
distribution. Our first step will be to derive the Green's function considering the

x and z components of the current separately.
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Figure 2: x-directed current above dielectric in enclosed microstrip structure.
2.2.1 Derivation of the Green’s function for a x-directed current
With equations (14)-(19) the Green's function can be related to the electric and

magnetic fields which have conceivably defined values dictated by the structures

electrical characteristics. We begin by stating that the tangential electric fields are

zero everywhere on the surface of the walls of the structure;

E;,, =0atz=0,a (20)
E;",=0aty=0,b (21)
El,=0atz=0 (22)
Elll =0atz=c. (23)

Employing separation of variables to the expressions and the established bound-

ary conditions (20)-(23), the following general forms of the green’s functions can

be derived for each region of interest



Gl = Zo D Alcos (nf:‘:t) sin (m;ry) sin(kfz) (24)
n=0m=1
Gl = Z Z: Blsin (%3) sin (m;ry) cos(k!z) (25)
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u[\’]8

i (nm) sin (ng) (AMsin(kl'z) + CMcos(k!T2)) (26)

2
q~
I
n[\’]8

i (mra:) sin (TH) (B"sin(kl'z) + D" cos(k!2)) (27)

b
YL PR T
GHl = Z Z B'sin (mrz) sin (TQ) sin(k!"(z - c)) (29)
2z [ a b 2z . -

In equations (24)-(29) the eigenvalues k;, k,, and k, satisfy the following rela-

tions:
(k)% = (k2)? + (k})* + (K,)?
where k; = (m)
a

and k, = (";”)

k? = wiue. (30)

To determine the unknown coefficients A*///I and B!11111 one should apply

boundary conditions at the two interfaces between Regions I, II, and III. Since at
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the boundary between Regions I and II there exists no magnetic charge, the normal

magnetic field must be continuous across the boundary. Therefore H! = H, so
Alsin(k!z') = APsin(k!T2)) + CMsin(k!!2)) (31)

Since there is no electric current in the y direction, the tangential magnetic
field is continuous. By substituting this relation into (18), one obtains H! = H!',

therefore
Bleos(k!z') = BMsin(k'z') + D' cos(ki!2') (32)

Also, since there is no magnetic current in the x direction, the tangential electric

field is continuous. Therefore EI = E[;
Alsin(klz') — Blsin(klz') =
B'cos(k!'z') — DMsin(k!'z") + AMsin(k!T2") + CHsin(k!!Z') (33)

By applying similar boundary conditions on the interface between Region II

and III, the following equations result;
Algin(kITH) + Ccos(k/'H) = A" sin(k!'I(H - ¢)) (34)

B"sin(kITH) + D" cos(k!"H) = B cos(k!!(H - ¢)) (35)

k(A cos(kIH) = CMsin(kiTH)) = A" k! cos (k[ (H - ¢)) (36)

Al sin(kI H) + CMcos(k!TH) (37)
+ kf’, (B cos(kITH) - D"sin(k]'H))
—(%%)
V[ aarr . oot BME"
=— | A sin(k,”'(H - ¢)) + =) sin(k;''(H - ¢)) | .
€11 e



Since there does exist an electric current between Regions I and II, the mag-
netic field between these two boundaries is discontinuous. This discontinunity
can be considered by integrating the inhomogenous helmholtz expression over the

boundary and using orthogonality. This results in

ab (k:AIcos(kzIz') — kT A cos (K1 2) + kﬁ’C”sz’n(kf’!))
p

= —cos ("’;") sin (m’;y'> (38)

4 whenn#0

where p =
2 whenn=0

Using these eight relations derived from the boundary conditions, the eight
unknown constants, A/, Bf, Al, B! cC!I DI AM BIHI are found. The
resulting Green’s functions for a x-directed current above the dielectric upon sim-

plification are

k"”-kltun!k{”!}l—c!'tan‘klﬁl
ki Ttan(ks H)—kstan(ks!’ (H =¢)) - COt(ktH)]

