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Abstract, This paper is part of a general programme of developing and inve-
stigating particular first-order modal theories. In the paper, a modal theory of pro-
positions is constructed under the assumption that there are genuinely singular pro-
positions, ie. ones that contain individuals as constitnents. Various results on deeci-
dability, axiomatizability and definabilify are established.

In some recent work ([7], [8], [9], [10]), I have attempted to carry
out o dual programme of developing a general model-theoretic account
of first-order modal theories, on the one hand, and of studying particular
theories of this sort, on the other. The two parts of the programme are
meant to interact, with the second providing both motivation and appli-
cation for the first. The present paper belongs to the second part of the
programme and deals with the question of giving a correct essentialist
account of propositions.

My approach is distinctive in two main ways, one linguistic and the
other metaphysical. On the linguistic side, I have let the wvariables for
propositions be both nominal and objectual. That is to say, the variables
occupy the same position as names and are interpreted in terms of a range
of objeets, which, in the present case, turn out to be propositions. This
approach stands in contrast to the earlier work of Prior [17], Bull [1],
Fine [4], Kaplan [14] and Gabbay [12], [13], in which the variables
are sentential (they occupy the same position as sentences) and are in-
terpreted either substitutionally or in terms of a range of intensional
values.

Grammatically, the distinction between the two approaches is quite
sharp. On the nominal account, the propositional variables attach to
predicates to form formulas and are not themselves formulas; while on
the sentential account, the variables attach directly to connectives to
form formulas and are, by themselves, formulas. For example, the ex-
pression [1(p > ¢) is a formula when ‘p’ and ‘g’ are sentential variables,
but is not even well-formed when they are nominal. To produce a corres-
ponding formula with nominal variables, one should introduce a truth-
predicate and then use (T'p > Tg).

* T ghould like to thank the members of a metaphysies seminar at Itvine,
and Peter Woodruff in particular, for several helpful discussions on the topic of this
paper. -
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Whether there is a deeper, more philosophie, distinetion between
the two approaches is another matter. My own view is that nominal-
cum-objectual quantification is fundamental and that all other forms
of quantification are ultimately to be explained in terms of it. This is
not to say that the other forms are illegitimate, but merely that they
stand in need of analysis. Thus the use of these other forms is not ruled
out in the formulation of a theory, when there is no requirement that
the formulation be basie.

It might be thought that the sentential acoount will also suffer
from certain logical drawbacks; for on it, there is no natural way of
expressing the identity or existence of propositions. Now it is in fact
true of most of the earlier work that questions of identity and existence
were not considered. The one exception is Prior, who introduced a sta-
bility operator, which corresponds to the existence-predicate, and who
was prepared to countenance & connective for identity (see [167 and [18],
pp. 53-56). But as the example of Prior makes clear, there is nothing
in the sentential notation as such to block expressive parity with the
nominal account. Indeed, thinking in more general terms, we might
always suppose that the values of the nominal variables for propositions
should be intensional values for the sentential variables and that, for
each predicate of propositions, there should be corresponding connective
on sentences. '

The reasons, then, for preferring the nominal account are ultimately
philosophical, not logical, and those of another philosophical persuasion
will probably be able to adjust my symbolism and its interpretation to
suit their own preferences.

On the metaphysical side, my assumptions are far more drastic in
their consequences. I have adopted what one might call a platonic and
objectual conception of propositions. By platonism here I mean, roughly,
that the domain of propositions is not constrained by the limited means
of expression of a finitary language. In particular, the propositions will
be closed under arbitrarily long conjunctions, whether finite or not, and
may be about arbitrarily many individuals. It should be possible to
work out the theories for various non-platonic stances, ag in [4], but
this is not something that I have done.

Objectualism is a form of structuralism. This is the view that pro-
positions have a quite definite structure. The proposition is actually regar-
ded as being built up in a certain way out of certain constituents. Thus
the structure, i.e. the manner of composition and the constituents, is
internal to the proposition and may be said, in a quite natural sense,
to explain its identity. What the structure of a proposition is will depend
upon the form of structuralism. But on most accounts, the structure
will abstract from, and correspond more or less closely to, the syntactic
structure of a sentence, if any, which expresses the proposition. For
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example, a (genuine) subject- predicate sentence will express a propo--
sition that is composed, in a predicative manner, of a subject- and pre-
dicate constituent which correspond, respectively, to the subject- and.
predicate-expressions in the sentence.

Objectualism is that species of strueturalism which allows a Proposi-
tion to have individual, as opposed to intensional, constituents. There:
are various ways, in principle, in which an individual may enter into-
a proposition, but the most characteristic way is as a subject-constituent.
If, for example, the proposition to the effect that Socrates is a philosopher
is genuinely of subject-predicate form, then the subject-constituent will
not be something like an intension or individual concept, but will be:
Socrates himself.

Let us say that a proposition is singular if it containg an individual
constituent and is purely general otherwise. Then an objectualist admits
singular propositions, whereas his opponent does not. However, it is.
not just that the one accepts 2 proper subclass of the propositions accepted.
by the other. For given the difference on objectualism, the construction.
of even purely general propositions may well be different.

Speaking with rough historical accuracy, we may say that Russell
and Frege were both structuralists, but that Russell was an objectualist.
while Frege was not. '

The issue of objectualism is one with many ramifications in both
the philosophy of language and metaphysics. However, its interest for
us is rather special. Our language for the modal theory of propositions
is extremely limited in expressive power — in addition to the usual logical
notions, it only containg a predicate for truth; and our coneern is merely
with how objectualism effects the truths of such a language.

There are, in fact, two main consequences for the language, one on
identity and the other on existence, those very topies that are usually
ignored on the sentential acoount. The one consequence is that necessa-
rily equivalent propositions may be distinet. This may happen for ge-
neral structural reasons or for more distinetively objectual ones. For
example, the propositions expressed by Vz(x = ) and VzIy(z = y)
may be distinguished in terms of their quantificational structure (or
what corresponds to it), whereas the propositions expressed by .Socrates =
Soctrates’ and ‘Plato = Plato’ may be dlstmgmshed in terms of their
respective individual constituents.

The other, and more important, comsequence is that propositions
may contingently exist. Given that a proposition is constructed from
certain individuals, it is plausible to suppose that the proposition is
existent (or actual) only if the individuals are. But then if the individuals
contingently exist, so does the proposition. For example, the proposition
to the effect that Socrates exists will itself exist only if Socrates does.

