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Abstract. The gas dynamics of interactions of a tenuous ionosphere with movihg satellites and probes 
that have bearings on the diagnostics of the ionosphere are discussed. Emphasis is on the cases 
where the body is moving at mesothermal speeds, namely intermediate between the thermal speeds 
of ions and electrons of the ambient ionosphere. Methods of collision-free plasma kinetics with 
self-consistent field are used. The development of the topics for discussion starts with stationary 
Langmuir probe which entails the basic mechanism of body-plasma interaction that becomes furt her 
intricated as the body moves at a higher and higher speed. Applications of the theory of plasma 
interaction to meteors which move in the ionosphere are also presented. 

1. Introduction 

The study of charged particles and electric field near a conducting surface dated back 

at least half a century, known as the physics of gas discharge which is vital to the 
problems of lighting and vacuum tubes. A new aspect and stimulus have been added 

to the problem with the advent of the space flight, e.g., and electrically conducting 
satellite orbiting in the tenuous ionosphere of the earth. The fact that a body, such 

as a satellite, moves at a speed much higher than the ionic thermal speed of the ambient 

plasma, brings to bear a new gas dynamic phenomenon to the body-plasma interaction 
problem. The study of the flow field thus developed, which involves with the coupling 
between the charged particles and electric field, is herein called 'ionospheric gas 

dynamics', an interdisciplinary science of rarefied gas dynamics and electromagnetic 
fields. It  has been known for some time that the disturbances of' particle and field 

distributions near a moving body have important bearings upon its R A D A R *  

detectibility and radio-frequency properties of antennas on-board. The use of artificial 

satellites and space rockets to carry instruments for the measure of the upper iono- 
sphere has intensified the interest in the ionospheric gas dynamics. The disturbances 
present in the vicinity of a moving body must be properly taken into account in the 

planning and interpretation of various experiments made with on-board instruments. 
Besides the physics of body-plasma interactions are unique in themselves and are 
of considerable interest. 

The gas-dynamic interference on the ionospheric measurements via diagnostic 
instruments on-board a satellite or other space vehicle can be illustrated with a cited 
example. When an electrostatic probe, often called Langmuir probe, which is installed 
on a satellite, is used to measure the electron density and temperature of the ambient 

* Radio detecting and ranging. 
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ionosphere, the plasma disturbances, which are created by the motion of the satellite 
and into which the probe is immersed, are actually being diagnosed. It is true that 
the properties of the disturbances which are probed are related to those of the ambient 
plasma of interest, proper interpretation of the probe data thus obtained must be 
made in order to eliminate the gas dynamic interference effect. 

One of the alternatives to take this gas dynamic effect into account is to calibrate 
the probe with its attachment in an appropriately simulated plasma conditions in a 
laboratory setting. This is a well-established procedure in experimental gas dynamics. 
The laboratory simulation of space flight gas dynamics, however, has been very 
limited in success because of the inherent difficulty in proper scaling of the laboratory 
plasma parameters that can lead to meaningful calibration tests. One of such dif- 
ficulties is to obtain a uniform, uncontaminated plasma of sufficient ionization level 
in the laboratory. In fact it has often been proposed to use the natural plasma of the 
upper ionosphere to carry out tests in the other areas of plasma studies. This hardship 
status in laboratory plasma has forced the prognostication of plasma phenomena to 
rely much on theoretical analysis to which the present review spends most of its pages. 

It is intended, in the present review, to align the view points of ionospheric gas 
dynamics and diagnostics; to wit, the former is considered as a study of a response 
in particle and field distributions of a given source of disturbance which is imposed 
upon the ionosphere. Consequently a particular ionospheric diagnostics theory is 
merely an exercise of determining one or more of such responses from which the 
properties of the ambient plasma can be inferred. Keeping this in mind, we shall 
limit the discussion to those special configurations which are pertinent to the satel- 
lite probing of the ionosphere. The common features among various ionospheric 
gas dynamic problems should, however, be stressed, e.g., the study of the characteris- 
tics of a spherical electrostatic probe leads to considerable enlightening about the 
physics of plasma sheath of a spherical satellite. 

There have been several comprehensive reviews in the related areas, e.g., concerning 
satellite disturbances [1, 2, 3] and electrostatic probes [4, 5]. In the last few years 
much development in experimental results and theories which have been achieved 
using self-consistent field approach. It is to the review of these new developments 
that the present paper is ascribed. 

Prior to engage in the discussion of body-plasma interaction, it is necessary to be 
knowledgeable about the properties of the ionospheric medium and the microscopic 
accommodations of charged particles with solid surfaces that are pertinent to the 
ionospheric gas dynamics of interest. 

1.1. PHYSICAL PROPERTIES OF THE IONOSPHERE [6, 7, 8] 

The fact that the earth, along with its atmospheric envelope, is exposed to the solar 
radiation which contains sufficient energy at short wavelengths to cause appreciable 
photoionization of the earth's outer atmosphere explains the existence of the iono- 
sphere. It refers loosely to the external, ionized layer of the atmosphere which is 
subdivided into regions: D, E, F and outer ionosphere in the order of increasing 
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altitude and increasing fractional number density of electrons. The higher the altitude, 
the lower the atmospheric number density, hence the slower the rate of recombination, 
between free electrons and ions, which depends, among other factors, the collision 
frequencies of the atmospheric particles present. Since recombination reduces the 
electron concentration, this explains the altitude dependence of the degree of ioniza- 
tion level of the ionosphere. Inasmuch as the sun's radiation is the source of the 
ionization process, it is expected that the structure of the ionosphere must have 
diurnal variation and depends on the periodicity of maxima and minima of sunspot 
cycles. The dependence of electron density on the latitude of the earth is rather 
complex considering that geophysical influences must also be taken into account, 
and is not completely known. In view of these multiple factors of dependence, the 
designated layers of the ionosphere are not sharply distinct. The outer-most portion 
of the ionosphere, along with the earth's magnetic field, are determinated by the 

solar wind or interplanetary plasma. 
It is important to describe the results of measurements of the principal ions in the 

upper ionosphere. It was found that near the lower boundary of the F-region, (160- 
700 km in altitude range), the principal ions present are NO + and O~; at higher 
altitude of the F-region; N + and O + which predominates. The outer ionosphere 
which extends from the top of the F-region until the boundary to the interplanetary 
space has been divided into sub-layers according to the principal ions present, e.g., 
O § is predominant up to an altitude of 900 km; He +, from 900 to 1900 kin; H § 
at higher altitudes. 

Much of the information on the electron density at the extreme altitudes, such as 
several earth radii, are deduced from the measurements and inferences of the disper- 
sion of radio whistlers which are low frequency (1-30 Kc/s) electromagnetic waves 
that are generated by lightning strokes and propagate along paths following the 
earth's magnetic field lines from one hemisphere to the other [9]. 

The upper ionosphere has been known to be in approximate quasi-equilibrium 
with unequal electron and ion temperatures, Tee  Ti, at least during the daytime. 
The bi-thermal nature of the ionosphere can be theorized in view of the mechanics 
of particle collision. It was stated earlier that the electrons in the ionosphere are 
heated as a result of photoionization of the ambient gas by solar ultraviolet radiation. 
Photoionization produces photoelectrons with energies of tens of electron volts, 
well in excess of the thermal energies of the other ionospheric constituents. The 
photoelectrons lose their excess energy as a result of inelastic collisions with the 
neutral molecules and elastic collisions with electrons and ions. On account of the 
mass-differential of the colliding partners, on which the energy exchange through 
collision depends, an electron, because of its small mass, loses very little kinetic 
energy when it collides with a heavy ion or neutral molecule. On the other hand, 
energy is exchanged readily in collisions with electrons (note that there are few 
electrons to share the excess energy from photoionization). Consequently the distribu- 
tion of thermal speeds of the electrons is very close to the Maxwellian distribution 
with temperature (Te) which is higher than the temperature of ions (T0. The hot 
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electron gas is cooled primarily by collisions with neutral particles at lower altitude, 
say below 250 kin, because of their relative abundance; by collisions with ions at 
higher altitudes because of the large collision cross-section of coulomb interaction. 
The ions act as a heat transfer agent and pass on the heat energy they extract from 
the electrons to the neutral gas for conduction toward lower altitudes [6]. 

On account of differences in the magnitudes of  collision cross-sections between 
electrons and electrons, between electrons and ions, between ions and ions, etc., they 

are, accordingly, different mean free paths, le, ~, l~, i ,  li, i, etc. 
For  the purpose of quick reference, the estimated representative values of  iono- 

spheric parameters are given in Table I. 

TABLE I 

Typical values of ionospheric parameters 

Altitude (km) 300 600 3000 
Electron Density no (cm -a) 5 • 105 105 2 • 103 
Mean free path h, ~(cm) 105 107 2 x 1014 
le, i (cm) 104 102 10 ~ 
Ionic Thermal Velocity ci (Km/s) 1 1.5 6 
Electron Thermal Velocity ee (Km/s) 2 • 102 3 • 102 4 • 102 
Debye length 2D (cm) 0.5 0.5 3 
Larmor Radius Li(cm) 5 • 10 z 8 • 102 10 a 
Le (cm) 3 4 10 
Satellite Velocity V~(Km/s) 8 8 8 

Some conclusions pertinent to the ionospheric gas dynamics can be made in view 
of the tabulated ionospheric properties. 

(1) Consider a body, having a characteristic size L =  lm, which moves in an iono- 
sphere. It  is obvious that any of the mean free paths at a listed altitude of the iono- 
sphere is considerably larger than L. The state of  a collision-free flow is therefore 
established provided the surface of the body is not concave; to be specific, the smallest 
mean free path le, i is chosen as the characteristic one. 

(2) Although the ionosphere is a heterogeneous medium, namely consisting 
particles of  both neutral and charged species, each species, however, can be treated 
gas dynamically independent of  the others in view of the collision-free state for 
ionospheric gas dynamics of  interest here. 

(3) When the orbiting speed (V~) of a satellite is mesothermal, namely c i ~ V~ ~ % 
where the ionic thermal speed ei=(2KTJmi)l/2; electronic thermal speed ee= 
(2KTJmJ/2, the gas dynamic effecton electrons is negligible except through their 
electrostatic coupling with the ions. 

(4) Since the Larmor  radius of  ions (Li) is usually much larger than the body 
size L, the earth's magnetic field effect on ionic flow can be neglected. 

1.2. MICROSCOPIC PARTICLE ACCOMMODATION [10, 11] 

When a charged particle hits a solid surface, one of several alternatives may happen; 
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to wit, it may be neutralized and then re-emitted as a neutral particle thus lost to the 
population of charged species it belongs, or reflect specularly and retains its charge,  
etc. With high kinetic energy of impact, an incident particle may cause secondary 
emissions from the surface. It is obvious that the statistical surface accommodations 
of the incident charged particles at the body would have important effect upon the 
distribution of particles near the body. Another consequence of this charge input 
by the incident particles is the resulting electric surface potential of the body. It is 
therefore important to understand this surface phenomenon in order to prescribe 
appropriately the boundary conditions of the plasma flow analysis. 

The discussion of particle accommodation has been made difficult by the uncer- 
tainties of the actual surface conditions. Solid of crystalline material, to which many 
common solid such as metals belong, is of interest here. An ideal surface is one in 
which bulk properties of the material persists to the geometric surface. In a real 
surface which is generally prepared by mechanical working (grinding, machining, 
polishing, etc.), there is usually a surface layer, about 10 microns thick, which has 
been violently distorted. Hence the use of ideal solid surface model for particle 
accommodation must be exercised with caution. 

Another property which distinguishes a real from an ideal surface is that the former 
generally suffers from presence of some sort of adsorbed gas layer. If  a clean surface is 
placed in a gas, it is bombarded by gas particles, some of which stick to it. If  they stick 
very tenaciously and virtually form a chemical compound with the surface atoms, 
they are said to be chemisorbed. 

Chemisorption energies typically are of the same order as chemical reaction energies 
and ranges from 0.5 to 5 electron volts per atom. If the atoms are not strongly attached 
to the surface they are said to be physically adsorbed. Energies of physical adsorption 
are of the same order as latent heat of evaporation and ranges from 0.1 to 0.5 electron 
volts per atom. Physically adsorbed layers may be removed by moderate heating but 
chemisorbed layers require very high temperatures for their removal and may not be 
removed below the melting point in some cases. Adsorption behavior, from a kinetic 
point of view, is conveniently described by the sticking probability for molecules of 
the gas striking the surface. Sticking probabilities are usually in the range 0.1 to 1 for 
the first monolayer and then falls sharply as further layers are adsorbed. The amount 
of adsorption quickly reaches an equilibrium value which depends upon the partial 
pressure of the adsorbate and on the temperature, e.g., with a partial pressure of 
10 .7 mm Hg of oxygen a clean metallic surface will acquire an oxide monolayer in 
about a minute. 

Fortunately at the energy range of the typical incident particles of the ambient 
ionosphere on an orbiting satellite, this surface disparity is less consequential in 
ionospheric gas dynamics. Under the condition with surface potential of a few volts, 
the incident ions with positive charge are most probably neutralized by picking up 
an equivalent negative charge; an incident electron, absorbed. These are the accom- 
modations which are used in the discussions here although most of the analyses can 
be modified to suit a different particle accommodation. 
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1.3. EQUILIBRIUM SURFACE POTENTIAL WITHOUT PHOTOEMISSION [12, 13] 

To illustrate the nature of the equilibrium surface potential (qSs) problem, a spherical 
metallic body of radius R in a quiescent equilibrium plasma at temperature T is 
considered. The incident flux of electrons which on the average out-race the ions will 
deposit a net amount of negative charges to the body assuming both species of particles 
are singly charged. The surface charges, being negative in polarity, tend to repel the 
electrons and attract the ions. This effect leads finally to an equilibrium state of the 
surface potential (qS~) such that the electronic flux balances the ionic flux in the charge 
input to the body. The equality of electronic and ionic fluxes can be expressed as 

( 8 K T )  112 ( 8 K T )  1/2 

- I~ = �88 i k-~imi / = Ie = �88 k ~-n~,] e x p ( -  ec~JKT),  (1) 

where n~, Ai and ne, Ae denote the densities and effective collection areas for ions 
and electrons, respectively; mi and me, their respective masses. The effective collection 
area Ai may be a function of potential and the surface area of the body represents a 
lower limit on A~. It should be mentioned here that other sources of charge inputs, 
such as the photoemission of electrons from the body due to solar radiation, the 
intensive charge fluxes input if the body is in the radiation belt of the earth, etc., 
would change the equilibrium surface potential. The estimation of the equilibrium 
surface potential of a spherical body moving at mesothermal speeds, c i ~ V~ ~ % 
has been made by Brundin [13]. 