Cee = ,,2,:,,:‘:', abk,[cot(k,2')cos(k,z') — sin(k,2")]
cos (%z_) sin (m:y ) cos (2?) sin (m;ry) sin(k!z)

p(1 = tan?(k H)) (22) (¢! — tan(k]"(H - <))

I _ xR &©
Gie = g 23:1 ablkiTtan(k, H) — ktan(kII(H - c))|[cot(k;2")cos(k,2") — sin(k.z'

nrzr \ . mwy' 1
el WP R killtan(kI(H = ¢)) — elllk,tan(k.H)
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i

sin (-7%{) sin <r_n_l1;r_3_/_> cos(k!z) (40)

[k’” k.tan(kHI(H = c))tan(k, )]
:‘/:’_Onf\-:: abk;[cot(k.z")cos(k,2") — sin(k,z')|[kI ! tan(k,H) — k. tan(kHI(H - ¢))]
cos (2-:—{> sin (m;ry) sin(k!z)cos ( ) sin ( ) +
Ty

-p nrz
abk, [cot(k»z )cos(kz ) — sin(k.z. )}“"( ) ( b ) (k:2)
nrz \ . [(mny
cos( . )sm( ; ) (41)

p (1 = tan?(k,H)) () (" = 1tan(k{(H - <))
3PP ab(k!!Ttan(k, H) — kstan(kiT(H - c))][cot(ksz')cos(k,z') — sin(k,z"))

n=0m=1

1 . (nwT\ . (mTy I
[kgutan(k,m(fz-c))-eg"tan(k,H)]""( o) sin (L) cos(il)

nrz'\ . [mny )
cos( - )sm( A ) (42)

_ p (1 — tan?(k, H))cos(k H)
- z__%g;q ablcot(k;z')cos(k;2') — sin(k,z')]|cos(kII(H - c))
1
(kHItan(k,H) — k,tan(kII(H - c))]
cos (2%2) sin (ﬂg}l) sin(k!(z = ¢))cos (Elaf—) sin (mv;y ) (43)

© o (1 — tan?(k, H)) (%) (11" = D)tan(kI"(H - )

- 2:‘ z’: ablk!!Ttan(k,H) — k,tan(kIII(H = c))][cot(k 2" )cos(k,z') — sin(k.z")]
sec(kM(H - c))

(kHtan(k,(H - c)) — €/Ttan(ki1H))

sin (fﬁ) sin (m) cos(k!T(z = ¢))cos T2 ) sin | —2 (44)
a b a b

10
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Figure 3: Structure when conducting strip is lowered on to the dielectric.

If the conducting strip is lowered on to the dielectric, we will have only two regions;
air representing Region I and dielectric representing Region III.
To formulate the following Green’s fuctions for the strip on the dielectric , one

simply lets z' = H in the previous expressions.

SRS p tan(k;"'(H - c))
Oee = ,&,}:’, ab(cos(k H))[k;!"tan(k, H) — k;tan(k[!!(H - c))]

cos [ 225 ) sin [ 27X ) cos (m) sin (m) sin(k!z) (45)
a b a b

© = ptan(k,H) (%) (/' - 1)tan(kM(H - ¢))
G = L 1 ab(cos(k,H))(kItan(k,H) — k tan(kH(H - c))]

n=0m=1
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1 cos nwzx . [(mmy
F T tan(KIT(H — ¢)) — el kb tan(kH) o\ a )"\ 7
. [(nwz\ . (mny
sin (-a—) sin ( ; ) cos(k!z) (46)

I p tan(k,H)
Gz Z Z abcos(kI'(H — c))[kHtan(k,H) — k.tan(k!!'(H - ¢))]

n=0ms=1
cos <ﬁ?> sin (mTw) sin(ki"(z = c))cos (m;z ) sin (mzy )(47)

p( I —1)tan(kH(H - c)tan(k.H) (2=)
abcos(k,(H — c))[k! ! tan(k,H) — k tan(k!II(H - c))]