In working out the details of there consequences, some speeial con-
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giderations are called for. In regard to identity, we may merely state,
e.g., that there are so many distinet but necessarily equivalent propo-
sitions, since there is no direct way of talking in the language about the
Structure of a proposition. In regard to existence, though, it is not suffi-
cient to state that there are contingently exigting propositions, or even
8o many of them, for it is also necessary to make various other deter-
minations of the existence of propositions.

To explain this matter more fully, let us introduce some terminology.
Given a preposition, let its truth-set be the set of possible worlds in which
it is true and its ewxistence-set the set of possible worlds in which it exists.
For example, the truth-set of the proposition to the effect that Socrates
.does not exist is the set of possible worlds in which Socrates does not
-exist, while its existence-set is the complement of its truth-set. Let the
-modal value of a proposition be the pair consisting of its truth-get and
its existence-set. Then, in this terminology, our problem is to determine
for a pair of sets of worlds, when a proposition has that pair as its modal
value. -

This problem can be solved by means of the following ecriterion:

(1) there is a proposition with modal value (U, V) iff there is a sub-
set J of individuals in some possible world such that J determines the
identity of U and V is the set of possible worlds in which all of the indi-
viduals of J exist.

The notion of determines here may be explained, as in [6], in terms of
automorphisms. It may then be proved, for a suitable choice of an ideal
(i.e. infinitary) language, that:

(2) the set J of individuals determines the identity of U iff there
is a sentence of the ideal language which is true in exactly the worlds
of U and whose (rigid) names refer to exactly the individuals in J.

Given (2), (1) is equivalent to the following linguistic criterion for the
representation of modal values.

(3) there is a proposition with modal value (U, V) iff there is a sen-
tence ¢ of the ideal language such that U is the set of possible worlds in
which ¢ is true and V is the set of possible worlds in which all of the
referents of names in ¢ exist.

The statement (3) may itself be justified in other terms. Let the ob-
Jectual content of a proposition be the set of its individual constituents
and the objectual content of a senfence the set of referents of its (rigid)
names. Moreover, let the fruth-set of a sentence be the set of possible worlds
in which it is true. Then (3) may be based on the following two assump-
tionsg:

(4) a proposition exists (in a possible world) iff all of its individual
constituents do:
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(B) there is a proposition with given truth-set and objectual content
iff there is a sentence of the ideal language with the same truth- seb a,nd
objectual content.

To justify the right-to-left direction of (5), let the proposition, for
a given sentence of the ideal language, be the one expressed by the sen-
tence. Olearly, the sentence and the proposition have the same truth-set.
Moreover, given:

(6) the individual constituents of a proposition .expressed by a sen-
tence are the referents of the names in the sentence;
the sentence and proposition will also have the same objectual content. To
justify the left-to-right direction of (5), we must appeal to the expressive pow-
er of the ideal language. Let ¢ = g(4y, €5, ...) be 2 proposition with indi-
vidual constituents 4,,%,,.... Then there is a corresponding relation
B = A%y, B3y ... 0(¥1, %, ...), which is purely qualitative. Now the pri-
mitive relation-symbols of the ideal language are so chosen that for any
purely qualitative relation there is a name-free formula with the same
possible worlds intension. Therefore there is such a formula ¢(w,, #,, ...)
for R. Bub then the sentence 9(%1, Ny ...), fOT %y, Ny, ... the respeetwe
names of i,,4,,..., will have the same truth-set and objectua,l content
a8 p-

(6) may itself be justified on the basis of three further assumptions.
The first is that (6) itself holds for atomic gentences. The second is that
the logico-syntactic operations on sentences correspond to operations
on propositions, that, for example, the conjunction of two sentences
expresses the conjunction of the propositions expressed by the conjuncts.
The third is to the effect that objectual content accumulates in the na-
tural way under the application of the logical operations to propositions,
that, for example, the objectual content of a conjunctive proposition
is the union of the objectual contents of its conjuncts. Such a principle
of accumulation is stated in [11] and used in the semantical analysis
of Parry’s system of analytic implication.

The other main assumption, (4), follows naturally from the construc-
tive aspect of objectualism. Given that a proposition is built up from
its constituents, it i3 difficult to see how the proposition could exist
unless its constituents did; and since neither the manner of composition
nor the other constituents are & source of contingency, the existence of
the individual constituents will be both a necessary and a sufficient con-
dition for the existence of the proposition. In respect to the existence
criterion, then, propositions are just like sets or, indeed, like any other
complexes. I now wish to repudiate the suggestion in [5] (pp. 127-8)
and [6] (p. 136) that the existence criterion for intensional entities, such
ag propositions, is different from that for extensional entities, such as
sets. In both cases, it is in terms of constituents. Indeed, unless propo-

5 -~ Studia Logica 2-3/80
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sitions were complexes or structured entities, it is difficult to see, on the
present platonic view, how their necessary existence might plausibly be
denied. The reason for the apparent difference in criteria is that, in [6],
the propositions are not given in terms of their structure and hence some
detective work, of a rather special nature, needs to be done to recover
the underlying objectual content.

Note that the statement and justification of the criterion in (1) above
does not presuppose the details of any particular structuralist account.
The nearest the discussion gets to such details is in the justification of
(6), where it is assumed that there are logical operations on propositions
corresponding to the syntactic operations on sentences. But only a very
limited use is made of this assumption, viz., that embedded in the accu-
mulation principle. Such questions as whether conjunction is a consti-
tuent of a conjunctive proposition or whether the order of the conjuncts
makes a difference to its identity need not be considered.

It has been usual in the literature on modal logic, my own work in-
cluded, to identity propositions with their truth-sets. This practice is
harmless enough if it is actually thought that necessarily equivalent
propositions are identical. But without this presupposition, the practice
can run into certain dangers. Some properties of propositions only de-
pend upon their truth-sets, the most notable examples being the modal
properties of necessary and possible truth. Sueh properties, then, can
be replaced by the corresponding properties of their truth-sets. But other
properties depend upon more than the truth-set, and I am not thinking
here merely of intentional properties, like those for belief and knowledge,
but also of more logical ones, like existence or identity to a given pro-
position. If propositions are to be identified with truth-sets, then such
properties will either be ignored or not properly considered.