1.4. EQUILIBRIUM SURFACE POTENTIAL WITH PHOTOEMISSION [12, 13] 

When a satellite moves at higher altitude the charge input due to photoemission 
effect could become dominant. Again for the purpose of illustration, an extreme case 
is taken in which the photoemission effect is so strong relatively that the equilibrium 
surface potential (qSs) becomes positive relative to the ambient plasma. Under such 
condition the charge influx due to ionic thermal velocity becomes negligible. Consider 
the spherical body of radius R which was described in Section 1.3. Here the equilib- 
rium state is determined by the balance of electronic influx Io due to thermal velocity 
of ambient electrons and the photoemission current (Iph)- The upper limit on the 
electronic influx, when no shielding is present, can be estimated as 

Ie = ~zR2ene \ ~ m ~ ]  - K T / "  

The photoemission current depends on the magnitude of the positive surface po- 
tential (q~s) and the photoelectric work function of the body material (qgw). The balance 
equation for equilibrium (positive) surface potential can be written formally, assuming 
the photoelectric emission current Iph at a given potential, 

e n e / - - /  1 - - (2) 
\ ~zrn e / K T ]  ~zR 2" 
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It is estimated that positive satellite potentials of more than a few volts is unlikely 
even in the interplanetary space. An accurate solution to the problem must involve 
a self-consistent analysis of the charge fluxes considering their dependence on surface 
potential. 

2. Methods of Collision-Free Plasma Flows 

The physical phenomena pertaining to the dynamic and electrostatic interaction 
between a moving body and a tenuous ionospheric medium constitute the scope of 
ionospheric gas dynamics. When the ratio of the characteristic mean free path (l) to 
the size of the body (L) is large, as in the case of a satellite in the upper ionosphere, 
the ionospheric flow relative to the body can be approximated as collision-free. This 
implies that the collisions, between the particles reflected from and incident on the 
body in question, have negligible effect on the particle distribution of the incident 
stream. The significance of this collisionless state is that in treating the body-plasma 
interaction, it is no longer suitable to treat the medium as a continuum due to rarity 
in collisions which are responsible for randomizing the particle motions and make 
the gas continuum-like. Instead, method of kinetic theory which is built on statistical 
particle dynamics should be used in order to obtain a better microscopic picture of 
the physical processes involved in the interaction. 

The fact that the particles, which take part in the interaction, are of charged species 
adds considerable complications to the analysis particularly when 'the magnetic field 
effect is important. Fortunately in many of the ionospheric gas dynamic problems of 
interest, the geomagnetic field effect is almost negligible. An electrically conducing 
body which is immersed in a plasma will acquire an equilibrium surface potential 
(r as shown in Section 1.3. The motion of the charged particles is now under the 
influence of the surface potential as well as the space charge potential which, in turn, 
depends on the motion of the charged particles themselves. It is this coupling of the 
field potential and the particles that gives the new complexion of the ionospheric gas 
dynamics. The development in a plasma of significant electric and possibly magnetic 
fields that exert a strong and frequently decisive influence on its motion is a fundamen- 
tal feature of ionospheric gas dynamics, distinguishing it from the dynamics of 
neutral gases. It is noted that the presence of neutral particles can be essentially 
ignored in the ionospheric gas dynamic analyses. This stems from the fact that in the 
dynamics of the collisionless flows, the neutral and charged particles can be treated 
independently. 

For simplicity an ionospheric medium consisting of singly charged ions and free 
electrons only is assumed. It is also postulated that upon collision with a surface, an 
electron will be absorbed; an ion, neutralized, hence becomes excluded from ion 
distribution in the flow field. 

A body which is charged to a potential different from that of the ambient plasma 
maintains an electric field that attracts particles of opposite charge and repels those 
of like charge. The net charge density thus established in a region next to the body 
will be of opposite polarity to the net surface charges. It will shield the electric field 
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of the body from penetrating into the undisturbed plasma which has ambient electron 
density neo~ and temperature Te. This region of charge imbalance is known as a 
plasma sheath. The thickness of the sheath is an index of the effectiveness of the 

plasma shielding effect and is defined as Debye shielding length (2D=x/K~/47re2n| 
when the body is stationary and its size is reduced to zero. The thickness of the 
sheath, which measures in the order of a few 2D, plays an important role in the body- 
plasma interaction. It is observed from Table I on the typical values of ionospheric 
parameters that unless the body is unusually slender such as radio antenna, the shield- 
ing parameter (2o/L) is usually much less than unity. It will be seen that the smallness 
of the shielding parameter turns out to be a great asset in the simplifications of iono- 
spheric gas dynamic analyses. 

It is noted from the discussion in Section 1.3 that a typical satellite, which is not 
at a very high altitude where a dominant photoemission effect prevails, has a negative 
surface potential, qS~ < 0, of a few volts. Another characteristic of a typical satellite 
orbiting in the ionosphere is its mesothermal speed which implies that the body 
velocity (Vow) lies immediate between the thermal velocities of the ambient ions (cl) 
and electrons (ce), such that c i ~ V~ ~ ce as evidenced in Table I. The body-plasma 
interaction, which is characterized by the conditions, qSs <0  and c i ~ V~o ~ co, is very 
prominent in ionospheric gas dynamics of satellites; they lead to a quasi-equilibrium 
distribution of the Maxwell-Boltzmann form for the electrons. This is, of course, 
not generally true with a diagnostic electrostatic probe to which both positive and 
negative potentials are applied. 

2.1. GOVERNING EQUATIONS 

The statistical representation of particle distributions in a plasma field can be made 
at various levels of approximations, the appropriateness of which depend on the 
interaction potentials between the particles and the particle density [14]. In the study 
of ionospheric gas dynamics, it is found that the single-particle statistics expressed 
at the Boltzmann level of approximation is most appropriate. Following Boltzmann's 
description, a distribution function f~(r, c, t) may be introduced which denotes, at 
time t, the phase density of the a-species (a refers to ions or electrons) at a point 
(r, e) in a six-dimensional phase space (r, c), known as the/z-space. The statistical 
dynamics of the a-particles, with mass m~, charge Z~e in an electric field of potential 
qS(r), according to Boltzmann [15] is governed by 

c3f~ Z~eSd? Of~ (Sf~ 8f~ + c . - -  
t3t c~r m~ 8r 8c \ 6t J~oH" 

= E f f f (f'J  -- f.f.)Jc  -- elb db (3) 
# 

where f,~ =f~(r, c, t), fp=-fp(r, ep, t) with subscript 'fl' denoting the particle collision 
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partner and superscript prime indicating quanty prior to a binary collision. The 
collision integral in Equation (3) expresses the rate of change off , (r ,  e, t) due to such 
collisions in which the velocities of the two colliding particles before collision are 
e' and e~ and the final velocities are e and e B. The integration extends over all values 
ofe~ and also over all values of the polar coordinates b and e which specify the relative 
position of the two encountering particles. The terms on the left-hand side of Equa- 
tions (3) express the total rate of change of f , ( r ,  e, t), when the particles stream in 
the #-space. The summation (~p) in front of the collision integral takes into account 
the collisions between various species in the medium. 

The field potential q~ (r, t) is governed by the Poisson equation, when the magnetic 
field effect is neglected, with ions of charge Zie  and free electrons, 

V2~b = - 4he [Zin i (r, t) - n~ (r, t)]. (4) 

The terms on the right hand side of Equation (4) denote the space charge effect on 
the field potential qS(r, t). Equations (3)and (4)constitute a self-consistent system of 
plasma interaction without magnetic field effect. The above system governs not only 
interaction of plasma with body, waves with plasma and also waves with waves. 

It is quite obvious that the simultaneous solution of the coupled non-linear Equa- 
tions (3) and (4) is mathematically intractable. It will be shown that these equations 
with their full complexities preserved are not always necessary in treating many 
problems of interest particularly in the ionospheric gas dynamics of satellite. To 
illustrate, it is assumed that the surface potential qS~<0, the body velocity (V~) is 
mesothermal, e i ~ V ~ c e ,  the plasma is neutral, ni~=ne~=n~o and in thermal 
equilibrium, Ti = Te = T. Consequently the electron distribution can be approximated 
by the Maxwell-Boltzmann law in terms of the field potential ~b(r) in view of earlier 
discussion. The only unknowns left to be determined are the ion distribution function 
f ( r ,  e, t) and the field potential q5 (r, t). 

2.2. S I M I L A R I T Y  PARAMETERS 

Some physical insight into the Equations (3) and (4) can be gained by rewriting them 
in terms of dimensionless quantities. In defining these quantities, the following 
reference magnitudes as standards of comparison are introduced: Ionic thermal 
velocity el as characteristic velocity; body size L (or wavelength as the case may be), 
macroscopic characteristic length; effective range of interaction between particles* 
o-, microscopic characteristic length; ambient ion density, n~. The dimensionless 
representations (with superscript *) are as follows: 

t = (L/ci)t* , r = Lr*, q5 = ( K T / e ) O *  

e = cle*, b = ab*,  f = (n~o/r *. 

A transverse distance from a scattering center that a scattered particle is deflected by an angle of 
90 ~ or larger. 
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In terms of the above representations, Equations (3) and (4) become, with c~= i, 

dr* , af* _ Zl ~ *  ~f* 
~t ~ - + c  .~r ~ dr* de* 

= ' - f  .f~ )]cp - e*Ib* db* de d c~ 

where the characteristic mean free path l=  (x/2 go'2no~) - 1 and 

(5) 

(@)2V20*=eq~*-ni/n~. (6) 

It is observed from Equations (5) and (6) that the dynamic and electrostatic 
similarity between different systems are governed by two ratios: Knudsen number, 
IlL and shielding parameter, 2o/L. Let us investigate further the physical significance 
of these dimensionless equations. Consider Equation (5) which says, among other 
things, that when the condition l/L ~ 1 prevails, the collision-term exerts a dominant 
influence over the streaming-term. This implies that the flow field in question is 
collision-controlled and hence the particle distributionf(r,  e, t) is near locally Maxwel- 
lian. The significance of this conclusion can be better appreciated by considering the 
fact that non-trivial solutions to Equation (3) are rare; iterated solution is often 
sought to treat a physical problem. In view of the conclusion that when I/L~ 1, 
collision-term dominates, the iteration must start with the locally Maxwellian 
distribution which is the steady state solution to Equation (3) when I/L~O known as 
the zeroth order solution. It corresponds to the continuum equation for inviscidlike 
fluid. To iterate for the first order solution, the terms on the left-hand side of Equa- 
tion (3) are prescribed in terms of the zeroth order solution. An intergral equation 
fo r f ( r ,  c, t) of  the Fredholm type is thus obtained. Notice that the iteration procedure 
again is dictated by the collision-dominated condition. This constitutes essentially 
the approximation of Chapman-Enskog who solved the Boltzmann equation for 
transport phenomena of neutral gases [15]. 

The other limiting case, where l/L>> 1, which represents collision-free or almost 
collision-free flows are of more interest to the ionospheric gas dynamics. A collision- 
free flow is governed by Equations (3) or (5) with its collision term set to zero, and 
Equations (4) or (6). This is the approximation that will be followed in the present 
review of ionospheric gas dynamics. Should, however, a higher order approximation, 
an almost collision-free flow, is of interest for any reason, an iteration scheme can be 
obtained by prescribing the collision-term of Equation (3) in terms of collision-free 
solution* [16]. The equation, thus obtained, is a first order partial differential 
equation contrasting, in mathematical structure, to the equation that Chapman- 
Enskog use for the continuum flow. 

* Which, in the calculation of sphere drag in flows of neutral particles [161 is a discontinuous function 
because of the molecular stream reflected from the body. 
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2 . 3 .  A S Y M P T O T I C  SOLUTIONS 

The dimensionless Poisson Equation (6) also provides some interesting approxima- 
tions when the condition ),D/L~ 1 prevails. The zeroth order approximation leads 
to the quasi-neutral flows where ni(r ) =ne(r). It describes a plasma state outside of 
the sheath (see Section 5) and the near wake (see Section 7). 

Following Gurevich [17] who used Equation (6) to treat the near wake behind a 
spherical satellite, the wake is divided into two regions ill one of which the ion density 
is not very small such that (L/),D) z ni(r)/no o > 1 ; in the other of which the ion density 
is so small that (L/2D) 2 ni(r)/noo < 1. The former refers to a region far away from the 
body; the latter, close to the body. The boundary separating them is defined by the 
condition 

(L/2D) 2 n i (r)/n~ = i. (7) 

The field potential q5 (r) in the far-region is approximated by the use of quasi-neutral 
condition ni(r ) = n~(r)= n~o exp(e(o/KT) which gives 

~b(r) = - KT__e l n (  n~i (~j) . (8) 

The field potential ~b (r) in the near-region is approximated by the use of 

v24 = 0 (9) 

which is equivalent to assume that comparing with surface charge, 1Lhe space charges 
are small in the region. The solution of Equation (9) for the near-region whose 
boundary is prescribed by Condition (7) and the surface potential at the body can 
be obtained. Gurevich's approximation, crude as it is, leads to muclh physical insight 
into the near-wake problem. 

2.4. WAVE MECHANICAL APPROACH 

An alternative approach to the mesothermal plasma interaction problem was proposed 
[t8] which uses the Schroedinger equation to describe the colliLsion-free plasma 
flows in lieu of the Boltzmann equation. The discussion will be limited to the steady 
motion and the absence of magnetic field although both restrictions can be removed. 
Consider a tenuous plasma, under equilibrium ni~o=neo~ =n~, T~=: T e = T  , in which 
there is a negatively charged body moving at mesothermal speed (V~). In view of 
the prescribed body conditions stated above, the electron density [n~(r)] can be 
approximated by the Maxwell-Boltzmann distribution 

ne = noo exp [e~b (r)/KT]. (10) 

The Schroedinger wave equation for an ionic particle of mass m i and charge e in 
steady motion is [19] 

]~2 V21p (r) + 2ml [E - eq~ (r)] O(r) = 0, (11) 
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where h = h/2~z and h denotes Planck's constant; ~b (r) field potential; E, total energy 
of the particle in question. The wave function 0(r)  has meaning such that [0[ 2 d3r is 
the probability of finding a particle in volume element d3r at r. Thus if there are 
n~ non-interacting identical particles per unit volume, n~ 10r z represents the probable 
number density at r. Equation (11) can be used to describe ionic distribution in the 
field provided the particles are monoenergetic (E) which is approximately true when 
the body velocity V~ >> cl, the ionic thermal velocity. 

It can be shown that for the ionic particles of interest in the plasma interaction, 
the de Broglie wavelength is negligibly small compared with the Debye shielding 
length over which ~b (r) varies significantly. Hence a short wavelength approximation, 
known as WKBJ method in wave mechanics, can be introduced to Equation (11) 
for a simplified solution. In so doing all the diffraction effect which is important for 
the shadow (wake) zone of the flow field vanishes in this limit as might be expected. 
It is noted from geometric optics that if the coefficient of the 0-term in Equation (11) 
were a constant, say e, exp[ia(l~.r)] would be a solution to Equation (11), where 
I! is a unit vector in the direction of wave propagation. This result suggests the 
following form for 0 

0 = A exp [iW(r)] (12) 

and if several rays pass through a point, we may write, instead of (12) 

0 = }-', A exp [iW(r)]  (13) 

the sum includes one term for each ray through the point. Equation (11), after the 
substitution of (12), becomes 

h 2 [(VW) 2 - i vZw]  = 2 m i ( E  - ec~) 

which reduces by short wave length approximation to 

h 2 (VW) 2 = 2mi (E - e~). (14) 

The first order partial differential Equation (14) for W is equivalent to a system of 
ordinary differential equations for the rays (or orbits) of the particles. It is a form 
of Hamilton-Jacobi equation in classical mechanics. W is proportional to the action. 
The possible orbits of ions are orthogonal to the surfaces of constant phase of the 
wave function 0- The formal solution for 0 can therefore be written in terms of W 

W(r) = f x/2rnl h {E - e~b [r (S)]} 1/2 d S ,  (15) 

where S is a parameter in terms of which the orbits of ions are described. 
The advantage of the present method stems from the fact that the Schroedinger 

equation for 0 is linear for a given q~ (r). It turns out to be very helpful in obtaining 
a formal expression for the ion density which is needed to prescribe the space charge 
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thus to prepare the Poisson equation for solution (see Section 5). It is admitted that 
the Hamilton-Jacobi equation rarely yields an exact solution. Nevertheless particular 
solutions with given initial conditions can often be obtained by nume, rical or graphical 
methods. 