1 sin (mrz) sin (mwy) (k”[( -c)
(T tan(FI(H — <)) — el b tan(BH)] "\ a p ) costm e el

nrz'\ . [mmry N
cos( . )sm( A ) (48)

GIII = Z Z

n=0 m=l

2.2.2 Derivation of the Green’s function for a z-directed current.

The structure used to consider the z-directed current is pictured in Fig.4. We
will simplify our problem separating it into two parts; a primary field problem
and a secondary field problem as shown in Fig.5. For a z-directed current only
one component of the magnetic vector potential is needed to satisfy the boundary
conditions;

A=Az (49)

12
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Figure 5: The problem is divided into two parts, a primary and secondary problem.
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where
AL= AL+ AL
II
Al = All + All
AT = Al

From our definition of Magnetic vector potentials,

H=VxA
@
and from Maxwell’s equations,
-YXF_ 1 o, wxd) = (#¥A+T9.7)
Jwe Jwep jwep

therefore, for the z-directed current,

2
E, = — (k2+5—)A,

§2A,
E: = Jwpe (535:)
H,=0
-0A,
%= (%)

dA,
Hz= —— .
n ( 5y)

(33)

(54)

(39)

(60)

Now we must apply the boundary conditions of the structure to obtain the

general (primary) solution. The first readily known boundary conditions are those

on the walls where the tangential electric fields become zero. Therefore

El=0atz=0y=0,b

14
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Ell=0aty=0,b (62)

E;:Oatz=0;z=0,a (63)

E:I =0atz=0,a (64)
El=0atz=0,ay=0,b (63)
EM=0atz=0,ay=0,b (66)

In the primary field problem, the inhomogenous differential equation takes on

the form
VA, + kA, = —ud. (67)

The solution to the above equation when the listed boundary conditions are satis-

fied is of the form

Afp = E Z Alsin (_n:z) sin (m;ry) cos(k!z) (68)
n=xlm=l

Af,ﬁ = Z E Allsin (?) sin (r_n_;ﬂ) e-jki’(z-z') (69)
n=1 m=0

In the secondary field problem, we will derive a solution that satisfies the ho-
mogenous differential equation. This is due to the fact that we do not have a
current source in the secondary field problem. In both field problems, the electric
fields must satisfy the same boundary conditions on the conducting walls. As a
result, the secondary fields are of the same dependence with respect to the x and

y coordinates, therefore

15



n=1m=1 abkl

sin ("_ZE) sin (m;ry) cos(k,z) (70)

Al = i i fI <j b )sin (n:’lz') sin (m:yl)

All = Y SO (fsin(kez) + fcos(k,2)) (j_‘fﬁ‘_ejk.z')

n=1m=1 abk,

. [nxz’\ . [(mny ,
szn( - )szn( p )cos(k,z)

sin (%ﬁ) sin (_r_n;r_y) (71)

For Region III we have the same standing wave solution as in Region 1 except for
the fact that the conducting wall has been moved by (H+h) along the z-axis as

reflected in our z dependence below

I A VTR . \ . '
Aﬁl = Z Z J abl:;” eﬂm f’”sm (mr:z: ) sin (rmry )
¥4

n=1m=l a b
sin (P—Zf) sin (%) cos(kM(z — (H + h)). (72)

In the case of a delta function source, A,, will give a G,,, component in the
dyadic Green’s function and similarly, a A,, will give a G,,,. These two components
are related to G,; by the relation

Gx: = Gt:p + Gun (73)

Since we have a current source between Regions I and II, our magnetic field is

discontinuous so we must integrate the inhomogenous helmholtz equation over the

16



interface which results in

a=UJz —a

lim [ (V2 4 k) Audz = —p lim / 8z —2)6(y — y)8(z — 2 )dz,  (T4)

and upon simplification, one obtains

. 5 z'+a —_ ! !
tim (240 1912 = =wé(e = )6ty = 1) (73)
5A£I 5,45 ' '
52 I 5z ': “6(1 -z )6(y -y ) (76)

from (25), one obtains

“Tb (Klsin(kiz) AL - jRIFAIT) = sin ("Z’ ) sin (m’;y ) . (77)