As an example of the first danger, I might cite the neglect of the
identity relation in the recent work on propositions in modal logie. It
might be thought that the introduction of this relation is a trivial matter.
But, in fact, if one adopts a platonist and anti-structuralist position,
a decidable system is turned into an undecidable upon the more addition
of identity and into an unaxiomatizable one when the intended inter-
pretation is maintained {(theorems 7 and 8 below).

As an example of the second danger, I might cite my own work on
the existence of intensional entities in [6]. The significance of the defini-
tions there is to some extent vitiated by a lack of correspondence with
the intuitive properties of the intensional entities themselves. For example,
the definition of “existence” for sets of possible worlds V is such that V
“exists” in a world w iff some proposition with V as its truth-set exists
in w. But then there may be no single proposition which exists in exactly
those worlds in which V “exists”, and so even the above correspondence
may not be preserved for higher types.
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The problems over existence may be avoided by using modal values
in place of truth-sets. But there will still be problems over identity,
which will be compounded when we move to entities of higher type or
to some other extensions of the language. In order to avoid these dangers,
it may often be wise to talk directly both about the propositions and
their truth-sets. In this way, the connection between the two can be
explicitly worked out without prejudging any questions about the pro-
positions themselves. This is the approach adopted in the present paper,
and it is one that might have been used to resolve the aforementioned
difficulties in [6].

The reluctance to talk about propositions has, I think, more often
arisen from despair than conviction. It has been felt that in the absence
of a fully worked out structuralist criterion, nothing useful can be said
about the propositions themselves. But this is a mistake. One may de-
velop a theory without a full grasp of the entities with which it deals.
In the case at hand, the previous discussion makes it clear how one can
determine which pairs of sets of worlds are the truth-and existence sets
of a proposition without presupposing the details of any particular ob-
jectualist theory. Indeed, the main interest in the techniques of [6] is
that they show how determinate is the shadow that the structure of
propositions casts on their possible world representaticn.

The plan of the present paper is as follows, The first section sets out
the underlying formal language and its general interpretation. For fur-
ther discussion of these matters, the reader might consult the first three
sections of [7]. The second section deals with various anti-objectualist
theories of propositions. Their characteristic feature is that propositions
are assumed to exist necessarily. The next two sections set out and de-
velop those conditions on a modal structure which are justified by an
objectualist and platonic conception of propositions. The resulting theory
is not axiomatizable, but the fifth section presents a partial axiomati-
zation of it and the sixth supplies some standard metatheoretical results.
The seventh section considers various extensions of the basic theories,
two of which are obtained by introducing propositional abstraction and
quantification over sets of propositions. The final section deals with the
actualist demand of defining all predicates in terms of those that are
only true of the actuals of each world. It is shown that the normal truth-
predicate is not definable in terms of actualist truth alone, but is defi-
nable in terms of actualist truth and a predicate for actualist strict im-
plication.

1. Language and models

Our language % will be a modal first-order one in the sense of [7]
or [15]. The logical, or rather fixed, vocabulary includes a two-place
predicate = for identity and a one-place predicate E for existence. In
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addition, there is a single non-logical predicate T for truth. In keeping
with our nominalistic approach to the quantifiers, 7' will aply to a va-
riable p of the language. The result ‘To’ may then read as ‘p is true’ or
as ‘the proposition p is frue’. )

Tt is customary to use Roman letters, such as ‘@’, ‘¢’ and ‘’, for
the individual variables of a first-order language. However, in order to
emphasize the fact that our wvariables are to range over propositions,
I shall use the Greek letfers ‘o’, ‘o’ and ‘¢’, with or without subseripts,
in their place.

A (modal) structure for the language may also be raken in the sense
of [7] or [15]. However, since there is only one non-logical predicate,
the definition may be simplified somewhat and a structure ¥ may be
regarded as a triple (W, 4,1) in which W is a non-empty set, 4, is,
for each w € W, a set, at least one of which is non-empty, and ¢ is a set
of pairs (w, ¢) in which w e W and e e 4, for at least one v € W. The
outer domain A of the structure % may then be defined as {e: for some
weW, ecd,).

Intuitively, W is the set of all possible worlds, 4, is, for each w, the
set of propositions which exist (or are actual) in W, t is the set of pairs
(w, e) for which e is a proposition true in the world w, and A is the set
of all possibly existing propositions. There is some difficulty in talking
intuitively about propositions within a modal framework, for one may
mean actual propositions or possible (i.e. possibly existing) propositions.
Usually, the former is meant at the level of the object-language and the
latter at the level of semantics. However, the appropriate qualifications
will be made explicit when they are important. In the intuitive talk
of propositions I ghall use the variables g, o, ..., as in the object lan-
guage. This dual use of the symbols should cause no confusion, though.

A truth-definition may be given by adding each possible object as
a name of itself to the language. The clauses for the necessity operator,
the existence- and truth-predicates, and the existential quantifiers are
then as follows:

(i) wk Qe ift vke forall veW;
(i) ok He iff  eed,;
(iii) wkTe iff  (w,e) et;
(iv) wEJople) iff wEgpe) for some ¢ in A,.

The clause for T does not require ¢ € 4,,. Later, in section 8, we shall
consider some questions which arise from adding this condition. Clauses
(i) and (iv) give rise to a certain modal predicate logic, viz. S5 with actu-
alist quantifiers. This reflects my belief in an S5-logic for metaphysical
necessity and in the primacy of the actualist quantifiers. However, it
would be possible, either on philosophical or technical grounds, to con-
gider other clauses for the quantifiers and for necessity.
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We shall often follow standard conventions and terminology in logic.
‘We shall also adopt a special convention under which a formula ¢ will
be depicted as ¢(04,..., 0,) When g4, ..., g, are exactly the free varia-
bles of ¢. ‘

In stating conditions on the structures A for &, we shall find it helpful
to introduce some terminology for truth-sets, existence-sets and modal
 values. Let A = (W, 4, 1) be a structure for £, w a member of W, and e
of A. Then we put:

is(e) ={weW: lw,e> et};
es(e) ={weW: eed,};

mo(e) = <is(e), 63(0))s

TS, = {is(e): eed,};

MV, = {mv(e): ¢ A,};

T8 =1 T8, = {is(e): ec A};

welW
MV = MV, = {mv(e): ec A}.
weW
Intuitively, ts(e), es(e) and mv(¢) are the truth-set, existence-set and modal
value, respectively, of e; I'S,, and MV, are the collections of truth-sets
and modal values, respectively, of propositions in w; and T'S and MV
are the collections of all truth-sets and modal values respectively. In
the above notation, mention of the underlying structure 9 has been
suppressed; but it may, if desired, be explicitly indicated by means of
a superseript.