3. Stationary Probe in a Quiescent Plasma 

In the present review of the self-consistent theory of ionospheric gas dynamics, we 
intend to develop the discussion from the simplest, physically significant case and 
evolve it to more complicated situations. From both the ionospheric diagnostics and 
gas dynamic view points, the electrostatic probe problem of Langmuir must be 
considered as an appropriate choice for the initial topic. The significance of Langmuir 
probe in plasma diagnostics is well known. It will be seen that the Bernstein- 
Rabinowitz theory of stationary probe [20] provides the foundation in both the 
methodology and the physical process of the ionospheric gas dynamics herein presented. 

A method of diagnosing the properties of a tenuous plasma, suggested by Langmuir 
about fifty years ago, consists of measuring the electric current collected at a small 
wire, called probe, when different voltages that are biased both positive and negative 
relative to the ambient plasma are applied to the probe. This yields a voltage-current 
relation which characterizes the plasma under measurement. An electrostatic probe 
which maintains an electric field will attract particles of opposite charge and repel 
those of like charge. Thus a region of sheath to the probe will contain a net space 
charge to neutralize and shield the electric field of the probe from penetrating into 
the ambient plasma. This region of charge imbalance immediately outside of the 
probe surface is known as a plasma sheath in which the absolute value of the field 
potential decays from its probe value to almost nil at the outer edge of the sheath. 
A basic problem of probe theory is to determine the current collection at the probe 
of a prescribed surface potential (qSs) as a function of the ambient plasma parameters, 
e.g., electron density (n~)  and temperature (T~). 

3.1. A PROBE MODEL 

Consider a quiescent, fully ionized plasma of protons, each with charge Zie and mass 
rni; electrons, charge Zee, and mass me. It is assumed that the ambient plasma has 
equal electron and ion densities (ni~ = nero = no~) which is sufficiently hot and rarefied 
that the collision-free condition (ILL>> 1) is satisfied where L denotes the probe size. 
The magnetic field effect is assumed negligible. We shall restrict the discussion to the 
time-independent case. The probe in question may be either a sphere or a two- 
dimensional cylinder [21]. 

In view of the discussion in Section 2, we may write the self-consistent system of 
equations which govern the distributions of the distributions of charged particles 
and electric field in the sheath region as follows: 

~f~ Z~e ~ r 
c . . . . . .  O, (16) 

~r m~ ar ~c 
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where ~ denotes ions or electrons and Z e = - 1  

VZ~=-4~e(Zene+Zini)=-4~e [Ze f fod3c+Zi f fid3c]. (17) 

The boundary values of the electric potential ~b(r) and the particle distribution 
functionf~(r, c) are prescribed accordingly as follows: 

~b(Rp) = ~bs, ~b(oo) = 0 (lS) 

f~ (0% c) - f~  = n~ (m~/2~KT) d/2 exp ( -  m~c2/2KT~), (19) 

where cr refers to the ion or electron species; d = 3  for a sphere, or d = 2  for a unit 
length of a cylinder. 

"~'O0, S c r 

ill~ / ~"\ " ~ " x ~  N r 

I /c ,,~ / 

/"----~ (a) Sphere 

Fig. 1. Spherical coordinates (spherical probe). 

So far the geometry of the probe has not been specified. To advance further, it is 
convenient to choose a coordinate system, fixed to the probe, which is appropriate 
to its configuration, e.g., use a spherical coordinate for a spherical probe (see Figure 1); 
cylindrical coordinate, cylindrical probe (see Figure 2). In the theory of probe, the 
particle densities n~(r) and the current densities to the probe I~ are of primary interest 

l / 

cr / 

(b) Cylinder 

Fig. 2. Cylindrical coordinates (cylindrical probe). 
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and can be expressed formally as follows: 

G(r) = f f~(r, c) d3c, 
d 

(2o) 

where the volume element in velocity space, 

~dc~cr dc4, d(o 
d3c = [dc~ dec, ' (21) 

where the top line refers to a sphere; bottom line unit length of cylinder. And 

= ( Z~ecrf~(r, c) d3c dS, /G=Rp (22) 

where 
Jr  2 sin0 dO dw 

dS = [ r  dO ' (23) 

where the top line refers to a sphere; bottom line, unit length of cylinder. The net 
current density/net = ]Ie]--Ii, where the electronic current is used as the reference. 

3.2. M E T H O D  OF SOLUTION 

It is easily recognized in observing the coupled system of Equations (16) and (17) 
that, with a finite body (R~ > 0) it is not possible to linearize the equations in order to 
apply the various methods of linear analysis. A usual procedure to unravel this 
non-linearly coupled system of Equations (16) and (17) is to construct first the formal 
solutions for f~ from Equations (16) and then substitute them into the Poisson 
equation (17) which is solvable for r (r). It is observed that in stellar dynamics there 
is a theorem by Jeans which establishes the equivalence between an equation like (16) 
and the equation of motion of a particle and says that the most general solution of 
Equation (16) is an arbitrary function of the integrals of the equations of particle 
motion. We may reproduce Jeans theorem as follows [22]: 

Consider a first order partial differential equation 

~f/Ot + c. ~ f / &  + F.~ f /~c  = 0 (24) 

for which the equations of characteristics are 

F = dc/dt, c = dr/dt. (25) 

Let the solutions of Equation (25) be 

e = e ( A 1 ,  A2, A3, A4, As, A6,  t ) ;  r = r ( A 1 ,  A 2 . . . .  , A 6 ,  t ) ,  (26) 

where the A's are the integration constants. The general solution to Equation (24) 
is expressible as an arbitrary function of A's. 

f ( r ,  e, t) = f ( A i ,  A2 ... A6). (27) 
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The above assertion can be verified by the substitution of Equation (27) into Equation 
(24). 

It should be noted that these integrals are not true constants but adiabatic in- 
variants, thus the resulting solution forfsatisfies Equation (24) to within the accuracy 
of these invariants. 

In view of Jeans theorem just described, the mathematical problem of searching 
for the solution of Equation (24) reduces to deciding the appropriate number of 
invariants needed for the problem in question and determining the functional forms 
of these invariants of interest. 

It is further observed that with a symmetric body such as a sphere or a two-dimen- 
sional cylinder, in a quiescent plasma, the sheath must be symmetric with respect to 
the origin of the coordinate (r), hence the electric field of the sheath constitutes a 
central force system. It is known that the orbit of a particle in a central force field is 
two-dimensional and determined by two constants of the motion, the energy E, and 
the magnitude of the angular momentum J [23] where 

1 2 
Ee  = ~mcz (c r ..~ eft)) --~ Z~,eq~, (28)  

where ~ denotes ions or electrons. 

J ,  = rn,c4,r. (29) 

According to Jeans theorem, we can write the formal solutions to Equations (16). 

L =L(E~,  L) .  (30) 

The substitution of expressions (30) into Equation (17) leads to a non-linear 
integral-differential equation for ~b(r) which will be solved by a method of iteration. 

3.3. TRANSFORMATION OF VARIABLES 

In view of the above discussion it is obviously simpler to use (E, J)  instead of (r, c) 
as the phase variables to prescribe the orbits of collision-free particles in a central 
force sheath. The transformation of variables which are related by Equations (28) 
and (29) must be performed prior to the evaluations of integrals (20) and (22). 
Inasmuch as E and J are designated now as the phase variables, we shall drop their 
subscripts to follow the convention herein used. 

Let us recapitulate the physical process in the collision-free plasma interaction in 
question. Consider the particles which move inbound toward the probe from the 
undisturbed plasma where they have Maxwellian distributions. Some of them, 
depending on their values of E and J, may reach the surface of the probe (r = Re) and 
be absorbed, if it is an electron and becomes neutralized, if an ion (class 1); a second 
alternative, for which a particle may have an orbit that has a turning point at r T 
before reaching the probe, is designated class 2. There is still a third kind (class 3) 
which performs a bound orbit around the probe. It is clear that the distributions of 
the particles which determine the net space charge density in the sheath depend on 
how the particle orbits behave. It is also known that the E, J-values of a particle 
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determine its orbit in a central force field much like the settings of the guidance for 
a sailing boat in a quiescent ocean. The mathematical problem, though intricate, 
is tractable. We shall illustrate this by following the change of their distribution 
functions which starts with 

f ~  = n~ (rn~/27~KT) a/2 exp ( -  E/KT~), (19) 

where d=  3 for sphere; d=  2, unit length of a cylinder at ambient station ( r ~  oo). At 
a station (r) closer to the probe, the local distribution function can be written 

(31) 

where K,(E, j2) is a discontinuous function*: 
(i) K~ = 1 for particles of class 1 

(ii) K~=2 for particles of class 2 with r>~rT. Note that this particle orbit forms 
mirror image relative to its radial turning point r T, hence it doubly contributes to 
the particle population at r as compared to case (i). 

(iii) K~=0 particles of class 2 with r<r T. It turns away before reaching station r. 
It is noted that solution (31) satisfies Jeans theorem (30) and the boundary conditions 
as above specified. The function K~(E, jz )  can be taken as a 'filter' which designates 
the degrees of availability for particles of specific E and J to contribute to the popula- 
tion of particles at the station. 

The particle densities (20) and current densities (22), after the transformation of 
variables to E and J from the use of relations (28) and (29), become 

and 

where 

no (r) = f P, (r; E, J)L~ (E) dF 

In( r )=  f f Z~crP~(r;E,J)f~oo(E)dF dSI~=R., 

dq5 dEJ dJ 
dF = dE dJ  ' 

(32) 

(33) 

where the top line refers to a sphere; the bottom line, to unit length of a cylinder. And 

(m~r) 1 -aK~ (E, jz)  
P~(r; E, J) = [2m~(E - Z,ec~) - JZ/r2]i/2" (34) 

The limits of integrals (32) and (33) cannot be specified until detailed orbital 
classifications are made. 

* Possible bound orbits are discounted, the implication of which will be discussed later. 
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3.4.  ORBITAL CLASSIFICATIONS 

The ultimate aim of an orbital classification for a given particle species in a given 
central force field, prescribed by a potential q~(r), is to identify on the E, jE-plane 
limiting regions where the particles can reach. We shall follow the procedure of 
Bernstein and Rabinowitz. For  illustration, consider ions in an attractive field. The 
convenient starting point is the energy integral for a particle in a central field ~b (r), 

E (Zie~) + j 2 / 2 m i r 2  ) ~ 2 
- = ~micr (35) 

obtained by combining relations (28) and (29). Equation (35) suggests that the 
centrifugal term contributes an equivalent repulsive potential. Accordingly an effective 
radial potential can be defined 

U (r, J) = ZieO (r) + j2/2mlr2 (36) 

which governs the radial motion of a particle. To choose an interesting case we 
specify that the r-dependence of ~b is such that r2q5 tends to zero as r decreases, when 
r is small; rZq~ =constant,  when r is large. Note that U, as a mathematical function 
of two variables J and r can be plotted as a function of  r for a given Y. Some of the 
typical constant J curves are shown in Figure 3. The physical contents of the plot 
can be comprehended by remembering that the two terms on the R.H.S. of Equation 
(36) are opposite in signs; one is attractive; the other repulsive, they are competitive 
in their influences on the radial motion of a particle. That is why an orbit can have 
maximum (Um,x) and minimum (Umi,). A particle with angular momentum -/2 (see 
Figure 3) which experiences a potential well if the probe radius Rp is small enough 
not to extend to this region to interfere with it. Then there exist orbits which do not 
cut the probe, and which are of bounded radial variation, namely having bound 
orbits. One of these, e.g., has angular momentum J2 (see Figure 3) and energy 
E= U(a, J2)= U(b, J2) turns at r = a and r = b. 

Fig. 3. 

I\\,2 'q 
i"4 d a I 

[ t . . . .  L 

Orbital  classification diagram. Effective potential  energy for radial  mo t ion  
vs. radius U(r) [20]. 
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It is significant to locate the extrema of the U(r) curves which is given by 

(OU/~?r)s=O or j2=mir3oZ~e(d(o/dr)l . . . .  (37) 

which denotes the locus of extrema, J~(rr Note that ions which have energy 
E>~ U(r,, J) and angular momentum J with j 2 >  j2 will reach the probe; E <  U(r~, J), 
j 2 >  j~, will turn away from the probe before reaching it. Furthermore, the ions with 
energy E >  U(r~, J) and with j2<j2 will also be absorbed by the probe. Using the 
above criterion, a curve j 2 =  G(E) in E, j2-plane where 

j 2  = mlr3Zie de/dr  / j 2  

E = Zie r (r) + 1Zier dcNdr) < ,12 (38) 

will define the limiting regions (see Figure 4) for the filtering function K i (E, jz). 

3.5. SOLUTIONS TO THE CURRENT COLLECTION 

The limits of integrations (dF) for the particle densities (32) and current densities (33) 
can now be prescribed referring to Figure 4, namely, to integrate over regions, C + D, 
for ni (3.17); region D, for li (33) assuming that the probe radius R~ is large enough 
to allow only negligible bound orbits; the limits of integrations for n e and Ie can  be 
similarly prescribed (for details, see [21]), recall, however, electrons are in a repelling 
potential field if it is an attractive one for the ions as herein assumed. 

Fig. 4. 

E 

B 

3-a 

E, J2-phase plane [20]. I:  E=Zier II :  E=Zied?s+J2/2miRp 2. 

With the inbound particles prescribed as Maxwellian distributions at the ambient 
station. The integrations over dF can be made over 4) and jz  only; the resultant 
particle densities and current densities are still definite integrals involving r (r) which 
can be evaluated after r (r) is prescribed. To complete the solution to the problem, 
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the potential ~b (r) which is governed by the Poisson Equation (17) must be determined. 
Equation (17), with the space charge terms, now expressed as definite integrals 
involving unknown q5 (r), can be solved by using a special iteration procedure [21]. 
The iteration usually starts with an assumed net charge density and proceeds over 
large cycles of iterations until a self-consistent solution for ~b (r) is obtained. The net 
current density I ,  et = [I~J- Ij which represents the current collected at the probe can 
be integrated once the potential q~ (r) is prescribed. 

The numerical functional analysis herein described for both spherical and two- 
dimensional cylindrical probes at different surface potentials qSs(q~ < 0 and q5 s t> 0) and 
probe sizes, ignoring, however the presence of bound orbits, have been obtained by 
Laframboise [21]. Some of Laframboise's results are shown in Figures 5-10 and 
comparison with experiment [24] (see Figure 11). 