One more equation is needed to solve for the two unknowns A,’,, and A;’ . Utiliz-
ing the fact that the E field in the z- direction must be continuous at the boundary

between regions I and II; one obtains
Alcos(k,2') = A (78)
These equations are solved for the unknown coefficients resulting in

A: = j-ﬁ%eﬂ"”sin (m;z ) sin (m:y ) (79)

'

A= s sin (%) sin (7 ) ose ). (80)

By substituting these expressions into our general forms (68) and (69), the zz-

component of the Green’s function takes the form;

4 el nrz'\ . [(mrny
"p ZZ]abkd 3m( - )sm( 5 )

n=lm=l

sin (E) sin (mg-y-) cos(k,z) (81)

a
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Gﬁ, = Z Z ]m-e"‘“ sin (%ﬂ) sin (mwy ) cos(k,z')

n=1m=1

sin (2?) sin (%) e""‘y("”) (82)

In order to determine the four unknowns of the secondary field problem, bound-
ary conditions on the air-dielectric must be applied to the structure of Fig.5c.

First, the z-component of the electric field is continuous across the boundary

between regions I and II; Ef = E!!. Therefore
fleos(k,2') — fHsin(k,z') — fHcos(k,2') = 0 (83)

Integrating the homogenous helmholtz equation (there is no electric source in

the secondary problem) across the boundary and using orthogonality, one obtains
M oos(kyz') = fHsin(k,2') + flsin(k,z') = 0. (84)

From (83) and (84), we conclude that

fi'=0 (85)
and
fr=f". (86)
From the boundary conditions at the dielectric interface, EI! = E!'! one obtains
s , | — fHgin(kHIR)

je ¥ Hcos(k,z') + flsin(k, H) = / e”’y({” (87)

and from H!T = I
e~T*Hcog(kyz') + fcos(k. H) rcos(kITh) 83
k, umf DT (88)
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The resultant Green’s function for this problem will have a zz component only,

which is given by

I
Gzz

2z

GIII

22

- N VT o nrz'\ . [(mny
= Eé’abkf”f sin | — | sin|{ —

nwe mry

sin (T) sin (T) cos(k11(z — (H + h))). (91)

After applying all the necessary boundary conditions, the Green’s function takes

on the following form

GI

33

© = elllk,cos(k,(z = H))cos(kI'h) + ki sin(k,(z" — H))sin(k['h)
kel gin(k, H)cos(k!Th) + ki k,sin(k!'Th)cos(k. H)

4p . [nxz’\ . [(mmy
absm( " )sm( A )

sin (pr_z) sin (m;ry) cos(k,z) (92)
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Gt — f: i /! k,cos(k:(z = H))cos(kITh) + k! sin(k.(z — H))sin(kI!Th)
=T -~ k2l Tsin(k, H)cos(kiTh) + kITk,sin(k!!Th)cos(k, H)

4,u . (nxz’\ . [m=my by
il ) sin| = cos(k,z')

sin (%) sin (%) (93)

Gl — Z z €' ks pig' cos(k.2)
= k3l sin(k, H)cos(kIITh) + kI sin(k!h)cos(k,H)

n=lm=1l "2z

4u . [(nrz . [mmy '
—55in ( - ) sin ( ; ) cos(k;z)
nrz

sin (—a—) sin (%) cos(K™(z = (h + H))) (94)

2.2.3 Summary of Green’s function determination

In this chapter we have determined the unique Green’s function for the air-
bridge structure (Fig. 1). This was accomplished by working with Maxwell’s
equations to establish a tractable equation and by representation of our source
as dirac delta functions. We then applied boundary conditions to solve for the
unknown coefficients and formulated a solution. We now‘ have expressions that
will give the resulting field produced by a point source directed in the x or z

direction as required to analyze the air-bridge structure.