2. Anti-objectualist theories

Our main conecern is with theories based upon an abjectualist con-
ception of propositions. However, it will be of interest to begin with
a study of anti-objectualist theories, both because of their intrinsic in-
terest and for purposes of ecomparison.

All of the anti-objectunalist theories considered will presuppose the
necessary existence of propositions and, as always, a Platonic stance
on propositions. They will, for the most part, only differ in their assump-
tions on the identity of proposition. The first system is based on the anti-
-structuralist assumption that propositions with the same modal value
are identical. Its semantics is determined by the following conditions:

Constant Domain (CD). For any ec A, ts(¢) = W;

Modal Criterion (MC). mo(e) = mv(f) implies that ¢ = f for all
e, fed;
Platonism (P). For each Vo W, V eT8.

The first condition expresses the necessary existence of propositions;
the second the identity of propositions with the same modal value; and
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the third the Platonic assumption that each set of worlds is the truth-set
of some proposition. Given a set of conditions, as above, let us say that
a sentence is valid relative to the conditions if it is true in all models whose
struecture satisfies the conditions.

In order to formulate the corresponding theory, we make the follo-
wing definitions:

¢ ~;0 for [J{(Tp = To);

¢ ~,0 for [O(Hg = Ho);

0 ~y, 0 for (o ~y0)A(0 ~,0).

We for ToAaVo(To > O(Te = To)).

The first three defined expressions say, respectively, that p and ¢ have
the same truth-conditions, the same existence-conditions, and the same
truth- and existence-conditions or modal value. The last says that g is
a true world-proposition, i.e. that ¢ is true and necessarily implies all
truths. :

The axioms of our theory are then as follows:

Necessary Ewnistence. [Vp [1He;
Modal Criterion Awiom. Ve [OVo[e ~y 02 0 = o];

Simple Comprehension. Voy, ..., 0, Jo[1(To = ¢), where ¢ is a for-
mula whose free variables inelude ¢4, ..., g, but not o;

World-Proposition. [1deWoe.

Necessary Existence and Modal Criterion directly express the conditions
of a constant domain and modal criterion for the identity of propositions.
Simple Comprehension says that, necessarily, for any condition ¢ of the
language and propositions g¢,, ..., g,, there is a proposition ¢ which is
true exactly when g4, ..., g, satisfy the condition. World Propositions
says that necesarily there is a true world-proposition.

Note that Comprehension, in a system with nominal qua,ntlflers, is
not a purely logical axiom. On the other hand, in a system with sentential
quantifiers it is. For from [(4 = 4), Elp[](p = A) follows by Speci-
fication.

Given Necessary Existence, the Modal Criterion axiom may be rep-
laced by:

T-Criterion. (1) [e A~ 02 ¢ = 0];
and the prefix Vo, ... Vg, 307 in Simple Comprehension by Vo, ... Yeo,30,
without loss of deductive power. Similarly, in the pressence of Constant
Domain, the modal criterion condition may be replaced by:

ts(e) = ts(f) implies e =f for any e, fcA.

However, for later purposes, we shall find it useful to use the stronger
formulations here.
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Let us call the theory resulting from these axioms MC. (M for modal
criterion and C for constant domain. The Platonism is taken for granted.)
Then the theory and the semantics outlined above are equivalent to
the system S5z* and its semantics as given in [4]. To be exact, for any
formula ¢ of £, let ¢* be the result of replacing each individual variable
©; by the sentential variable p,, and each of the atomic subformulas
Eo;y To;and o; = g; by (V1) (p1 = p1), 945 and [(p; = p;) respectively.
Conversely, given a formula A of the language of S5z%, let 4’ be the
result of replacing each quantifier Vp, by Vg, and each sentential variable
P;, not attached to a quantifier, by T'o,. Then it is an easy matter to show
that the translations preserve validity and theoremhood in the respective
systems. That is:

THEOREM 1 (i). The sentence ¢ is valid relative to the conditions CD,
MC and P above iff ¢’ is a valid sentence of S5n™*.

(ii). The sentence @ is a theorem of MC iff ¢’ is a theorem of S&xt.

(iii). The formulas ¢ = ¢* are both valid for the three conditions and
provable in MO.

Given this theorem and the soundness, completeness and decidability
results for S5z", we may show:

COROLLARY 1. The theory MO is sound and complete for its semantics
and is decidable.

Of course, the methods used in establishing the various results for S5a*
might be applied directly to MC.
Let T8, be the sentence:
OF0;--- el A~ (0~ 05)-
Ii<j=sn
"This sentence says, for any given =, that there are at least n (actually
existing) propositions which differ in their truth-conditions. Then by
@ corresponding result for S5z and Theorem 1, it may be shown that:

CoROLLARY 2. Hach sentence of MC is provably equivalent to a truth-
functional compound of the sentences TS,, TS,,....

Let MCInf be the result of adding all of the sentences TS8,,T8,, ...
as axioms to MC. Then given the previous corollary, it follows that:

COROLLARY 3. The theory MCInf is negation-complete, i.e., for each
sentence ¢ of &, either ¢ or ~ is a theorem of MC.

The interest of MCInf is that its theorems are exacily the truths of
the langauge # that should be accepted by one who is Platonist, anti-
objectualist and modalist in his attitude towards propositions. Given
the corollary, it suffices to show that each of the sentences T'S; is true
{under the intended interpretation of the language). But this might be
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shown (without presupposing the truth of objectualism or platonism)
in something like the following way. For each ¢ =1, 2, ... let g; be the
proposition that there exist at least 4 cats. (Choose some other example
if cats do not please.) Then these propositions differ in their truth-sets,
since for each ¢ =1, 2, ..., it is possible that there are exactly 4 cats.
Moreover, each of these propositions is purely general and hence exists
necessarily. Therefore the sentences T'S;, T'S,, ... are all true.

Although they shall not be given here, results for the analogues of
other extensions of S6z — might be established in a similar way.