.q= n__ 
n~ 

T i 
T-"~ = I 

e ~ s  =-25 
kT e 

Fig. 5. 

"qi 

0 l0  20 50 

Ion and electron charge densities vs. distance - spherical probe [21]. 

It is important to note that under a wide range of plasma states, the use of an 
isotropic monoenergetic distribution to approximate the ionic Maxwellian distribu- 
tion at the ambient state leads to reasonable approximations for the probe currents. 
Bernstein and Rabinowitz used such an approximation for the case of a probe with 
high negative surface potential q5 s [20]. Extensive calculations were given by Chen 
[25]. Along the course of monoenergetic approximation, Lam [26] was able to carry 
out an asymptotic analysis of the Poisson equations for qS(r) in the limit Rp>>2D, 
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the Debye shielding length and gain analytically for the probe theory of Bernstein 
and Rabinowitz. 

Enlightening comparisons of the contemporary theories of probe for diagnosis 
plasma under various conditions, including the theory of Allen, Boyd, and Reynolds 
[37] who used cold ion approximation and the earlier theory of Langmuir which is 
valid for very low densities and small probes has been given by Chen [25, 4]. It is 
also significant to note a recent experiment by Chen, Etievant and Mosher [28] has 
shown excellent experimental verifications of Laframboise's analysis of probe currents. 
Further experimental works might be possible to gain insight into the validity of 
negligible bound orbit effect especially when the probe radius is small. 

25 

20 

15 

10 

I 
0 I0 20 

Fig. 6. Ion or electron current vs. probe 
potential - spherical probe [21]. 
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Fig. 7. Ion current vs. probe radius -spher- 
ical probe [21] l~(e),(referring to electron 

temperature). 

As a concluding remark on the theory of probes in a quiescent plasma, it is perhaps 
significant to mention that the purpose of searching for an almost exact solution, 
such as Laframboise's, is not to merely gain a few percent of accuracy rather to 
comprehend the precise picture of plasma interaction at work. A :further motivation 
for a study is to use it as a foundation to build the more involved plasma interactions 
of ionospheric gas dynamic interest (see Section 4). 
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Fig. 8. Potential vs. distance - cylindrical probe [21]. 
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Fig. 9. Ion and electron charge densities vs. distance - cylindrical probe [21]. 
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Fig. 10. Ion and electron charge densities vs. radius - electron-attracting cylindrical probe [21]. 
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Comparison between theory and measurements [21]. TgTe ~ 1, Ij->I~ (e) [Figure 7]; 
z =  Ze4d KT. 

4. Electrostatic Probe in Slowly Drifting Plasma 

The condition of a quiescent plasma relative to a diagnostic probe is rarely met 
either in laboratory plasma or in the ionosphere. In other words, a diagnosing probe 
is almost invariably exposed to a drifting plasma instead of a quiescent one. The 
superposition of a directed plasma motion toward a spherical or two-dimensional 
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cylindrical probe will destroy the symmetry of the plasma sheath with respect to the 
probe. The electric field of the sheath will no longer be a central force system which 
has been the basic requirement for Bernstein-Rabinowitz' E, J-representation of 
particle orbits in the sheath. The transformation of variables to the E, j2-plane has 
been the key of their success in formulating the functionals of probe theory. 

It is intended to gain some physical insight of the drift effect without giving up 
completely the advantage of Bernstein-Rabinowitz approach. It is observed that a 
case can be made for a probe with a slowly drifting motion the velocity (V~) of 
which is small compared with the thermal velocity of ions (q) in the ambient plasma. 
For instance, referring to the data on outer ionosphere where the ion temperature is 
high and the velocity of an orbiting satellite is much lower than if it is in lower 
altitude, the combination of these circumstances can lead to the condition, V~o ~ ci, 
for a probe on-board. A somewhat similar case can be established for a probe in a 
laboratory plasma. Under this assumed condition, it is anticipated that the equi- 
potential lines of the plasma sheath would deform slightly from their spherical (for 
a spherical stationary probe) into elliptical contours. Corresponding deviations for 
the other variables, such as particle densities, current densities, etc., from their 
respective stationary cases are also expected. A suitable perturbation parameter, 
preferably a dimensionless quantity, on which these deviations uniformly depend 
can be chosen. For instance, the speed ratio (V~/ci) apparently meets the requirement. 
The above discussion makes it possible to consider a perturbation analysis for the 
slow drift effect on the probe characteristics. 

A proper treatment of the perturbation approach as such may involve with the 
perturbed characteristics in the (r, e) phase space relative to the characteristics defined 
by the Bernstein-Rabinowitz system. This indeed has been attempted with moderate 
success [29]. Although the transformation of variables to the E, j2-plane helps, 
nevertheless the tracking of the orbits and their perturbations involves heavy account- 
ing work in orbital classifications. Instead we intend to discuss an alternative approach 
to the plasma interaction problem, the wave-mechanical formulation using Schroe- 
dinger equation [ 18] which appears simpler mathematically in certain types of plasma 
interaction phenomena, e.g., the present one. The application of the wave mechanical 
approach to the probe problem in the discussion herein follows essentially the work 
of Chmielewski [30] which is an extension to the work [18]. The solution of interest 
is still left to be improved upon. Hence we would only bring out some features of 
the work for discussion. 

4.1. INTRODUCTION TO THE WAVE-MECHANICAL APPROACH 

The primary element of any perturbation analysis is the solution of the problem at 
zero perturbation, i.e., the zeroth order solution relative to which the perturbation 
at a finite value of the perturbation parameter, say V~/cl, is made. Although we 
have such a zeroth order solution in Bernstein-Rabinowitz' stationary probe theory, 
it is however not expressed in wave mechanical formulation which is needed here. 
Accordingly as a preliminary step to attack the drift probe problem, a formulation 
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of stationary probe in wave mechanical method is made. It provides an interesting 
comparison with the result of Section 3; the final results from the two different 
approaches agree as it is expected. 

In the present section, we shall treat the same problem as postulated in Section 3.1. 
Instead of the collision-free Boltzmann equation (16), the motion of particles can be 
represented by the Schroedinger equation in wave mechanics (see Section 2.4). 
Consider a particle of energy E in a central electrostatic field ~b(r) it can be written 

2 m  a 
V20= + h2- [E - Z=eq5 (r)] 0~ = 0, (39) 

where h is related to Planck's constant h=  27~h. The wave function ~= characterizes 
the motion of particle of mass m,. It is interpreted in a statistical sense such that 
]~bl2d3r represents the probability that the particle (a) will be found in the region 
between r and r+dr .  Integration over the whole space thus yields a probability of 
unity, indicating that the particle is presented somewhere though its precise location 
is not necessarily known. In a more general sense, ~ can be considered as charac- 
terizing a stream of identical particles (~), then by appropriate normalization, 1~i2 
can be interpreted as the fractional number distribution of the stream. Although for 
convenience we continue referring to ~ in terms of single particle, this latter inter- 
pretation is the one of interest in the subsequent development. 

4.2. SPHERICAL POTENTIAL FIELD 

Consider a spherically symmetric field q~ (r). Let 

~ (r, 0, w) = R~ (r) Y~ (0, w) (40) 

and substitute into Equation (39). Separation of variables yields the equations: 

d 2 2m~2 1 ~, (22m= 7g+  1) h 2-I . ~r2(rR~) + LE -- Z~e(o(r) J(rRJ = 0 (41) 

AY~ = - 2(2 + 1) Y=, (42) 
where 

1 c~ c~ 1 6 ~2 
- -  ( 4 3 )  

A - sin 0 O0 sin 0 ~0 + sin 2 0 ~W 2" 

There is an equivalence between the operator A and the dynamic quantity J2/h2 

where J is the total angular momentum and 2(2+ 1)/12__+j2 as h--~0. Their relation 
serves to link the discrete and continuous quantities which denote the angular 
momentum in wave mechanics and in classical mechanics, respectively. Hence, in the 
limit of short wave length approximation, h~0 ,  (see Section 2.6). Equation (41) may 
be rewritten 

d 2 2m= I J2 1 
dr 2 ( rR ' )+  h2 E-Z~e4(r) 2m~d2 (rR~)=O. (44) 
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On account of spherical symmetry, this simple equation suffices to determine the 
particle motion. The solution of Equation (44) can be immediately written in view 
of the WKBJ approximation 

where 

r 

m~r[Q,(r;E, j )]~/zeX p +_ Q(r ;E , J )  dr , (45) 

Q~ (r; E, J) = {2rn, [E - Z~e(~ (r)] - J2/r2} 1/2. (46) 

Suppose that a stream of particles of species e, each with energy E and angular 
momentum J, moves inbound from the ambient station ( r~  oo) towards the probe 
(r  = Rp), the probability that a particle can be found in dr at r, where R v ~< r < o% is 

IR~(r ) l  2 d r  = K~(E, j2) 
(m~r)2Q~(r; E, J) dr. (47) 

The factor K~ (E, j2) has values 0, 1, or 2 as discussed in Section 3.3. It accounts for 
the two branches of a particle orbit associated with the possible choices of the al- 
gebraic sign in the exponential argument in Equation (45). These branches correspond 
to motions which approach ( -s ign)  and recede from (+  sign) the field center. 

Note that the magnitude of the radial probability density [R~(r)] 2 would not be 
affected by any phase shift which amounts to multiplication factor exp icp included 
in Equation (45). Observe particularly that IRa(r)] 2 is identical to the transition 
probability P~ in Equation (34) with d=  3 for a spherical probe. Thus we recover the 
result of Bernstein and Rabinowitz for the spherical case. 

4 . 3 .  C Y L I N D R I C A L  P O T E N T I A L  FIELD 

With particles of species e in a cylindrically symmetric field ~b (r), a similar development 
can be made restricting, however, the discussion to the motion in a transverse plane. 
Let 

~ (r, 0) = R~ (r) O~ (0). (48) 

Equation (39), after the substitution of expression (48) leads to the separated system 

d 2 _ 2m~F 22h 2-] 
d~r2 (~/r R~) + ~ -  [_E - Z~e~? (r) 2m~rZj (x/r  R~) = 0 (49) 

d20 
- -  - -  • 2 0 .  ( 5 0 )  

d02 

In the present case, the equivalence d2/d02,,~-ja/h2 holds where J (=J~l)  is the 
angular momentum of the transverse motion of a particle. Again from Equation (50), 
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in the limit h~0 ,  it follows that ~2/~2.._~j2 and Equation (49) takes the form 

449 

d 2 2rn= 1- j2  I - 
d r 2 ( x ~ g ~ ) - k h 2 L E - Z = e ~ ( r )  2m=r ~ ( x / r R , ) = 0 "  (51) 

Once again by the use of WKBJ approximation, the solution to Equation (51) can 
be readily obtained from which the radial probability density of the e particles can 

be written 

~;,(E, J~) (52) IR~(r)[2 = m~,rQ~,(r; E, J)' 

where Q~(r; E, J) is defined as before namely function (46). It is observed again that 
the probability density (52) is identical to the transition probability P~ (r; E, J)  in 
Equation (34) for a cylindrical probe following the Bernstein-Rabinowitz formulation. 

4.4. ORBITAL STUDIES 

The rest of the formulations leading to the particle densities and the current densities 
in the E, JZ-plane are essentially the same as in Section 3.3 except that with an absorp- 
tion boundary at Rv for the reflected particles, ~ = 0. They are 

,*~(r)= f f L~(g)lg,~12 dE dJ ~-~ (53) 

L(r)= f f f z~eL~(E)Crlg' f dEdJd-l dSlr=R~, (54) 

where d =  3 for a sphere; d=  2 for unit length of a cylinder. 
In addition to provide a zeroth order solution for the forthcoming perturbation 

analysis of the drift effect, the present formulation can throw some light on the 
bound orbit problem [18, 30], which appears important possibly 'when the plasma 
sheath is relatively thick. It is observed that when 

E - [Z~,e,b (r) + J:/2m.r z-] > 0 (55) 

which is the criterion in the orbital classification (Section 3.4), the solutions (45), 
under condition (55), are exponential in character. On the other hand, bound orbits 

can occur if 

E - [Z~e4)(r) + S2/2m~r:] < 0 (56) 

under which condition, the solutions to the Schroedinger equation (39), with the 
WKBJ approximation exhibit a harmonic behavior and are closely related to the 
problem of potential barrier penetration in wave mechanics. An analysis of the 
bound orbits effect in the light of potential barrier penetration appears feasible. In 
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any event, additional hypothesis pertinent to the degree of 'fullness' of  the potential 
wells associated with the bound orbits must be made. 

4.5. PERTURBATIONS OF DRIFT EFFECT 

Consider a probe which has been described in Section 3.1. Superpose a directed 
velocity V, to the ambient plasma, given in Section 3.1, such that the distribution 
of the a particles in the ambient plasma becomes, referring to a reference frame 
fixed to the body, 

f~o~ = no~ \ 2 ~ J  exp - ~ (e + Vow) 2 , (57) 

where c~ refers to ions or electrons; d = 3  for a spherical probe or d = 2  for a unit 
length of a cylinder. Notice that the positive streamwise axis points in the direction 
of body motion, and the particle velocity c is measured with respect to the body 
coordinates. It is assumed that Vo~/c i < 1 where c i denotes the thermal velocity of 

ions, C i = % / ~  

It is observed that the displaced Maxwellian distribution (57) reduces to the 
quiescent case (19) when the drift velocity Vo~ is set to zero. It is also evident that 
when Vo~/Ci < 1 as assumed, the resultant deviations in probe characteristics from 
their respective stationary case values are expected relatively small. This uniform 
dependence on a small parameter Voo/Ci makes it fruitful to pursue a perturbation 
analysis for the slow drift effect on the probe characteristics. Although the perturba- 
tion procedure is straightforward [31, 32], a judicious choice of functional expansions 
in terms of the perturbation parameter (Voo/c 0 often decides the fruitfulness of the 
analysis. Inasmuch as the state of the art on the problem of interest here [30] is still 
rudimentary, only a brief discussion of the formulation for a drift sphere is given 
here assuming T i = T e = T. 

Let 0 be the angle measured from the streamwise direction in a meridian plane 
of the sphere. Since E =  m~c2/2 the distribution (57) can be rewritten [30] 

f = .  = (-Vexp{_l   
2~KTf + voo ~ cos 0 + m,V~/2]~. 

(58) 

The plasma sheath of a drifting sphere tends to become elongated in the streamwise 
direction and the potential field is no longer perfectly radial. Particle energy remains 
a constant of motion but not the total angular momentum. The angular momentum 
component parallel to the drift direction remains constant as a result of axi-symmetry 
with respect to the streamwise axis. Sheath asymmetry is the consequence of non- 
isotrophy of the distribution at the ambient station and distortion of the collective 
charge distribution within the sheath. 
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4.6. DIMENSIONLESS EQUATIONS 

To convert the Equations (39) and (17), which constitute the selfconsistent system 
here, we introduce the following dimensionless substitutions of the quantities (denoted 
by superscript primes) 

I KT  )2-11/2 eq5 r ~, = (re,Re r' = - - ,  
_1 ~, Z - KT'  R e 

h L ~ d  . ,  s, h! t ,t 
m , n p c ,  f['| n~  ' n ~ '  l ,  IR, 

Cr E' E J' J dS c; . . . .  dS' = 
c, KT m,Rvc ~ ' Ap 

(RP'] 2 mi S~ Voo Ae=4nR2,  = - ,  = _ ,  
o" = \ , kt m e c ,  

where 
( K T  N~ 1/2 =(2KTI112 ' Z,eno~Aec  , 

2~  ' c~ k--m,/  IR,-- 2j-x~ n 

IR, denotes the random flux of species e, incident upon a body at zero potential in 
a Maxwellian gas. 