2.3 Application of Method of Moments

The method of moments is a numerical technique used for solving functional
equations which cannot be solved in closed form. By reducing the functional

relation to a matrix equation, known techniques can be used to solve the resulting

20



matrix equation. This method is computationally intensive but with the advent
of faster computers, the method has become feasible.

To apply the method of moments in the specific case of an air-bridge, one should
follow the steps outlined below:

1. Use the integral equation (11) derived in section 1 along with the relations
(13) and (5) so one obtains an integral equation that relates the current to the

electric and magnetic fields respectively. A general form of this is

—- E
Lop(Js) =7 (95)
H

where L,, is an integral operator operating along with the derived Green’s function
and § is a vector function of either the electric field E or magnetic field H.
2. Represent the current on the conducting strip as a sum of coefficients mul-

tiplied by a pre-determined basis function,

Nia
J.=Y 17, (96)

q=1

In equation (96) where I, represents the complex coefficients, Nia represents the
number of sections the strip is to be divided into and J, represents the chosen
basis functions which represent the current distribution.

3. Discretize the integral equation by minimizing the resuting error function
6E on the surface of the conducting strips.

In applying the above steps to the problem of an air-bridge we have set up the

integral equation for the electric field of the form

T=—juuf[] <7+—vv)-??-7dv. (97)
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a. One dimensional view highlighting current directions

Figure 6: Currents are assigned variables by direction.

In proceeding to the second step, we seperate the problem into five different
sections as pictured below (this figure is taken in part from fig.1).

For Ji; and Ji, we will model the current as a sum of an incident current A,
a reflected current B, and the sum of incremental currents I,. For J;;, Ji:, and
Jas only a sum of incremental currents is required. Implementing this convention
results in

Niz

Jiz = Alzejkz + Blze-jkc + Z Iqlzjlzq (98)
q=1
Nz
JQ, = z qu,«,juq (99)
g=1
‘ . N3z
Jg, = Ahe’k’ + Bue-"k: + Z [qazjstq (100)
g=1
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N1z

le = Zlqlz-jlzq (101)
q=1
N2z _

Ju: = ZIquth- (102)
=1

The basis functions the x-directed currents in this case are the same and are defined

as being
f sin(k(z’ -z - < ’ <
sin(kiz) Tg-13T =7

. '
sin(k(zq41—-2

! [ . < '
Jize(z,y) = sin(kly) Tq ST S Tgn (103)

()m ~4 <y <y

\

where for the y-direction we have used a maxwellian distribution function.

The first step in discretizing the integral equation (97) is to evaluate the error
that our mathematical representation of the electric field will produce. This is done
by evaluating the electric field produced by one section of current on the conductor
on another section of the conductor. Since the electric field on any part of the strip
must be zero, the value of our integral evaluates the error. Then, by the concept
of least square estimation, when one takes the inner product of the basis function
along with the error and sets the result to zero, the error is minimized.

Proceeding to do this for our problem here we first account for the different

components of the fields produced by a current of given orientation.
E;=E\ .+ Ear + Exez + Eizs + Eozs (104)
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and

Ex = Elzz + EZ::: + ESu‘ + Elu + E?zr (105)

First, we shall consider the x-directed field produced by a x-directed current on
the dielectric

_ H nr _j,w',“%‘<2) 1 ,(mvr,> ,
Eyzr = AI,,/.?coa(aa:)c dz [_* — ,)2 ésm Y dy

-

p tan(k{!(H - ¢))
[ab(cos(lc,H))[kf”tan(k,H) — k.tan(kI'(H - c))]

(- (2 o (22) i (35 e

p tan(k,H) (%) (/' — 1)tan(k/(H - c))
abeos(k, H)(k!!tan(k,H) — k,tan(kI(H - ¢))