Let us now drop the anti-structuralism of the preceding approach,
but retain the anti-objectualism and the Platonism. It would then appear
reasonable to adopt the following condition and axioms in favour of the
Modal Criterion ones:

Diversity (D). Given any e € 4, there are infinitely many fe 4 for
which mo(f) = mv(e);
Diversity Axioms. OV e oy ... OF0,(0 R 01A oo Ag myg 06, AN ©

Ii<<<ng

#o;), for n=1,2,...

The condition says that there are infinitely many propositions with the
same modal value as a given proposition. In the presence of Constant
Domain, the condition merely says that there are infinitely many pro-
positions with the same truth-set as a given proposition. The axioms,
taken conjointly, exactly express the condition. Note that these axioms,
unlike Inf which is also formulated with identity, are not expressible
in the language of S&x*.

The condition (or axioms) may be given the following intuitive justi-
fication. Let o be any proposition. Granted that:

(1) there are infinitely many propositions ¢y, 0,, ... wWhich necessarily
exist and are necessarily true; ‘
it follows that we may form the conjunctions z; = o’. g; of the proposition
¢ with each of the propositions ¢;. Clearly, each proposition z; has the
same truth-set as g; and by the cumulation principle, they also have the
same existence-set as ¢. But granted that:

(2) o-0; #~ ¢-0; for 4 3 j, it follows that the propositions 7,, s, ...
are distinet.

The most vulnerable premises in the above argument have been la-
belled (1) and (2). Both premisses seem reasonable on a structuralist
conception of propositions; and of the two premisses, the first may be
justified in terms of an examplesay the series of propositions that ¢ = v,
{9} = {9}, .... For each of these propositions is clearly necessarily true,
and, since they each have null objectual content, they also necessarily
exist. However, I know of no justification of these premises that is in-
dependent of structuralist considerations.
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Diversity does not say exactly how many propositions have the same
modal value as a given proposition, and the above argument only tells
us that there are as many such propositions as there are necessarily true
and exigtent propositions. It would be good to know more about the
cardinalities of sets of propositions with the same modal value. But,
fortunately for us, such information is not required, since nothing that
can be said in the language % will turn upon it. Indeed, the diversity
axioms will be the only ones that will require structural congiderations
that are independent of the cumulation principle.

Let the theory which results from replacing Modal Criterion with
Diversity be called DC. Then it will follow from a later result (Lemma
14) that: :

LevvA 4. Fach sentence of & is provably equivalent in DC to an
identity-free senience of Z.

Given this result and Theorem 3, it may then be shown that:

COROLLARY 5. The theory DC is sound and complete for ils semantics
and is decidable; and

CorOLLARY 6. The theory DCInf, oblained by adding Inf to DO, is
negation-complete.

By considerations similar to those adduced for MOInf, if follows that
DOInf is the theory that should be adopted by one who is Platonist,
anti-objectualist and yet structuralist in his attitude towards proposi-
tions.

Let us now take & neutral stand on the identity of propositions. Think-
ing semantically gives us the theory C* of all sentences valid in struc-
tures which satisfy Constant Domain and Platonism. In regard to this
theory, it may be shown that:

THEOREM 7. CF is not axiomatizable.

SEETCH OF PrOOF. The second-order theory of a symmetric relation
is not axiomatizable. Indeed, it is equivalent in undecidability to fulk
second-order logic. Now the second-order theory of a symmetrie relation
can be embedded in the modal theory. For given a sentence A of the
second-order theory, let A* be the result of replacing each ato-
mic formula Rey in A by 37 37|z £+ A O(Tr = (TovTo)) A O(T7"
= (TovTos))], each identity formula # =y by ¢ ~; 0, each member-
ghip formula 2 eX by [O(Te o T¢'), each individual quantifier
Az by Jo(OWon ...), and each set quantifier 2 by I ¢’. Then it may
readily be shown that the sentence A is a theorem of the classical theory
iff A* is a theorem of the modal theory.
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Retaining the neutral stand on identity but thinking syntactically
gives the theory C obtained by dropping Modal Criterion from M. In
regard to this theory, it may be shown that:

TaeoreM 8. The theory C is not decidable.

Proor: The first-order theory of a symmetrie relation is undecidable
{see [2] and [3]). But then the previous translation A* (without set
variables) may be used to embed the classical theory in the modal theory.

The above two results are remarkable. The theory MC {or, equiva-
lently, 85zn") is decidable. If the axioms are retained, but for a neutral
stand on the identity of propositions, then the result C is undecidable.
If the semantics is retained, but for the neutral stand on identity, then
the result O* is not even axiomatizable.

There are some extensions of €, which fall short of either MC or DC,
but which may be of independent interest. We might, for example, con-
sider axioms of the sort:

d,0(0 ~;0) 2 3,00(To = —To)

{for 3, the quantifier “there are at least #”). Such an axiom reflects the
fact that the negations of distinet propositions are distinet, a fact that
cannot be directly expressed within the language. These intermediate
systems are perhaps worthy of further study; and it may be that some
of them are decidable or complete for a Platonic semantics.

3. Objectualist conditions on a structure

We now wish to consider what conditions should be imposed upon
a structure, given an objectualist and Platonic stand on propositions.
There are three conditions in all. Of these, the first two are relatively
straight-forward, but the third, Automorphism, is not. We ghall first
state it, then present some partial reformulations and, finally, outline
its justification.

The firgt condition is Diversity. Since it has already been considered
in gection 2 and since its justification there did not presuppose anti-ob-
jectualism, we shall not consider it any further here.

The second condition is World Actualism (WA), as explained on p. 148
of [6]. Given a structure A = (W, 4,?) for £ and we W, let U,

= (A, Ay, t,), where t, = {eed: (w,e>ei}, and let A, = (4,,1,),
where %, = {¢ € 4,: {w, e> et}
Then World Actualism states:

i’fw = Q_I,, implies A, =W, for all w,ve W.

A gtructure U is said to be differentiated if W, = A, implies w = v
for all w, v € W. Since the addition or deletion of copies of worlds make
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no difference to the evaluation of modal formulas in a structure, we
shall henceforth assume that all structures are differentiated. Under
this assumption, World Actualism may be replaced with the condition:

Q-Iw =ﬁv implies w = for all w,ve W,

Tf the nature of a structure U for & is spelt out, then this condition be-
€omes :

if w # v, then either there is an ¢ e 4 in 4,—A4, or 4,—A4,, or there
is an ¢ € A such that exactly one of w and v is in is(e)nes(e).