In terms of the above defined dimensionless quantities, the Equations (39) and 
(17) become 

v20" + ( i /h;  2) [e '  - z , z ]  0" = 0 (59) 

V2Z = a (n" - n;) (60) 

particle densities 

n;(r)= f f fLolCl2 dE' dJ '2 

current densities 

(61) 

where 

dE dJ '2 dS'[, ,=l,  i ~ = 2  n ~Crlff I 

J~,'~o = n-3/Zexp - [E + 2S~x/E cos0 + S]] 

(62) 

(63) 

net current density 

'ld  -t -t __ I i  
/ n e t  ~ l e  (64) 
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particle energy 

j ~ 2  

E' = c~ 2 -[- ~ 2  -]- Z~t,~ �9 
Y 

Boundary conditions: 

(65) 

f~oo 

where 

Lo 
LI 

L2 

G 
n~ 

4.7. P E R T U R B A T I O N  EXPANSIONS 

It is postulated that when a steady flow drift (Sj ~ 1) is superimposed on the ambient 
plasma, it impresses a uniform variation on all the sheath properties from their 
respective quiescent-state values. In terms of the perturbation parameter S~, we may 
perform the following expansions (superscripts primes denoting dimensionless are 
dropped hereafter) 

2 =Ao + GL~ + s~f~2 +.. . ,  

---- - 3 / 2  exp ( -  E) 

= - 2 ~/E cosLo 
= ( 2 E  c o s  2 0 - 1 ) f ~ , o  ( 7 1 )  

= Go + & G ,  + s~L2 +... 

= n~o + S~n~a + $2n~2 + .. .  

= i~o + S~i~l + S2i~2 + . . .  

7. = Zo + SIZ1 + $2)~2 
�9 �9 2 .  

/net = /net, 0 + Si inet ,  1 + S i / n e t ,  2" (72) 

Note that S i = 4 /~  Se, hence Si >> S~. 
It is important to recall that the energy E appearing in the equations for a drifting 

probe is measured relative to a reference frame fixed with the moving body (Sections 
4. I and 4.5). On the other hand, with a stationary probe, call it Eo, it refers to particle 
energy measured with respect to the earthfixed coordinates. Accordingly, E = E  o + 
+AE(S~,  O) where AE represents an energy change associated with the drifting 
motion. The dependence on 0 appears because the energy change differs for particles 
approaching from different indurations relative to the streamwise direction; AE 
denotes an energy increment for a particle approaching from the upstream direction 
and a decrement for one entering the sheath from the downstream. Since S~ ~ 1, 
these changes, when summed over all incoming particles, will approximately cancel 
and are therefore neglected. 

(70) 

r = 1 ~Z 2 ZP (66) 
( ~  = 0 (c.r  > O) (67) 

r -~ oo ~X, ~ 
0 (68) 

(n~ ~ 1. (69) 
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4.8.  ZEROTH-ORDER EQUATIONS 

With the substitution of the expanded functions (70) and (72) into Equations* (59) 
to (69), the boundary value problem for the perturbed sheath breaks down into 
a sequence of boundary value systems for terms of successive order in the expansions. 
The zeroth order system becomes 

h~ v2g,~o + [;3 - Z~xo (r)] Go = o 

n.o= f f f~olC,~olZ dEdJ ~ 

V2Zo = rr (neo - -  nio ) 

at r = l  

Zo = Zv 

6 ~ o = 0  (e-r > O) 

at r--, oo 

X o ~ 0  

n~o --~ 1 

/net, 0 = ir - -  i i o / ~ "  

4.9. HIGHER ORDER SYSTEMS 

The first order equations are 

h~ V2G1 + [ E -  Z~zo(r ) ]Gt  = a m G o ,  

where at = Z~ for ions and al = ZJx/~ for electrons 

f f . ~P,dP~o) + f~t lO~o[2] dE dJ2 , ~ t  ( r )  = * * 

V2Zl : 0" [ ( /~el /%~;)  --  n i l 3  

at r = l  
Zt = 0 

O~t=0 (e.r > 0) 

�9 The subscript primes denoting dimensionless are dropped. 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

(85) 

(86) 
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at  r--+ oo 
,L  "*  0 (87) 

n~l ~ 0 (88) 

,=l=2 [fff * * �9 fe0(@~0'//=l + ~=llP~0) +f~a IGol 2 C r  dE dj2lr=l (89) 

inetl = (/el -- iil)/%/~--, (90) 

where superscript * denotes complex conjugate. It is noted that the first order solution 
can be obtained only after the zeroth order solution is given. 

The second order equations are 

h 2 V20a2 + [E -- Z~Zo (r)]  Oa2 = alZl~/~a + a2z2O~o (91) 

where a2 = Z~ for ions and al = Z d #  for electrons 

PP 
.2 r, JJ * * = [ L o ( G o G z  + G2Go + iG,  I z) 

"}- f~l  (I//aOI/]~l -I- ~]al~/IaO) "~-f~2 IGo123 d E  d J  2 (92) 

at r = l  
V2Z2 = o-[(He2/]/) -- hi2 ] (93) 

Z2 = 0 (94) 

at r ~ o o  
G2 = o (c.r > o) (95) 

~2 -'4" 0 (96) 

n~2 ---> 0 (97) 

* * 
�9 (GoG2 + G2Go + IGll 2) 

+ f l  (0~o~,1 + @,,~t~o) + L 2  [I/taol 2] Cr d E  dS2[r=, (98) 

inet2 = # - I  [-ie2 -- i i2/~]" (99) 

Notice again that the second order equations are prescribed in terms of the zeroth 
and first order solutions. 

4.10 .  SOLUTIONS TO DRIFTING PROBE EQUATIONS 

The equations developed in Section 4.9 for an electrostatic probe in a slowly drifting, 
Maxwellian plasma have been numerically integrated by Chmielewski [30]. Notice 
that the drift-induced corrections to sheath characteristics are expressed in terms of 
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corresponding solutions for a stationary probe. The stationary probe solutions of 
Laframboise [21] were used to determine the configuration of the locus of extrema in 
the E, JZ-plane as a preliminary part of each calculation. Extensive calculations of 
the first and second order solutions are available [30], only a few samples will be 
shown here for illustration (see Figures 12, 13). In view of the nature of approximations 
[30], the results are taken as a gross estimation of the drift effects. 

i 2 
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Fig.  12. 
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Second  o r d e r  cu r r en t  (i~) vs. p r o b e  p o t e n t i a l  (~s) - r epe l l i ng  sphe re  [30]. 
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Fig .  13. Second  o r d e r  cu r r en t  (&) vs. p r o b e  p o t e n t i a l  (~s) - a t t r a c t i n g  sphe re  [30]. 
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Relatively few experimental results which displays the effect of drift on current 
collection by an electrostatic probe are available. Some works have been reported 
[24], [33] in which cylindrical probes oriented at different angles relative to directed 
plasma were used. Their findings verify that drift effects are most readily observable 
in the ion saturation region. However, any quantitative comparison of the theoretical 
results [30] and [24] and [33] are unwarrantable because the experiments were not 
operated with collisionless ionic flows. 

In conclusion, it appears that only a small effect on the stationary probe charac- 
teristics is expected when a slow plasma drift is imposed. The principal change occurs 
in the ion saturation region of the current-voltage characteristic curve of the probe. 
In general, the change in the net current indicated by the theoretical results are much 
smaller than those predicted by the contemporary theories with ad hoc approxima- 
tions. The above conclusion can be reconciled with the observation that the elec- 
trostatic field effect on the sheath structure is large compared with a small flow 
perturbation plus the fact that the local current perturbations tend to cancel be- 
tween the upstream and downstream sides of the probe when the average (over 
the probe surface) for current is taken. For  instance the first order correction for 
the net current vanishes. Nevertheless sample calculations for a spherical probe 
does indicate that the effect of drift on the field potential distribution is to steepen 
the sheath potential on the upstream side of the probe;' to make it decay more 
gradually on the downstream side. Far from the probe, the decay of field pertur- 
bation appears to be more gradual at ion-attracting potentials than at electron- 
attracting potentials. 

5. Ionospheric Flows at Mesothermal Speeds. I: Sheath and Quasi-Neutral Flows 

When a satellite moves in the upper ionosphere, the typical body velocity (Vow) 
relative to the ambient medium is mesothermal, namely it is much larger than the 
thermal velocity of the ions (el) much smaller than that of the electrons (co), 
e i ~ V~ ~ G- The gas dynamic aspect of such a body-plasma interaction has a unique 
feature: While the flow of the ion species has hyperthermal characteristics, that of 
the electron species is low subthermal, in fact, quasi-stationary. The ion and electron 
species are of course coupled, through an electrostatic field. In other words, the gas 
dynamic effect of the flow is initially imparted to the distribution of the ion species 
and transmitted to that of the electron species via the electrostatic coupling. 

The extent of plasma disturbances in the neighborhood of a body facing a meso- 
thermal stream can be conveniently divided into the following zones: (I) Sheath and 
its transition to quasi-neutral flows, (II) Near-wake flow which refers to the wake in 
the vicinity of the body, (III) Far-wake flow which refers to the wake far downstream 
from the body. 

In the present chapter, the flows in zone I are discussed. To best illustrate the 
characteristic distributions of particles and field in the flow. A model having the 
simplest two-dimensional configuration is used [18]. 
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5.1. SHEATH 

Consider a collision-free mesothermal plasma stream, which is fully ionized, im- 
pinging on an electrically conducting plate at a small angle 0 (Figure 14). It is assumed 
that the plate has a surface potential 49~ which is negative relative,' to the ambient 
plasma. The incident electrons are absorbed; ions neutralized and re-emitted as 
neutrals. The plate is large or two-dimensional, therefore the edge effect is nil and 
the field potential can be treated as a one-dimensional problem 49 = 49 (x). A further 
simplification is made by assuming that the value of the negative surface potential 
is high enough that only the electrons at the rare high energy tail of its distribution 
can reach the plate and be lost. Under such conditions, the electrons maintain 
quasi-equilibrium and have the Maxwell-Boltzmann distribution. 

v 5 ,  
Fig. 14. 

X 

Plasma sheath at an inclined plane with ~bs<0. Sx= Vx/ci. 

n~(r) = no exp [e49 (r) /KT~],  (lOO) 

where no denotes the electron density in the ambient plasma; it should be equal to 
the local ion density because the ambient plasma is neutral, i.e., nio =n~o =no .  

The self-consistent system of equations which govern the motion of the ions can 
be formulated [18] using the Schroedinger equation* and the Poisson equation. 

t?zo /t3x 2 + c32t~ /t3y 2 + 2mi/h  2 [E - e49 (x)]O = 0 (101) 

d249/dx 2 = - 4~e(nl  - ne) = - 47ten o [-I~bl a - exp(e49/KTe)] (102) 

with the boundary conditions: 

x = o o ,  4 9 = 0 ,  d 4 9 / d x = O  (103a) 

which says that the shield potential decays asymptotically to zero at the ambient 
plasma; also at 

x = O, q5 = 49~. (103b) 

* An alternative method is to use the collision-free Boltzmarm equation. 
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In Equation (101), E represents the energy of an ion in the incident stream relative 
to the reference frame fixed to the plate. The stream is approximately monoenergetic 
(E) since Vo~ ~> ci. The discussion on the use of the Schroedinger equation for collision- 
free plasma interaction has been given in Section 2.4, and will not be repeated here. 

Let the wave function be represented as 

~,(x, y) = 01 (x)g,~(y) (104) 

as a trial for separation of variables in Equation (101). After the substitution for 
~(104), Equation (101) is resolved into component equations: 

d2~j,/dx 2 + (2milh 2) [E - er (x)] ~1 2 = CI~ 1 (105) 

d2O2/dx 2 = c ~ 2 ,  (106) 

z is a separation constant. Under WKBJ approximation [18] the solutions where c a 
to Equations (105) and (106) can be readily obtained which, after the introduction 
of the upstream condition (103a), becomes 

I ~ 1  ~ = ( 1  - eO/E c o s  2 0)-1/2. (107) 

It is interesting to note that the ion density function (107) agrees with that obtained 
by Hays [29] who used the collision-free Boltzmann equation, instead of Schroedinger 
equation for the ion distribution. It is also of interest to compare the present result 
with that of Ginzburg [34] who studied a special case (0 = 0) of the problem using 
hydrodynamic equation suitable for continuum flows. Ginzburg's finding via conti- 
nuum approach checks with the above result (107) when 0 is set to zero and the pressure- 
term contribution in Ginzburg's result is neglected to comply with the present 
hyperthermal assumption. 

Equation (102), after rearrangement and the substitution of [r 2 (107), can be 
readily integrated [18] 

X = f (8~noo)- 1/2 {2E cos 2 0(%/1 - -  e~//~ COS 2 0 - -  ~) - -  

- KT~ [1 - exp (eO/I(Ze)]}-1/2 dq~. (108) 

The sheath potential ~b(x) (108), for a two-dimensional inclined plate facing a 
monoenergetic plasma stream, is given in an implicit form which has been plotted 
(Figure 15). It is observed from Figure 15 that the sheath characteristics, represented 
by the potential ~b(x), the particle densities ni(x ) [Equation (107)], n,(x)[Equation 
(100)], etc., all exhibit rapid variations nearest to the surface, in fact more than 95% 
of the drop in their values occurred in a minute distance from the surface which can 
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Fig. 15. Field potential in the sheath of an inclined plane. 

be approximately defined as the thickness of the plasma sheath. This kind of boundary 
layer behavior [35] is inherent in the governing Equation (102) for the sheath potential 
~b. It can be shown by non-dimensionalizing Equation (102) which then has a coeffi- 
cient equal to (2D/L) 2 in front of the Laplacian term (see Section 2.2). Recall the 
ratio of the Debye shielding length (2D) to the characteristic dimension of the field 
(L) is very small as assumed in the problem. This unique feature of the sheath has 
made it possible for the use of singular perturbation analysis in the stationary probe 
study [26]. 

The strong tendency for the variation of sheath characteristics to become one- 
dimensional as shown in the papers of Langmuir [36] and others [29, 37] enhances 
the usefulness of the inclined plane solution. For instance, the sheath on a moving 
sphere can be determined by applying the inclined plate solution (,107) to the local 
area of the frontal surface which has been suitably divided according to the local 
inclination relative to the free stream velocity (Voo). The approach would be quite 
analogous to the Newtonian theory of sphere drag at hypersonic speeds [38] or the 
use of oblique shock relation to calculate the hypersonic sphere drag [39]. 