1
(KT tan(EIT(H = ¢)) — €17k, tan(k, H)] ( a

* nw . 'k.‘:' 1} * 2 1 . (mTr ' )
o [ () [} (2) (25

p tan(k;"I(H - ¢))
[ab(co.s(k,H))[k{”tan(k,H) — k;tan(kIM(H - c))]

(k’ - (%{) 2) cos (n_:_{) sin (%) sin(ksz) +

24

mr:c) sin (m;r:r) cos(k,z)} +



p tan(k,H) (2£) (/1" = 1)tan(kI"(H - c))
abcos(k H)[kitan(k,H) — k,tan(kII(H - c))]

1 mnrzx

(5 e (55
TTTtan(RITI(H = o)) = ik tan(e,H)] 0\ e ) 7\ 75 ) coslked)]

Nis sin(k(z = £4-1)) nr o\,
2 Ins (/j; sin(kl,) cos (TI ) 4z +

9=1

% sin(k(zg41 — ) (mr ,) '
/(; sin(kl;) “\eT dz

2 _ (1T 2 p tan(kI(H - ¢))
[( - (T) ) ab(cos(k,H)) (k[ tan(k, H) — k,tan(kI'[(H - c))]

cos (_n;r_z:) sin (m;ra:) sin(k.z) +

p tan(k, H) (22) (/1" = 1)tan(kT(H - c))
abcos(k, H)[k!!Itan(k,H) — k tan(k!!(H - c)))

1
(kiltan(kiIT(H - c)) — elllk,tan(k, H))

(‘nTx) k,cos (EE-) sin (_m_;rz) cos(k,z)] (106)

a
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lectricfiold : b

For a x-directed current, a z-directed field is also produced. Proceeding with

the same procedure as above one obtains

% nr . ! [} J)‘ 2 1 mn '
- fddl -jkz V- on
E... = AI,,,./_gcos(az)e dr ./.n<7rw) %sm( 7 )dy

- ]
p tan(kf(H - ¢))
[ab(cos(k,H))[kf”tan(k,H) — kitan(k{"'(H - ¢))]

(-—mr) sin (m) sin (Egﬁ) k.cos(k.z) +

a a

p tan(k.H) (ﬂf) (el — Vtan(kI'(H - ¢))
abcos(k. H)[k!!tan(k,H) — k,tan(kII{(H - c)))

1
(KITtan(kIT(H — c)) — ellTk,tan(k, H)]

g4

(k* - k?)sin (-n—a—) sin (E_:_!) 3in(k,z)] +

Ry, /_; cos (ﬁa:z') e dz’ /_i (”—2‘;) ) ! ’ sin (n:ry'> dy

p tan(k;"'(H — c))
[ab(coa(k,H))[kf”tan(k,H) — kjtan(kl!1(H - c))]

(—nr) sin (n_m:) sin (m;ry) k.cos(k,z) +

a a
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p tan(k, H) (22) (/" = 1)tan(kI"(H - ¢))
abcos(k. H) [k tan(k, H) — kstan(kHI(H - c))]

1
(kTtan(kII(H — c)) — elllk,tan(k, H)]

(k2 - k})sin (m) sin (:n_g_y_) sin(k,z)] +

a

Mz 0 sin(k(z - z,-1)) nr o\ o
q; lns (/_g sin(kly) (T’ ) dz +

§ sin(k(zg4y — 7)) nr o\, o
/o 3in(7cll,) €os (T’ ) dz )

/_i (F%) [1 _ (;‘é)z]ésm (":ry') W
[ p tan(k;"!(H — ¢))
ab(cos(k, H))(k tan(k, H) — kstan(kHI(H - c))]

(:2’:) sin (2’2) sin ('—"ﬂ) kycos(k,z) +

a a b

p tan(k, H) (22) (¢! — 1)tan(ki!(H - c))
abeos(k. H) (k! tan(k, H) — kjtan(kII(H - c))]

1
(kitan(kIT(H - c)) — ek tan(k, H))
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TT

. [(mT .
(K* = kY)sin (PT) sin (—b—g) sm(k,z)] (107)
For a z-directed current, one must consider the fields above and below the
source seprately as they have different forms in those two respective regions. Also,
as before, both x- and z-components of the electric field are produced.