World Actualism is a reasonable condition for propositional structures.
For given two distinet possible worlds, there will be something the case
in the one but not the other. But then the proposition that states that
this is the case will be true and existent in the one world but not the other.

To state the final condition, let us introduce some terminology. Given
a structure A = (W, 4, 1), the pair a = (0, a,) is said to be an auto-
morphism on U if

(i) a, and o, are permutations on W and A respectively,
(ii) ecd, iff a,(e) o:—'Aa,l(w)7
(iii) lw, e> et iff (o (w), ay(e)> et.

TIn other words, an automorphism is a permutation on the worlds and
propositions which respects the truth- and existence- conditions of the
propositions. The above notion is merely a special case of the general
notion explained on p. 149 of [6].

Let B be a subset of 4 and V of W. Say that the automorplsm
o = {ay, 0y if fived on B if a,(e) = e for all e € B; and. that B defermines
V if a,[V] = V whenever the automorphism e = {a;, a,> is fixed on B.
Intuitively, a set of propositions determines a set of worlds if the identity
of the latter set can be determined on the basis of the propositions alone.
For a collection of propositions B < A, let the existence-set es(B) be
{w: w e es(e) for all ¢ € B}. Thus the existence-set for a collection is the
set of worlds in which all of the propositions in the collection exist.

The final condition can now be stated:

Automorphism. If a subset B of some A4, determines V < W then
{V, es(B)) € QP.

In other words, if the identity of the set of worlds ¥V can be determined
on the basis of the propositions B of some world, then some proposition
has V as its truth-set and exists in exaetly those worlds in which all of
the propositions of B exist.

The exact import of the automorphism condition is hard to appre-
ciate. However, its meaning for truth-sets may be considerably simplified.
Taking the lead from section IV of [6], say, for a given structure ¥ and
w, v, w € W, that « and v are indiscernible relative o w — in symbols,
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#=,v —if for all VeT8,, eV just in case v e V. Now say that
% ~v,, v if there is an automorphism o = {a;, a,) fixed on 4, for which
a (u) = ».

Then it may be shown that:

Levva 9. For A a sitructure and w, v, u € W,
(i) % ~,v implies uw=,v, and
(i) u =,v implies u ~, v, when

W satisfies Automorphism.

Proor: (i) Suppose # =~ v. So for some automorphism e = {a,, a,),
o is fixed on 4, and a,(#) = v. Choose an arbitrary member V of TS,
and suppose % € V. Then for some e € 4,,, ts(e) = V. Sinceu € V, (u,e) €t;
since « is an automorphism, {o,(u), a,(e)> €%; and since ¢ is fixed on
A4,, {v,e> e, i.e. v e V. In the same way it may be shown that ve V
implies v € V; and 80 u =, 9.

(ii). Suppose that A satisfies Automorphism and that not u =, v.
Let V = {t e W: u v, t}. Then it is readily shown that A, determines V.
So VeS8, by the Automorphism condition. But v ¢ V, and therefore
not u =, °.

From the above lemmma it follows that:

TeErEOREM 10. For N a structure satisfying Awutomorphism, the follo-

wing three conditions are equivalent:
(i) VelS8,;

(ii)y V is closed under =,;

(iii) 4, determines V.

Proor: (i)=+(ii). By definition of =,,.

(ii) =(iii). A4, determines V if V is closed under ~,. Bub
then the implication follows by lemma 9 (i)
(iii) =(i). By Automorphism. ,

It would be good if a similarly simple criterion for the representation
of modal values in a world could be found, but I seeno way of finding one.

The Automorphism condition may appear complicated and unnatural,
but it may be given an intuitive justification. Suppose that B is a set
of propositions from some possible world and that w is a possible world.
Then it may be shown that:

(%) there is a proposition 7, whose existence-set is es(B) and whose
truth-set is T, = {v € W: there is an automorphism « which is fixed on B
and for which a,(w) = v}.

The justification of (*) goes as follows. For each world w, let the com-
plete description g, be the result of saying:

(i) of the true, false, existent and non-existent propositions, res-
pectively, that they are true, false, existent and non-existent;

(ii) of distinet propositions that they are distinct;
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(iii) of all propositions that they are all the propositions.

Let the complete description o of all worlds be the result of saying:

(iv) of each proposition ¢, that it is possible;

(v) of all propositions g, that their digjunction is necessary.
Given g, and o, let 7,, be the result of existentially generalising on all
of the propositions in the conjunction of g, and r which are not in B
{whith the quantifiers possibilist). Then it may be shown, on the basis
of the construction of v, that the truth-set of ¢, is T, as required. Mo-
reover, since 7, is constructed by purely logical means from exactly the
propositions in B, its existence-conditions are exactly es(B) by the cu-
mulation principle for objectual eontent.

Now suppose that the subset B of some 4, determines V, as in the
condition. Let v be the disjunction of all of the propositions 7, in ()
for which w e V. Then its truth-set is the union of all the sets T, for
which w € V. But since B determines ¥, this union ig simply V. Moreover,
by the cumulation principle again, the existence-set for v is still es(B).

The above argument is rather informal and sketchy. A more formal
and detailed version of the argument, though at the level of sentences
not propositions, may be found in section V7 of [6].

In view of the above justification, it is natural to wonder to what
extent Automorphism is adequate in its postulation of modal values.
This question may be answered by appeal to underlying individual struc-
tures. Let S = (W, I,v) be a modal structure for an arbitrary modal
langunage L of relation-symbols. To distinguish the structures fur L and
2, we shall cali the former individual and the latter propositional. In
thinking of J, we should suppose that:

(i) W is the set of all possible worlds;

(ii) I is the set of all possible individual constituents of proposi-
tions;

(iii) each relation-symbol in L is purely qualitative; and

(iv) the possible worlds intension of eaeh purely qualitative relation
on I ig, in principle, expressible in terms of the relation-symbols of L.