5.2. QUASI-NEUTRAL FLOWS 

It appears from the discussion in Section 5.1 that, beyond the sheath, the densities 
of ions and electrons are very nearly equal and the electric field is relatively weak, 
though still significant [21]. Generally speaking when a charged body moving in a 
tenuous ionosphere the charged particles in the ambient plasma are deflected, from 
their equilibrium distribution, both dynamically and electrostatically in the vicinity 
of the moving body. Although the charged particles tend to so alrrange themselves 
in the disturbed zone as to shield the electric field carried by the moving body from 
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penetrating into the ambient plasma. This shielding is not perfect. The flow region 
which is permeated by a weak, yet significant, field extension but with nearly equal 
ions and electrons densities (ni~ne) everywhere is called a quasi-neutral flow. The 
quasi-neutral condition, n i ~ne essentially de-couple the field dependence on space 
charge as can be seen from Equation (102). The field however does provide the sole 
influence on the motion of the collision-free particles. In view of this, it is expected 
that a collision-free ionic flow in an attractive field is analogous to a corresponding 
neutral particle isothermal continuum flow with the field effect playing an equivalent 
role of the pressure gradient effect in the continuum flow as noted by Lam and 
Greenblatt [40]. In their innovation continuity and momentum equations for a 
continuum flow were used for a collisionless flow without any given justification. 
We shall establish this formal analogy using the wave mechanical formulation (see 
Section 2.4) to validate the continuum-like equations for representing the collisionless 
quasi-neutral flows. 

It is assumed that the body has a surface potential which is negative relative to 
the ambient plasma and whose value is large enough that the loss of electrons to 
the surface is negligible. The incident stream is collision-free. It is also assumed that 
the body moves mesothermally hence the electron mass flow is discounted. 

Under the present assumptions, only the ionic flow is considered. Consider the 
ionic flow which can be described by Schroedinger equation (see Section 2.4) 

c9~, h 2 
ih - V2~ + e ( ~ ,  (109) 

c~t 2m~ 

where the wave function ~ depends on the coordinates (r) and of the time (t). Similarly 
the potential ~b may depend on both r and t. It is recalled that Schroedinger's original 
idea was to interpret 1~9] 2 as representing a true density, i.e., to have the particle 
smeared over space with mass density 0 =rnirO[ 2 and electric charge density ~e = e]O[ 2. 
Later he reluctantly gave up his original idea and accepted Born's probability inter- 
pretation. Schroedinger's original idea can be renewed to interpret [~[2 thus the 
classical picture of the system described by the wave function O(r, t) corresponds to 
a medium with density 0 (r, t) spread out over space and moving under the influence 
of a field potential q5 (r, t), the 'elastic stresses' occurring inside the medium. Fol- 
lowing this line of argument, Schroedinger already obtained the current [41, 42] 

ih 
ni v - (0" V~ - ~9 V6*). (110) 

2m~ 

Equation (110), together with ni=n| 2 and Equation (109) satisfy the following 
relation 

Oni/at + div(nlv) = 0 (111) 

which is essentially the continuity equation in hydrodynamics [35] when it is multiplied 
by the ionic mass ml. 
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The rate of change of the velocity (v) of a fluid element as it moves about in space 
(r) can be written 

dv ~v 
dt - ~t ~+ (v.V)v, (112) 

where 6v/Ot denotes the change in v during dt at a point fixed in space while (v. V) v 
gives the instantaneous difference between the velocities at two points dr apart, 
where dr is the distance travelled by the given fluid element during dt. 

Differentiating relation (110) with respect to time and expressing the time deriv- 
atives with the use of Equation (109), we combine Equations (111) and (112) to obtain 

dv ( h 2 V2 x / ~ ]  
mini dt  = -  ni V eqb 2mi x/ni  / "  (113) 

The second term in the parentheses of Equation (113) which appears only when the 
ion density is non-uniform plays the role of an inner potential as the result of 'de- 
formation' which is of the order (2~/2D) 2" (mic2/2), where 2B is de Broglie wavelength 
of an ion with velocity c, and is negligible. We have now 

d u  

dt  = - ni V(eqS), (114) 

where the terms - n  i V(eq~), due to a force potential, plays an analogous role of a 
pressure gradient in an inviscid-like continuum flow in the absence of external force. 

It is noted that Equations (111) and (114) provide a complete description of 
motions of a fluid which is incompressible or isothermal compressible.* In other 
words, if we impose an initial condition upon ~ and v: 0(r, 0) and v(r, 0), the dis- 
tributions o(r, t) and v(r, t) at a later time (t) can be determined unique from Equa- 
tions (111) and (113). 

The above discussion, which starts from the motion of collision-free ions, leads to 
a description which is continuum-like. Thus we complete the proof  of the formal 
analogy between a collisionless, quasi-neutral mesothermal flow and a corresponding 
isothermal compressible flow of continuous medium. A Kelvin-like theorem on 
conservation of circulation for the plasma can be established, accordingly, as in 
hydrodynamics [35]. The present discussion leads readily to the interesting hy- 
drodynamic approximation, first suggested by Gurevich [17], for a plasma with 
T i = T e = T by substituting 2T for T in the hydrodynamic equations for ion flow. It 
is valid because ions are under the  influence of the sum of the partial pressures of 
ions and electrons, nK(Ti+ Te) or nK(2T). 

* A collisionless quasi-neutral flow can be considered isothermal because the thst-moving electrons 
help to equalize the 'temperature'. 
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5.3. SOLUTIONS OF QUASI-NEUTRAL FLOWS 

The quasi-neutral condition ni=ne and the equilibrium electron 
ne = no exp (e(p/KTe) leads to a simple expression for the field potential 

distribution 

Thus in a quasi-neutral plasma, the body-plasma interaction problem reduces to the 
integration of the collision-free Boltzmann equation (or the Schroedinger equation 
if wave mechanical approach is used) for the distribution of the ions under a preserved 
field potential (115). 

In analyzing collision-free mesothermal flows over a wedge and a cone with 
2D~L [40] [43], Lam and Greenblatt have suggested a boundary condition which 
matches the quasi-neutral flow to the outer edge of the sheath. 

From the use of Equation (115) for quasi-neutral plasma, Gurevich and Pitayevsky 
[44] transformed the collisionless Boltzmann equation in terms of similarity variables 
to treat similar plasma flows over sharp edged bodies with L > ~ 2  D. Let c* =c/c i, 
z= [(L-X)/Z] (Vo~/ci) where X measures normal to the body surface; Z, along the 
undisturbed plasma flow (V~). The transformed equation for ion distribution assumes 
the form 

(c*-z)gfor 21 ~f d {ln i f (116) 

- a o  

The solution of Equation (116)f=f(c*, z) is expressible in terms of similarity variables 
c* and r. The ionic distributionf(c*, r) have been obtained by numerical integration 
of Equation (116) for various values of r in order to observe the evolution o f f  with 
~. Some general conclusions concerning collisionless mesothermal flows can be 
obtained [44]. It should, however, be kept in mind that Equation (116) is valid for 
quasi-neutral flows only. 

6. Ionospheric Flows at Mesothermal Speeds. II: Near-Wake Flows 

When a charged body of size L, e.g., a satellite, drills through an ionospheric medium, 
having a characteristic mean free path l, at a mesothermal speed V~, it momentarily 
creates a void region the transverse size of which is of the order of the body size. 
The rate of particle-filling into the vacuum, which determines its degree of emptiness, 
depends on the components of particle velocities normal to the direction of body 
motion, namely the random thermal components. Therefore, other than the elec- 
trostatic effect, the important parameter determining the structure of the flow imme- 
diately behind a moving body is the speed ratio V~/c i. The study of this particular 
flow is herein called the near-wake problem. 
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The character of the binary species which are greatly differenlL in their thermal 
speeds adds new complications to the near-wake problem. The electrons from the 
surroundings endowed with high thermal velocity move in quickly into the void and 
win the race over the thermally slower moving ions but not by far because of the 
mutual electrostatic attraction between them. The electron-ion race is, of course, also 
influenced by the biased influence of the surface potential (qSs). The above mentioned 
special features tend to make the collision-free plasma flow in the,, near wake a dif- 
ficult but fascinating problem. The significance of this problem in the ionospheric 
diagnostics via satellites cannot be overemphasized. Often it is by necessity that a 
diagnostic probe for ionosphere or a radio-antenna is inserted into the near wake 
which is marked by intricate distributions of field and particles that imply complica- 
tions in measurements and interpretations. 

A point of paramount importance concerning theoretical analysis of the near wake 
is the following. In the earlier works on satellite-ionosphere interactions, to avoid 
the mathematical difficulty of nonlinear coupling between the col][isionless particle- 
Equation (3) and the field Equation (4), it is often assumed that the ions move like 
neutrals to simplify the space charge term in the field equation. This pseudo-neutral 
assumption is approximately valid for ions moving in the quasi-neutral and less but 

1 2 still reasonably true in the sheath because the directed kinetic energy (E~zrn~ V~) is 
much larger than the electrostatic potential energy (eqS) due to the field effect. This 
assumption would have no valid basis in applying to the near-wake study. As it has 
been stated earlier, the particle velocity that significantly contributes to the filling 
process for the void in the near wake is the thermal component, in other words the 
thermal energy (3KT/2) which is comparable, in most cases, to the electrostatic 
potential energy (eq~). The neglect of the electric field effect, the implication of the 
pseudo-neutral approximation, in comparison with KT~ is unjustifiable. 

A self-consistent approach, which takes account of the non-linear coupling between 
the particle- and the field-equations deserves even more attention in the case of 
near wake. 

6.1. A NEAR-WAKE MODEL 

In order to gain physical insight into the interaction between the field potential and 
the plasma particles associated with a rapidly moving body, an idealized model is 
introduced. Consider a body of size L with a constant surface potential qSs(q5 s ~<0) 
which moves in a rarefied plasma of singly charged particles. It is assumed that the 
free stream plasma is in a bi-thermal equilibrium which has an electron temperature 
Te not necessarily equal to the ion temperature T~. The body velodLty Voo is assumed 
mesothermal. These conditions comply with typical satellite motion in the upper 
ionosphere (see Section 1.1). It is assumed that upon collision with the body an 
electron will be absorbed; an ion, neutralized and emitted as a neutral (see Section 1.2). 
The present model will satisfy the characteristic condition: l>> L >> 2 D. Magnetic field 
effect is considered negligible (see Table I). 

In the following analysis, normalized quantities are used; e.g., the linear displace- 
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ment r is in units of L; field potential ~b, in KT/e; velocity, in ci; number density n, 
in noo (the ambient electron density). 

6.2. SELF-CONSISTENT FIELD APPROACH 

Under the present assumptions of ~b <0 and V~o ~ % the electron density can be 
approximated by the Maxwell-Boltzmann distributions (in normalized units) [45] 

ne = exp(fi~), (117) 

where fl=Ti/T e. It is, however, stipulated that ~b(r) is a monotonic function of 
r [46]. A non-monotonic variation must be divided into monotonously, varying 
segments within each of which Equation (117) is applied. It will be seen later that 
this procedure is followed in the iteration for q5 (see Section 6.4). 

In view of the condition V~ > ci, the ion distribution in the wake is expected to 
deviate significantly from its equilibrium state. The ion distributionf(r, e) is governed 
by the collision-free Boltzmann equation, together with the Poisson equation for 
field potential ~b(r) as follows: 

0J' 10~b U 
e - 0 (118) 

Or 2 Or 0e 

(~)2VZ4)=ne-ni, (119) 

where ni =Sfdac.  It is noted that Equations (118) and (119) provide a self-consistent 
system. 

In view of the earlier discussion, the use of pseudo-neutral particle approximation 
to decouple the system is not expected to be valid for the wake study. The application 
of Jeans theorem, expounded in Section 3.2, will be made here to obtain a formal 
solution for ion density hi(r) from Equation (118). It is then substituted, together 
with relation (117), into Equation (119). The poisson equation, thus obtained, is a 
partial, non-linear, integro-differential equation which is solved by iteration. 

6.3. ION DISTRIBUTIONS 

According to Jeans' theorem, the most general solution to Equation (118) is an 
arbitrary function of the integrals of the system of characteristics equations deduced 
from Equation (118) namely 

- d r  de 
- ( 1 2 0 )  

e 1 &b" 

2 Or 

The construction of the integrals for Equation (120) becomes difficult when the field 
potential is arbitrary. In fact the only known property of q~ (r) is that, in the case of 
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Fig. 16a, 
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Phase space coordinates ( z ,  O; c~, co,  c~) ~ an axi-symmetric wake (sphere). 
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Fig. 16b. Phase space coordinates ( z , y ;  c ~ , c u )  - an  y-symmetric wake (long cylinder). 

a spherical body, it is axisymmetric with respect to the streamwise axis (Z) passing 
through center of the sphere (see Figure 16a); in the case of a two-dimensional cylinder 
its plane of symmetry is given by the streamwise axis (Z) and the axis of the cylinder 
(x) (see Figure 16b). Resolve Equation (120) into its component forms: (1) Spherical 
body in phase space (Z, Q; Cz, co, Co) (see Figure 16a); (II) Cylindrical body in phase 
space (Z, y; Cz, cy) (see Figure 16b). The Equations (120) thus obtained can be inte- 
grated at once leading to the following adiabatic invariants [47]: 

(i) Axisymmetric field q5 (Z, 0): 

2 % + e0 z + ez z + ~b = E Energy Conservation (121a) 

0e0 = Lz Angular Momentum Conservation (121b) 

(ii) Y-symmetric field q~ (Z, y): 

2 (122a) cy + c 2 + q5 = E Energy Conservation 

where (i) is suitable for a sphere; (ii) for a two-dimensional cylinder along x-axis. 
It is found that the general solutions to Equation (118) in terms of the above de- 

scribed invariants cannot provide complete descriptions of the ionic motions in the 
respective fields. One additional invariant in each of the above cases (i) and (ii) is 
needed. Under the conditions of hypersonic approximation Cz = V~o and sectionally 
monotonic qS(r), Jew [48] has been able to obtain a third integral (121c) for case (i) 
and a second integral (122b) for case (ii) which are valid for short ranges in r and are 
useful for numerical analyses. They are 

z (,/Q2 [e  - ~ (z, ~) - 41 -L~  + 
/3 = 0 --  2CCz \ O 

+ ~/(0 + ~)z [ e  - ~ (Z  - n, e + 0 - 4 ]  - L ~  d 21c) 
~ + ~  
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and 
- -  - -  2 z { , / ~  _ + ( z .  y)  4 + , / ~  - + ( z  - , .  y + r - ez .  I2 = Y 2ez 

(122b) 

n i  

f /oo 

where 

where rl, ~ <<. 2D/R denote the respective mesh sizes along Z, Q-axes with a sphere and 
Z, y-axes with a cylinder in numerical analyses. 

The ionic distribution functionf(r, e) which satisfies Equation (118) and the bound- 
ary conditions at the body and the free stream can be constructed with the help of 
Jeans' theorem [48], from which the ion densities are obtained. 