First we consider the x-directed field produced by a z-directed current above

the source where

Mis sin(k(z' = z,- '
Fure = X ( f; et cos(h (s = H)eos(k )+

k! sin(k,(2' - H))sin(k''R)dz') +

/o‘§ 85"(’:5:;&115 z ))(c{"k,w-’(kt(z' — H))cos(kI'"h) +

k! sin(k,(z' — H))sin(k!"'h)dz'))

[ ) o (3)

- ()]

. 1 (=)
ab 1T k3sin(k, H)cos(kITh) + kI k,cos(k, H)sin(kITTh)" "\ a ©

(7-?-) cos (ﬁ?) sin <r_r%r£> (=k,)sin(k,z2) (108)

For the x-directed field below the source produced by a z-directed current, one
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obtains

Ms 3 j ' - 2 ’ ' '
Eve: = Y I, (/;O 3m(k(z Ze-1 ))cos(k z)dz +/ sin(k(zg1 = ))cos(k,z )dz)
9=1

& sin(kl;) sin(kl;)

/‘%‘ 2 1 mr ,

o) e () @

- @

dp €]k, sin(k.(z = H))cos(k['Th) + k[ cos(k.(z — H))sin(k!'"h) . (nrr )
ab k.ellsin(k,H)cos(kITh) + Kl sin(klTh)cos(k, H) '\ a ~

2 o (22) i (22)

For the z-directed field above the source produced by a z-directed current, one

obtains

Mg in(k(z' = z,- ,
Biaw = 3 s (/: e e hcos(h(s — H)eos(kLTh)+
q=1 z

kM sin(k,(z' — H))sin(k!TTh)dz') +

/0'5 Sin(l:i;q(?l:)- z ))(éllk‘cos(kz(f!' — H))cos(k!"h) +

k"l.ﬂn(k( ' H))sin(kﬁ"h)dz'))

[} () —gon (3)
[1- ()]
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4u 1 . [(nT
‘@b k2 gin(k, H)cos(KI1TR) + kI k,cos(k, H)sin(KIITh) " (_a—x )

(k? — k¥)sin (m) sin (m;ry) cos(k,z) (110)

a

For the z-directed field below the source produced by a z-directed current, one

obtains
N sin(k(z' = z,-1)) Ny -4 sin(k(zg41 — 7)) "
Eper = q2=:1 L. (/; sin(kL) cos(ksz )dz +/0 sin(kL) cos(k,z )dz>

ek sin(k.(z — H))cos(k!Th) + k! cos(k,(z — H))sin(k!Th)
k.l sin(k,H)cos(kHTh) + k! sin(k!!Ih)cos(k.H)

(K — k)sin (ﬁ’a’-’) sin ("‘T”y) (111)

For a x-directed field in the region above a x-directed current which is above

the dielectric, one obtains

N" ' , - ] '
Erasza = Y I ( /-: sin(k(z' = z-1)) (gav_r_z) dz'+

o=t sin(kl;)

g 3in(k(zq+l - I')) (ﬂ l) I}
/o sin(kl) o\

30



/"5‘ 2 1 . (mT )
(—) 1\ 2 T T dy
-% \7w [1 _ (%) ]:
o - (2)) 2 [Epraenti; (=gnpell) — cot(k, H)]
a abk,[cot(k,z')cos(k,2') — sin(k,z')]

cos (E-Z-E) sin (m;rx) sin(k,2) +

p(1 = tan?(k. H)) (22) (£ - 1)tan (k1 (H - )
ab[k!tan(k,H) — k,tan(k!!(H — c))][cot(k.z")cos(k.z") — sin(k,z')]

1
kitan(k!'I(H - c)) — e/ k,tan(k, H)