Let MV (J) = {<U, V): for some subset J of an I,,J determines U
and V = {we W: J < I,}}. Then by the discussion in the introduction,
it follows that:

(I} MV (3J) is the set of modal values of (genuine) propositions.
Given the assumptions (i) — (iv), it also follows that: ‘
(II) Any automorphism a = {a;, a,» on J induces an automorphism

j§ on the collection of all genuine propositions (with respeet to truth
and existence at a world). .
For a given o and a proposition o = 9(4,%s,...) with individual
constituents 4y, %y, ..., leb a3(0) = olas(4y), as(ds), ...). With the help
of (iii) and (iv), it may then be seen that <a;, ;> is the required
auntomorphism . f.
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From (I) alone it follows that any automorphism a = {e;, ay) on I
can be extended to an automorphism on the modal values of 3. Thus
what (IT) adds is that the cardinalities of propositions with the same
modal value should be in accord.

Let us say that an individual structure S = (W, I, v) underlies the
propositional structure U = (W, 4, 1) if:

(i) MV(JI) = MV; and

(ii) for any automorphism a = {a;,a,> on J, there is an auto-

morphism g = <{ay, a;> on .
(Recall the very different definitions of MV (J) and M V). Then from (I}
and (II) it follows that each (genuine) propositional structure possesses.
an underlying individual structure. It is therefore of great interest to
show that:

THEOREM 11. A propositional structure U satisfies the Automorphisne
condition iff some individual structure I underlies .

PROOF: <. Suppose that I = (W, I, v) underlies A = (W, 4, 1).
Assume that a subset B of some 4, determines V < W. Then the satis-
faction of Automorphism requires that (V, es(B)> € MV¥, Let J =(\{l,*
w € es(B)}. Then the following may be shown:

(1) J is a subset of some I[,.

Pf. Since B is a subset of some 4,,.

(2) If the automorphism a = {a;, a,> of J is fixed on J then there

is an automorphism g = <{ay, azy of U that is fixed on B.
Pf. Suppose a is an automorphism on J that is fixed on J. Since I
underlies 2, there is an automorphism f = {ay, a;> of A. Let ¢ be any
member of B, with mwv(e) = (U, V). Then J determines both U and V.
For since ¥ underlies U, there is a subset K of some I, such that K de-
termines U and V = {w e W: K < I,}.Now, by definition, K < J. But,
as should be clear, K determines V, and so J also determines both U
and V. Since ¢, is fixed on J, a;(U) = U and a,(V) = V. But then muv(e)
= MY (a3('e)) for all e € B. So by rearranging members of 4 with the same
modal value, it is possible to find an ag that is fixed on B.

(8) J determines ¥V (w.r.t. the automorphism of J).

Pf. Suppose the automorphism e = <{a,, a,> of J is fixed on J. By (2}
above, there is an automorphism 8 = <a,, a;> of ¥ that is fixed on B.
But since B determines V, a,[V] = V, as required.
(4) es(B) ={fweW: J < I,}
Pf. It wees(B), then J < I, by the definition of J. For each subset:
K of I, let W(K) = {we W: K < I,}. Since I underlies 2, there is, for
each ¢ € B, a subset K, of I such that W(K,) = es(e). Clearly, J < K, for
each ¢ € B. So W(J) < W(K) for each such e. But then W(J) < | W(K})

eeB
= es(B).
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From (1), (3) and (4) and the fact that J underlies U, it follows that
(V,es(B)> e MVY, as required.

=. Suppose U satisfies Automorphism. Intuitively, it would appear
to be hard to find an underlying individual structure J, since many real
individual structures could result in the same propositional one. Bub
mathematically the solution is simple, since we may let I be U itself.
Condition (ii) in the definition of ‘wnderlies’ is automatically satisfied
upon letting § = a. As for condition (i), suppose that (U, V> e MV¥;
so that for some ec A, mv(e) =<U, V). Let J < I = A be {e}. Then
it is readily shown that J is a subset of some I,, that I determines 6
and that V = {we W: J < I,}. Therefore, <U, V> € MV (N). Now sup-
pose that <U, V> e MV (N), so that for some subset B of an I, B deter-
mines U and V = {we W: B < 4,,} = es(B). Then by a direct appli-
cation of the Automorphism condition, (U, V> e MV

The adequacy of Automorphism condition can be  discerned from,
the above result. For given that ¥ possesses an underlying individual
structure J, any further determination of ¥ must depend upon the.
specific identity of J and the cardinalities of propositions with the same.
modal value. In the absence of any such information, Automorphism
gives the most that can be said of the genuine propositional structure.,

Any condition on the underlying structure will have its effect on
the propositional structure. We already have an example of this in World,
Actualism, which transfers from the individual to the propositional
structure. Later, in regard to the Extendibility conditions of [6], we,
shall come aecross other examples.

4. Consequences of the conditions

In this section, I work out several elementary consequences of the:
preceding conditions on a structure. Some of these results will be used
for later proofs; and some are merely stated for their infringic interest.,
By each result I have stated the conditions upon which its proof depends..

First, we shall give a general result on modal value. Say that two.
structures W = (W, 4, ¢) and B = (V, B, s) are MV-equivalent if W = ¥
and MV* = MV®, and that the sequences ¢;, ..., ¢, € A and f,, ..., [, e B
are MV-equivalent if mo¥(e)) = mo®(f,) for ¢ =1,...,n. Then it may
be shown, without any conditions on the structure, that-

Levmma 12. Suppose that the structures W and B are M V-equivalent
and that ey, ..., 6, and fy, ..., [, are MV-equivalent sequences in W and
B respectively. Then:

(A, w) Epleyy ..., e,) L (B, w) E@(fi, ..., fo) for any identity-fres;
Jormula @04y ..., 0,) of L and any we W.
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Proor: By a straightforward induction of ¢.

This result helps to explain the significance of modal values. For
according to i, there is no harm in talking about modal values instead
of propositions in the language 2, as long as no use is made of identity.
If identity is used, then there may be a shift in truth-value, since e, = e,
may be true in U even though f; = f, is not true in B. However, by a care-
ful examination of the role of identity, the above result may be extended.

Say that a formula ¢ is loose if no bound variable flanks an identity-
-sign. Say that a variable ¢ in ¢ is loose if no free occurrences of g in flank
an identity-sign. Then it may be shown that:

Levma 13. Suppose that A and B are MV-equivalent struciures,
€1y oy by and fi, ..., [, elements in A and B respectively, and ¢ = @04, ...
veny 0n) @ loose formula such that (i) mo™(e;) = mv®(f;) whenever o, is loose
an o, end (ii) ¢; = ¢; iff f; = f; whenever both o; and ¢; are not loose in ¢.
Then:

’ (W, w) Folegy...,e,) Hf (B, w)Folfi,...;f)
for amy we W.