(i) Axisymmetric field (sphere) 
when 9 ~< 1, 

l1 s 21r oo 

_exp( -q~)  f f f 7Z3/2 dcz de dww exp - [w 2 + (Cz - V o o ) 2 ] ,  (123a) 
- a o  0 0 

when Q ~> 1 

where 

W 2 C O S  2 e 

ni _ exp(_ 40 [ i  2,-sinil (l/0) i ,f sin-'f,/o) 
noo ~3/2 dcz de dw + dcz de 

- oo s i n -  1 ( l / o )  0 - oe - s i n -  x ( I / o )  

x dw+ dcz de dwwexp-[w 2 + ( c  z -  V~) 2 , (123b) 

0 7 s  s i n -  1 / 0 )  0 

,wcos   + ( z ,  ~) - + ( z  - . ,  e + ~) 
W 2 C O S  e 

(ii) 
when y ~ 1 

where 

Y-symmetric field (cylinder) 

n i  

gtoo 

oo 

0 
0 

+ f exp(-c~)erfc(Voo-J3c)dcy], 
- o o  

/L - a 
2 ( f + 1 )  1+ 1+ 

~ b (Z ,y ) -q~ (Z-q ,y  +( )q  
] C y  

(124a) 
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and 

t)ZcYl X/ (~(Z,y)-(o(Z-tl, y+~)] 
y c -  2 ~ y +  1 ~ 1 +  1 +  -2 Cy 

and when y ~> 1 

ni exp(- 4) { f  exp(- c2)[erfc(V~ - flc) + erfc(yc - V~)] 
0 

0 

+ f e x p ( -  c2) [erfc(V~ - 7c) + erfc(fi~ - V~)] dcy. 
- o 0  

(124b) 

6.4. SELF-CONSISTENT FIELD 

The self-consistent solution to Equations (118) and (119) is obtained by successive 
iteration. The substitution of either set of ion density functionals (123) and (124) 
into Equation (119) leads to a non-linear integro-differential equation in q~(r) which 
does not yield to analytical attack. The boundary value problem can be prescribed as 
follows : 

(2D/R) 2 vZq~ = exp flq~ - ni(O)/n~ (119) 

q5 (R) = q~s 

r (0o) = 0. 

It is also postulated that the neutral plasma state (q5 = 0) exists on the transverse 
plane (Z=  0) external to the body. This amounts to the neglect of the sheath at the 
plane Z = 0 .  

The problem just described is known as a Dirichlet boundary value problem. In 
the form stated above, it is not yet suitable for numerical analysis until a limited 
domain in physical space has been prescribed [45] due to finite memory of a computer, 
e.g., IBM (digital) 7090. To overcome this difficulty, the semi-infinJite wake region is 
mapped into a semi-circular region coordinate inversion transformation [48, 49]. 

The iteration for ~b(r) starts with a zeroth order solution q5 (e'), obtained from 
VZq~(~ = 0 (inner region) and rti(q~ (0)) = ne(q5 (~ (outer region) as suggested by Gurevich 
(see Section 2.3), and proceeds for higher order approximations [48, 49]. The sequence 
is repeated, each completed sequence is called a cycle. In each calculation, iteration 
cycles are carried out until a self-consistent state is attained. Normally this takes 
approximately 30 successive cycles. The mesh size used is smaller than a Debye 
length (2D). A specially devised iteration [48] makes the analysis possible. 

The self consistent distributions of ion density ni(r) and field potential q~ (r) in the 
near wake of sphere and cylinder are shown separately in Figures 17'-20. The electron 
density is related to ~b(r) by Maxwell-Boltzmann relation (117). 
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6.5. RESULTS AND DISCUSSION 

The results of the self-consistent calculations for the particle and field distributions 
reveal some insight into the particle-field interactions in the near wake. We shall 
discuss their significances. 

When a large conducting body (L>  2D) with a negative surface potential (q5 s < 0) 
moves at a mesothermal speed in a tenuous ionosphere (L </),  it is expected that 
both ions and electrons from the free stream will rush into the wake-cavity created by 
the moving body. The electrons, on the average, move faster; consequently the 
electronic and ionic components of the plasma always tend to separate. This gives 
rise to an uncompensated electronic charge which produces an internal electric field 
(the space charge potential) the latter retards the faster particles, namely the electrons, 
and accelerate the slower ones, i.e., the ions, thus hindering the charge separation. 
As a result, the inhomogeneous front moves and spreads with essentially a common 
mean speed, intermediate between those of the ions and the electrons; the internal 
electric field exerts in this case a strong influence on the particle motion as a whole 
in the near wake. The potential valleys in the wake of a sphere (see Figure 18) and 
of a cylinder (see Figure 20) are associated with the above mentioned fronts of 
electron-rich mixture. The locus of potential minima forms a conically shaped surface 
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for a spherical body; a double wedge for a cylindrical body. It is seen from the figures 
that the depth of the potential valley decreases as the body size (R/2D) decreases. 

The presence of such potential valleys in the near wake of a satellite suggests the 
possible presence of trapped ions in the valley [50, 51]. The specific modes of oscilla- 
tions of the trapped ions and electrons will be discussed in Section 8.1. 

6.6. PHOTO-EMISSION EFFECT 

From the discussion of Section 1.3, it is expected that at a relatively higher altitude, 
the photo-emission due to solar radiation tends to reduce the value of the negative 
surface potential. This would not affect the present self-consistent theory provided 
~b s ~< 0. Another effect of the photo-emission stems from the emitted photoelectrons 
that enter the wake from the surface of the body. The electron-emission effect on the 
field potential of the near wake can be evaluated using a perturbation analysis [31] 
considering the present theory without emission effect as the  zeroth order solution. 
The deviation of field and particle distributions due to perturbation emission effect 
can be obtained. 

Assuming that q5 (r) decreases, from q5 s at the surface, to the q~mln at the bottom of 
the potential, the photoelectrons, emitted from the surface, are in a repelling field. 
Thus the presence of these electrons has the effect of depressing the potential valley 
even deeper and building up a field which opposes the emission of electrons. 
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Consider the discussion in Section 1.1 on the bi-thermal nature (Te > T~) of the 
upper ionosphere which is brought forth by the presence of high-energy photoelectrons. 
Assume that the ionosphere is in bi-thermal quasi-equilibrium with Te=5T~, the 
surface potential e~?s/KT~ = -  1, and the surface photo-emission Jis negligible, the 
results of self-consistent field calculation are shown in Figures 21 and 22. 

7. Ionospheric Flows at Mesothermal Speeds. IIh Far-Wake Flows 

It is recalled that a dominant characteristic of the ionospheric gas dynamics herein 
discussed is its large Knudsen number i.e., l/L>> 1 which, of course, implies rarity in 
binary collisions and hence leads to the collision-free state. On account of the rarity 
in collisions hence slower rate of dissipation in spite of collisionless damping, such 
as Landau damping, the disturbances, once generated, can persist for a long time or 
last a long distance behind the body. The structure of the disturbances undergoes 
much variation particularly in the near wake region which extends a distance of only 
a few body diameters. Thereafter the disturbed flow becomes almost quasi-neutral and 
persists for a relatively long period of time, during which collision-free damping 
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1.2 

process acts to nullify the disturbances. The body-ionosphere interaction can be 
viewed in a different manner: The coulomb interaction of the charges carried by 
the moving body with the ambient plasma will excite oscillations in the wake of the 
body. The significant plasma disturbances will involve low frequency collective 
oscillations of the positive ions with the electrons adjusting themselves about the 
ions to form a Debye screening cloud. The long, yet shorter the mean free path lei, 
trail extending beyond the near wake is the subject of study in the far wake problem. 

It is of interest to note that the unique feature of a great extension of plasma 
disturbances behind a moving body is not without technical significance as can be 
expected. For  instance, it constitutes an excellent target for radiowave tracking of 
the moving body when the body itself does not provide large enough scattering cross 
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section for the wave pulses because of long range. The plasma trail which has per- 
turbation of the electron density that leads to the variation of the plasma dielectric 
constant which is responsible for the scattering effect. Although the dielectric con- 
stant of the trail is lower than a metallic body, it compensates in total scattering 
effect many fold over by its relatively large size. 

The quasi-neutral, hence weak-field, nature of the far wake makes it possible to 
linearize the governing equations of the flow. The susceptibility of the far wake to 
linear analysis breeds much mathematical exercises which may not always lead to 
physical enlightening. On the other hand it is gratifying to explore an interesting 
physical phenomenon with a tool which is endowed with the luxury of mathematical 
elegancy. 

7.1. FAR-WAKE MODEL 

Consider a collisionless mesothermal flow far behind a moving body. Since the 
directed plasma velocity (Voo) is negligibly small compared with the electron thermal 
velocity, the direct gas dynamic effect on the electron distribution is small. However 
the electron distribution is indirectly influenced through electrostatic field, e.g., 

ne = n~ exp (ed?/KT) (125) 

following the law of Maxwell-Boltzmann distribution. 
It is of interest to study the nature of the disturbed plasma flow which has been 

influenced by the transport of disturbances orginating from far upstream. Only 
steady state properties are of concern here. The interesting, but quite difficult, problem 
of transcient phenomena is thereby avoided. Self-consistent field approach will be 
used to treat the collisionless flow of singly-charged ions which have interacted with 
a body; an energy of interaction ((2) between them is introduced [52]. 

Let the coordinate system be fixed to the body. The collisionless Boltzmann 
equation for ionic distribution has the form 

Of ( e ~0 l Of2"].Of 
c ' & -  m i ~ r  +rn i & /  Oe=0" (126) 

Let u = c -  Voo which is substituted into Equation (126) that leads to 

_ ( e a~ 1 a~'].af = 
(u-  Voo)'~r \mi ar + --mi Or,/ Ou 0. (127) 

The field potential ~b(r) in Equation (127) is governed by 

V24) = -  4ne [ f  f dau - n~ exp(edp/KT)] . (128) 
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7.2. PERTURBATION ANALYSIS 

It is expected that, at far downstream from the body, the ionic distribution must be 
close to the displaced Maxwellian distribution of the free stream 

Assume 
S~o= ~o t , 2 ~  ] e x p - - -  

f = f ~ + f ' ,  

Hr/i u2 

2 K T  " 
(129) 

(130) 

where the perturbationf' is small compared withfoo. The substitution of expression 
(130) into Equation (127) leads to 

~ r  ( e  0q~ 1 0 f a ) . 0 f '  ( e  0q~ 1 0f2).0f~ 
( u - V ~ ) .  - mT~rr + m l  & )  0 u - k m i &  + -  = 0 .  mi & J  Ou 

Fourier transform of Equation (131) leads to 
(131) 

where 

~0f:o il~.(u - V~)f~' - (eq$~ + Q. ) - - .  - -  
m~ 00 

1 f " + (2~)3m i [ -  i(e(o~, + t2~,)!r 0J~_~,0u d3tr = 0, 

[(2~i:1 = f e x p ( - - i K . r ) [ ! ' ]  dau. 

(132) 

(133) 

The far wake, where r ~  0% corresponds to the condition ~--+0 in the wave number 
(~) space. The setting of ~ 0  in Equation (132) leads to [52] 

where 

e 
i(u - v~o).J; - i ,,. r = S(u),  

mi Ou 

I @ ) -  1 f (2~)arni i(edp,~, + f2,,,)K" 

= k f e s '  a 
miO ~u "&(~? + eq~) d3r" 

die' 
0u 

(134) 

(135) 

The application of similar Fourier transform and asymptotic analysis to Equation 
(128) yields 

q~,r = 4~e('~D) 2 f f "  d 3 u ,  (136) 
d 

where 2o = (KT/4~eZn~o) 1/2 is the Debye shielding length. 
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Divide Equation (134) by i~:. ( u -  V~) and integrate over dau. The improper integral 
whose integrand involving the factor 1/iK. ( u -  V~) must be treated with special care 
[54]. Replace K. V~o by K. Voo + i5, where 5~O +. The following equation is obtained 
[52, 53] 

K" Ofoo d3 u 

f f t?U i f  /(U) d3u (137) 
f ; d a  u -  em, qS~ K . . . .  (u-V~o) i 6 = i  K'(u V~) i6" 

Eliminating ~b~ from Equations (134) and (136), it is found 

1 [' I(u) d3u 

J n.(u 

1 + 
\ 2 ~ }  n-(u- V~) - i6 

where n=K/IK] 
The Hilbert transform of Gaussian is defined 

m i u  2 

e 2 K T  dau 
(138) 

oo 

Z(a) =__ml f 
e-U2 

u - - a - - i 6  

a 

( ) du = e -"2 1 + e t2 dt . 

0 

(139) 

In terms of Z-function, Equation (138) becomes 

1 ~ I(u) dau 
i~ J n-(u- Voo)- i5 

n~ = , (140) 
2 + iaZ (a) 

where a=  (n. V~)/ci and the ionic thermal velocity c i = ~/2KT~I. 

7.3. SOURCE INTEGRAL I(U) 

Pitayevsky and Kresin [52] named/(It) 'collision integral' because it fills the place of 
the binary collision term in the Boltzmann equation when Equation (134) is trans- 
formed back to the earth-fixed coordinates. Looking from the standpoint of a far 
wake, I(u)dau represents the number of particles per unit time which acquire, via 
scattering by the body, velocities in the range (u, u+du), hence I(u) is, instead, 
called a source integral [1 ] in order not to confuse with Boltzmann's collision integral. 
The introduction of I(u) [52] gives an important conceptual advantage in the discus- 
sion of far wake. It also makes possible the convenient comparisons of the influences 
of bodies on the wake. Several forms of I(u), each of which describes a special case 
of scattering, are available [52]. Only one of them will be discussed here for illustration. 

In the case of a mesothermally moving body with a characteristic dimension (L) 
large compared with Debye shielding length (2D), the influence of the electric field in 
the sheath of the body upon the free stream ionic scattering would be small. Consider 
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a sphere of radius R o and assume that ions incident on the spherical body are com- 
pletely neutralized. I(u) then denotes simply the number of the ions incident on the 
surface of the sphere in a unit time and is approximately [53] 

I(u) ~ ~R2f| (u). (141) 

v| 

de 

X 

Fig. 23. Orientation of wave number space (K). 

Y 

The Fourier-transformed ionic density in the far wake as given by Equation (138) 
can be simplified in the case of a large moving body (L>> 20). Consider Voo pointing 
in the direction of polar axis of a spherical coordinate (Figure 23); Z is the aximuth 
angle between the polar axis (V~) and the velocity u which is assumed parallel to 
K. Equation (138) becomes 

1 [" I(u) dau 

J u - -  Voocosz - i6  
n~= Vooc_osz ( mi-]3/2 f exp_(_mlu2 /2KT)  dau �9 (142) 

2 + n~ \ 2 n K T I  .~ u -- Vs c~zsz S-iX 

The substitution of Equation (141) into Equation (142) gives, using function (139), 

= - .Ro St z ( s i  c o s  z )  
x 2 + iSi coszZ(S i  cosz) '  

(143) 

where the speed ratio Si = V~/cl. 
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Let 
z (s,  cos z) 

q~ (s~ cos)~) = 2 + is~ cos z z  ( s  i cos z)" (144) 

Equation (143) can be written 

n,~ = - nR~S~ n~ ,1~ (Si cos X). (145) 
K 

The study of the far wake structure would have been completed with n~ given by 
Equation (145), had the motivation been simply to investigate the scattering of an 
electromagnetic wave by the wake. This stems from the fact that, according to 
perturbation theories [52], the effective scattering cross-section depends among other 
factors on the Fourier-transformed electron-density perturbation which is approx- 
imately equal to that of the ion density in a far wake. 