("_7:) k.cos (n—”:-) sin (2{_3!) (—k,sin(k,z)] (112)

a a

For the x-directed field located below the x-directed current source which is

above the dielectric, we obtain

st . ' — , ,
Ereza = 3 Ipe (/;‘; sin(k(z' = 2q-1)) (ﬂ_r > iz’ +

= sin(kl;) a

[ e () )

) ()

" (ﬂ)z p (KT — kytan(k!T(H - ¢))tan(k.H)|
a abk,[cot(k,z')cos(k,z") — sin(k,z')| (k! Ttan(k. H) — k.tan(k[!/(H -
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cos (P-E) sin (m;ry) sin(kiz2) +

a

—P nrzy . (mmy I
abk,[cot(k,z')cos(k;2") — ‘sin(l&:,z')]cm3 ( a ) s ( b ) cos(k; z) +

p(1 — tan?( ("—a-) — tan(kf(H - ¢))
ablkitan(k, H) - k,tan(k” (H - c))|[cot(k,2")cos(k,2") — sin(k.z")]

1
kiTtan(kI(H - c)) — el1Tk,tan(k, H)

("a”) k,cos ("—Zi) sin (-”%’1) (—k,)sin(k,z)]

For a z-directed field above the current produced from a x-directed current

above the dielectric, one obtains the expression

Nag sin(k(z' — z4-1)) nw
Era1za = ZIth (/’: sin(kl,) cos ( " ) dI +

q=1

[ (25) )

[ (2 on(m)
-3 \7w [1_(%)2]§ b

11Tk tan(kl! (H=c))tan(k,
(28 i () 2RI — o)

" a a abk,[cot(k,z')cos(k,2") — sin(k,2')]
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sin (r_n{_g) (k.)cos(k,z) +

p(1 - tan®(k,H)) (3£) (€' = Dtan(k{"(H = <))
abk!tan(k,H) — k,tan(kI!I(H - c)))(cot(k.2')cos(k.2') — sin(k.z')]

1
kitan(kIT(H - c)) — el k,tan(k, H)

nwzx mmw

(k? = K})sin (T) sin (—bl) cos(k,z)] (114)

For a z-directed field below the current produced from a x-directed current

above the dielectric, one obtains the expression

N), ] ' - /] ]
Etpza = 3 I (/_"‘ sin(k(z' — 24-1)) (la’iz)du-

o i sin(kl;)

[y e (7))

/72 1 . (m%x )\
/_g (E) [1 _ (E)z]i"m ( b Y ) U
p (kI = kotan(kT(H = c))tan(k,H)]
abk,[cot(k,z')cos(k,2') — sin(k,2')]| (kI tan(k,H) — k tan(k!(H - ¢)))

(-_n_ar.) sin (ﬂf) sin (m) kocos(k!z) +
a a b

- _EI ' m . m’ -k ' k”: -
abk,[cot(k,z')coa(k,z')—sin(k,z')]( a)sm( a )sm( b >( )sinlk, z)
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p(1 - tan’ (k. H)) (2=) ("' - 1)tan(kIT (H - c))
ablk!Mtan(k,H) — ki tan(ki"(H - c))][cot(k.z")cos(k,z") — sin(k,z'))

1
kitan(kII(H - ¢)) — elllk,tan(k,H)

(k* = k?)sin (E’E) sin (m:y) cos(k,z)]

a

2.4 Matrix Equation

The resulting matrix equation is formed and upon inversion the unknowns can

be obtained for a given exciation.
3 Scattering Parameters

Using the derived current distribution on the conductors, one can apply an ideal

transmission line model to determine the scattering parameters.

4 Summary

From this general analysis of the Green’s function and the ultimate determina-
tion of the scattering parameters of an air-bridge, the formulation used here could
be applied to a variety of structures whose geometry requires a three-dimentional
analysis.

Other planned work includes the application of this work to other structures
and the use of air-bridges as a curcuit element in the construction of other passive

microwave circuits.
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