7.4. ION DISTRIBUTION IN THE FAR WAKE 

The ion density in the far wake is of interest itself. To obtain an ion density from 
its counterpart in Fourier-transform (n~), an inverse Fourier-transform must be per- 
formed. Again consider a large sphere, where Ro >> 2D, at mesothermal speed, in the 
far wake 

7oR 2 
f ~ (Si cos Z) exp (iK. r) ~-1 d3K (146) n ( r ) -  (2~) 3 S ~ n ~ d  

Referring to Figure 23 

d3K = sinz dx dqS~c 2 dK 

K.r = ~cr(cos 0 cosx + sin0 sinz cos qS) 

which are substituted into integral (146). 

- zeRo 2 
n ( r ,  0)  - ( 2 ~ )  2 SP,,oof  (Sicosz) sinzdz Kd~c exp 

0 0 0 

x {iKr (cos 0cos;~ + sin 0 sin Z cos q))} dqo. (147) 

Introducing the relation 

2~t 

f e i . . . .  ~ dcp = 2nJ o (~) 

0 
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to integral (147) which becomes 

-- rcR 2 f n (r, 0) -- (2~) 2 S2noo 45 (S i 

0 

at) 

cos Z) sin )~ d)~ f exp (itcr cos 0 cos )0 

0 

x J0 (tcr cos 0 cos Z) tc dtc. (148) 

In the integration over d~c, the following substitution* in the exponent of the 
integrand is made: 

c o s 0 c o s z - * c o s 0 c o s ) ~ + i b  (6 -~O+) ,  

where 6 has an infinitesimal positive value [54], the integration over dtc can now be 
performed as follows: 

oo 

f e-pl~ Jo (7 ~c) tr dtc - 
0 

(~  + ~2)3/2, for Rr > 0 (149) 

when integral (149) is inserted in the integral (148) 

where 

- ~zR~ f cos 0 cos Z sin Z dz 
,,(r, O) - 45(s  cosz)(oosZz 

0 

rcR2S~noo 
= -  (2~zr) 2 FL(0), (150) 

i cosx) (cos2 cos0 cosx sinz dz FL(0) = 45(S~ 
)~ - sin 2 0 + 2i6 cos 0 cos Z) 3/z" 

0 

(151) 

In the evaluation of Fz(0), the following considerations are made. Since 45(S i cosg) 
is a function of analytic continuation in the entire domain of Z, the singularities 
exist in the denominator of the integrand. Following Landau's concept of integration 
contour, the sign of the imaginary part of the denominator determines the integration 
path around the singularities. In what follows we shall consider only the region to 
the rear of the moving body i.e., 7c/2 < 0 < ~ hence cos 0 < 0 and the sign of the imag- 
inary part in the parenthesis of the denominator is negative. Consequently the integra- 
tion contour of interest take a path along the real axis in the positive imaginary 
plane [67]. 

* I am grateful to Mr. R. J. Hung for his help in evaluating the inverse Fourier transform. 
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Let cos0 = t, the integral (151) becomes, after letting fi--+O +, 

1 

f (b(Sit)t dt (152) 
FL(O ) =cosO [ ( t -  sinO)(t +sinO)] 3/a" 

- 1  

Further advance in the evaluation of integral (152) can be made by identifying its 
singularities at the points: t = - s i n  0 and t = sin 0 and using Cauchy integral. 

1 

FL(O)=cosO{ RecI)'(SisinO)lnsinO+ f Req~"(Sit) ln(t+ ~/t2--sin20) 

x d t + I ~  Im~'(SisinO- 

where qY(x) = d~/dx and qY'(x) = d2~b/dx 2. 

sin 0 

sin 0 

f Imq~'(Sit) sin-1 sin 0 at , 

0 

(153) 

This essentially completes the evaluation of n (r, 0). It  is noted that n (r) varies with 
1/r 2 when r is large (see Equation (150)). 

The applications of the far wake plasma study will be given in Se.ction 8.2. 

8. Special Topics of Ionospheric Gas Dynamics 

There are numerous ionospheric gas dynamic problems which do not fit directly into 
the scope of studies in the previous sections. An encyclopedical coverage of these 
problems is not the intent of the present review. It might be, however, of interest to 
both ionospheric physicists and gas dynamicists, to note that some problems of keenest 
interest in ionosphere can be treated effectively in the light of ionospheric gas dynamics, 
e.g., the problems of radio meteors, comet dynamics, etc. The choice of topics herein 
discussed is obviously dictated by personal interest. It is, however, intended that 
each topic should have a unique feature. 

8.1. PARTICLE TRAPPING IN THE NEAR WAKE 

Recent measurements of the ionosphere using satellites have produced some inter- 
esting but unexpected results: the electrostatic probe studies of electron density and 
temperature of the ionosphere in the wake of the Ariel I satellite showed the possible 
presence of low-frequency plasma oscillations [55]. Plasma resonances found with 
the Alouette topside sounder satellite occur at multiples of certain characteristic 
frequencies of high frequency plasma oscillations [56, 57, 58]. A hypothesis has been 
advanced [59] that longitudinally oscillating ions in the potential well behind a 
mesothermally moving satellite are responsible for the above-mentioned low-frequency 
oscillations measured in the wake of Ariel I. It also suggests that the high frequency 
electronic plasma oscillations shown in the ionograms of Alouette satellite are 
associated with the low-frequency oscillations of the trapped ions. 
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This hypothesis has been made in view of the following observations: (1) The 
consistency and persistence of the characteristic oscillations observed in the Alouette 
ionogram suggests that the source and site of these plasma oscillations might be of 
limited extent and of long duration, possibly associated with the motion of the sat- 
ellite. (2) A self-consistent field theory of near wake behind a mesothermally moving 
satellite [45] reveals a negative potential well, the depth of which amounts to three 
volts with a negative surface potential less than one volt. This is about the level of 
surface potential for the satellites in question (see Figure 18). On the basis of the 
above-mentioned observations of experimental and theoretical results, it was concluded 
that ion particles must have been trapped in the potential well of the near wake 
executing longitudinal oscillations in the potential well. 

To furnish a quantitative and therefore more convincing evidence for his hypoth- 
esis, Liu [50] used a one-dimensional model, what he called a diode analogue, with 
the free stream identified as its cathode; satellite surface, its anode, to derive a disper- 
sion for the standing waves of the ionic oscillations in the potential well. This deriva- 
tion uses an approximation similar to the Langmuir-Tonks derivation for a homoge- 
neous plasma that uses a simplified two-fluid hydrodynamic approach. Although 
Liu's dispersion relation shows that the theoretically predicted ionic oscillations 
does agree in the order of magnitude with the oscillations measured on Ariel I, it 
leaves much unanswered questions, e.g., the validity of hydrodynamic approach, the 
microscopic instability of the plasma in the potential well, etc. A kinetic theory of 
non-homogeneous plasma oscillations, such as the plasma in a potential well, and 
microscopic instability problem is being prepared by Liu and Hung [61]. It is trusted 
that this new theory will be able to answer some of these pertinent questions per- 
taining to particles trapped in a well. 

8.2. ELECTRO-GAS DYNAMIC THEORY OF METEOR 

A meteor is a stony or metallic body that has fallen to the earth from outer space. 
A metallic meteor moving in the ionosphere must accrete charges from the incident 
ions and electrons of the ambient plasma much like an orbiting Satellite (see Section 
1.3). A charged meteor behaves electro-gas dynamically as a satellite except that 
most of them move at a higher speed before they disintegrate and evaporate by 
entering into the denser atmosphere. 

It would be of interest to study the far wake of a metallic meteor particularly one in 
a meteor shower where a cloud of meteoric particles is found. It is noted that when a 
meteor (B) is located in the wake of a meteor (A), the plasma in the wake of B could de- 
velop parametric resonance due to the presence of A. It is recalled that parametric 
resonance condition can be met for a plasma in an external periodic electric field. 
Here the external periodic field for B is provided by the disturbance field of A. This 
resonance-like plasma phenomenon has been shown to occur with two bodies in tan- 
dem arrangement aligned with a mesothermal stream [60]. The presence of this reso- 
nance with the multiple scattering of plasma stream by a meteor shower could account 
for the seemingly anomalous scattering cross section of an electro-magnetic wave. 
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In the study of the above-mentioned resonance phemonema [60], Liu and Hung 
use two charged bodies in a mesothermal stream. The ionospheric medium is assumed 
bi-thermal, namely the electron temperature (Te) not necessarily equal to the ion 
temperature. Each particle species is in thermal quasi-equilibrium. Their analysis for 
the double scattering is essentially a continuation of the simple scattering analysis 
in Section 7.4. The body (B), which is situated in the far wake of body (A), receives 
a disturbed incident stream from A. Another way of viewing the body-scattering 
problem is to consider the steady state plasma wave excitation. With mesothermal 
speed and absence of magnetic field effect, the only mode of significance is the ionic 
longitudinal oscillation. Hence the scattering process can be treated mathematically 
in the Fourier-transformed space as a linear system with incident stream as input 
and longitudinal ionic oscillations in the far wake as output of the system; the 
transfer function which links the output to the input is provided by the equations of 
selfconsistent field approach, namely the collisionless Boltzmann equation and the 
Poisson equation. This system analysis can be extended to any steps of successive 
scatterings in a straightforward manner. 

8.3. INITIAL RADIUS OF AN IONIZED METEOR TRAIL 

When a meteor enters into the earth's atmosphere, the aerodynamic heating of the 
meteor surface is so intense that evaporation of meteoric atoms takes place. The 
atoms which evaporate from the meteor are dispersed in the surrounding atmosphere. 
Their kinetic energies are essentially determined by the velocity of the meteor, and 
for iron atoms will vary from about 100 to 1000 electron volts for velocities from 
20 to 60 km/sec [62]. The collisions occurs between the evaporated meteoric atoms 
and the atoms of the atmosphere, also between the atmospheric atoms incident on 
and reflected from the meteoric surface. The probabilities for excitation and ionization 
in these collisions determine the eventual electron line density of the meteor trail [63] 
which, in turn, determines the detectability of radio echo from the meteor in question 
[64]. One of the problems pertaining to the detectability of radio echo is the initial 
radius of ionized meteor trails [65]. 

The ions and electrons produced by the above-mentioned collisions in a meteor 
trail form a cloud of a quasi-neutral plasma whose concentration at the time of 
plasma formation is higher than the concentration of ionospheric plasma at those 
altitudes. It  is often assumed that the ionization process is instantaneous and the 
meteor-generated plasma cloud dissipates by turbulent or ambipolar diffusion. Since 
the initial widening of the trail occurs mainly as a result of the first few mean free 
paths of the evaporated or reflected particles, the 'diffusion' process during the 
initial mean free time* becomes important. It is well-known that the diffusion 
equation in parabolic form does not represent the true physical process near the 
initial instant of time ( t=0)  [66, 67] because the classical diffusion equation results 
from an asymptotic approximation of the process when time (t) is large compared 
with the mean free time [68]. 

* Equal to the mean free path length divided by the particle mean speed. 
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To provide a more rigorous description of diffusion, the Boltzmann equation 
(with binary collision term included) should be used. This naturally involves with 
heavy mathematical computation. It is of interest to note that when the distribution 
function f ( r ,  e, t) is expanded in terms of spherical harmonics and substituted into 
the Boltzmann equation, and moments are made to take advantage of the orthogon- 
ality of harmonics, a system of continuum-like equations at various orders of spherical 
harmonics will be obtained [69]. At the level of first order approximation, a generalized 
diffusion equation is obtained in the form of telegraph equation, which has, in 
addition to the dispersion-term of classical diffusion equation, a wave-propagation 
term. This is very significant because at the initial instant ( t>0) prior to the first 
(mean) molecular collision, the imposed initial concentration discontinuity should be 
propagated wave-like at approximately thermal speed of the molecules. 

This telegraph equation for diffusion can be easily derived following either Wein- 
berg and Wigner [69] or Goldstein [68]. The latter uses random function method to 
treat stochastic processes [47]. The telegraph equation for concentration of diffusing 
particles C(r, t) can be written 

1 t~C 1 ~2C 
V 2 C  - -  D 0t + A s 8t ~ '  (154) 

where A--v/x/3 with v denoting the monoenergetic particle velocity; the extraneous 

factor 1/~/3 is a consequence of the first order spherical harmonic approximation. 
A most recent work by Liu [72] who uses the equation of transfer of Maxwell [15] 
shows that A 2 =kT/m where T is the effective kinetic temperature of the evaporated 
meteor atoms. 

Notice that in Equation (154), the wave-term is usually negligibly small compared 
with the dispersion-term except near t = 0 when the rate of change of concentration 
is extremely high in the time scale of a mean free time. 

The Green's function of Equation (154) which describes the concentration at r 
caused by a unit point source at the origin r = 0 [32] 

= - t ~ ( A t  - r) 
r 2 D  

+2Dx/rZ_A2tZJ~k2D r - AZ t2]H(A t - r ) } ,  (155) 

where the step function 

0; x < 0 
H ( x ) =  1; x > 0  

and J1 denotes the first-order Bessel function of the first kind [32]. 
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For illustration of the physical process, the source solution to the one dimensional 

form of Equation (154) is used [32] 

Cl(xd)=2~zAexp - 2  D t do ~ / x  -AZ t  z H ( A t - x ) ,  (156) 

where Jo denotes the zeroth-order Bessel function of the first kind. It  is observed 
from solution (156) that the concentration disturbance that gives the initial disconti- 
nuity is confined to within the signal zone, x<~At. The concentration at a point x 1 
remains undisturbed until the instant when x 1 = Aq. At this time which is that required 
for a disturbance to travel from the origin ( x = 0 )  to x 1, a concentration wave with 
intensity ~exp(-A2q/2D) passes through xa. After this initial wave the slower 

dispersion process takes over. For comparison of concentration at a point, Xl = D/2A, 
can be made between the concentration C~(D/2A, t) described by the telegraph 
equation and by the classical diffusion equation (Figure 24) for the initial conditions: 

e c / e t  = o 

t = 0  

for all x, C(x, 0 ) = 0  for x > 0  and C(x, 0)=  1 for x < 0  which represent appropriately 

a meteor source of interest. 

Fig. 24. 

a3 

O 

Comparison of fixed-point concentration variations C(xl, t) - telegraph equation (I) vs. 
classical diffusion equation (II). 

Notice that the time scale D/A z is on the order of  a mean free time. The results 
shown in Figure 24 imply that the two solutions become undistinguishable after 
1.5 mean free time. This is an extremely small time for gases at normal density. On the 
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other  hand  at  a h igh a l t i tude  where the meteor  trai l  d ispers ion is o f  interest ,  it  m a y  

become significant. The  above  discussion o f  d ispers ion is based  on a coord ina te  

fixed to  meteor  body,  hence it is a s ta t ionary  source. In  ac tual  app l i ca t ion  to a moving  

meteor ,  a t r ans fo rma t ion  o f  the equa t ion  to the  earth-fixed system mus t  be made  

[70]. This  would  make  the d ispar i ty  between the two solut ions  in F igure  24 more  

p ronounced .  N o  mat te r  how the ini t ial  rad ius  o f  the ionized me teo r  trai l  is defined, 

the d iscrepancy in concen t ra t ion  profiles near  t = 0 should  be o f  interest .  
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