ProoF: Again, by induction on ¢.

The above result may be strengthened with the help of Diversity,
First, it may be shown that each sentence ¢ is equivalent to another
* that does not contain identity. To explain the translation =, suppose
that ¥ = Yoy = Voy(g, 04, ..., 6,) 18 an arbitrary universal formula. For
each ¢ =1,...,n, let ¥ be the result of replacing each occurrence of
@ = 0; Or ¢; = o, with ¢ and o; both free in ¢, by T = Vz(Tr > T7);
and let y’ be the resulting of replacing each occurrence of ¢ = g; or
0, = g, with ¢ and o; both freein y, by | = —T .Let y* = Voyp'n A\"(Ho;

i=1

> y¥(0y, 04y ..., 0,)); and for any formula g, let g* be the result of replacing
-each universal subformula y of ¢ by 4*, working successively outwards.
Note that ¢* is always loose and hence is identity-free when ¢ is a sentence.
It may be shown that:

LevMmA 14 (D). For any elements e, ..., e, of the structure W and
Jormula @(o1, ..., 0,):
(U, w) F (g, ...56) Hff (U, w)Ep*(er,...,6,).
Proor: By induction on ¢. The key point is to show that if (U, w)
kE Voy*(g, ey, ..., e, then (A, w) k ¢*¥(e,, ..., ¢,). But this may be shown
‘with the help of the condition D and Lemma 13.

Given two M V-equivalent structures % and B, say that the sequences
€yy...y6, a0d fi,...,f, from A and B respectively are M VI-equivalent
if they are M V-equivalent and, whenever 1 <¢ <j<n, ¢ = ¢ iff f; = f;.
Then for structures satisfying D, it may be shown that:
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LevuaA 15 (D). Suppose that A and B are MV-equivalent, and that
oy by and fr, ..., f, are MVI-equivalent. Then:

Wy w) Fples; ..y6,) iff (B, w) Fo(fyy..ny fo)

Proo¥: The following statements are equivalent: (U, w) k ¢(ey, ... en)
ooy 8)5 (U, w) E@*(ey, ..., 6,) (by Lemma 14); (B, w) F@*(fiy .-y fu) (
Lemma 13 and the looseness of ¢); (B, w) F ¢(fy, ..., f,) (by Lemma 14
again). The result may also be proved by a direct induection.

Say that two models MM = (A, w) and N = (B, v) are elementarily
equivalent if M = ¢ iff N F ¢ for each sentence ¢ of #. Then an immediate
consequence of the previous lemma is:

LemMA 16 (D). Suppose that A and B are MV-equivalent and thoi
we W = V. Then theé models (W, w) and (B, w) are elementarily equivalent.

‘What this result showns is that, given D, the only relevance of a structure
for the truth-values of the sentences of .# lies in its set of modal values
MVY. The condition D is essential to the truth of this result. Without
it the sentence (V¢)(Vo)((OToA [1T0) > ¢ =), for example, might
be true in the one model but not the other.

We shall next establish some of the consequences of Automorphism.
The first of these results states that the class of propositions is closed
under the operations of forming existential propositions, negations and
conjunctions or, rather, the class of modal values is closed under the cor-
responding operations.

LeMMA 17 (A). (1) If <U,V>eMVY, then <(V,V)>eMV¥;
() If KU, Vy>eMV* then W—U,V>e MV¥
(iii) If <U,, V.o e MV™ for all i in a non-emply
set I, then {(\ U;y, M V> € MV™ as long as (O V, is non-empty.

tel tel iel

PrOOF: (i) & (ii). Suppose that (U, V> & M V™, Then for some ¢ ¢ A,
mv(e) = U, V). Let B = {¢}. Then it is readily shown that B determines
both 7 and W-—U.

(iii) TFor each i eI, let ¢, € A be such that mo(e;) = (U;, V;>. Let
B = {¢;: i eI}. Then it may be shown that B determines ﬂ U, and

el
that es(B) = () V.

tel

Secondly, it may be shown, with the help of World Actualism, that
world-propositions necessarily exist:

LeMMA 18. (WA, A). For any w, {w} e TS™.

ProOOF: Suppose w € W. Then 4, determines {w}. For suppose that
o is an automorphism fixed on A4, for which a;(w) = ,,, Then %A, = U,.
So by WA, w = v. Since 4,, determines {w}, {{w, es(4,)> e M V‘"1 by A.

4 — Studia Logica 2-3/80
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The above result allows two worlds to be digtinguished in terms of
propositional truth, and not merely in terms of propositional existence.

The final result says that extraneous objectual content can be added
to a proposition without upsetting its truth-conditions:

LeMMA 19 (A). If<U, V>, KU, V"> e MVY and VAV is non-empty,
then (U, VnV'>e MVY

Proor: BSuppose the antecedent. Now (W —U’, V'> € MV by Lemma
17(3ii), <w, V> e MV by Lemma 19(iii), and (W, V> e MV by Lemmsy
17(ii) again. So <U, VNV'> e MV by Lemma 17(iii).

5. A partial axiomatization

It will later turn out that the theory determined by the conditions D,
WA and A is not axiomatizable. In this section, we will present a partial
axiomatization of the theory, one that is fairly natural in itself and will
serve for various working purposes. Each of the axioms is presented in
turn, along with some of its consequences.

In determining these consequences, I will usually assume the strong
completeness of 85 with respect to the possible worlds semantics. That
is, in order to establish 4 F ¢ I shall show, instead, that 4 k ¢. But, of
course, the derivations themselves could equally well have been presented.

Comprehension. This takes the form:

OVe, ... Vo, Ao [[1{To = ¢)A O(HoA ... AHy,))], where g, ..., o, ar
are exactly all the free variables of the formula ¢ and g itself does not
occur free in ¢.

This axiom-scheme says, in regard to a condition ¢, that neces-
sarily for all propositions pg4,..., 0, there is a proposition ¢ which
ig true exactly when g,, ..., ¢, satisfy the condition and existent exactly
when all of ¢, ..., ¢, exist. If the condition ¢ expresses the relation R,
then ¢ may be taken to be the singular proposition to the effect that
01y -y O Satisly R. Alternatively, o may be taken to be the proposition
expressed by the result of substituting rigid names of g,, ..., o, for the
variables of ¢.

In the formulation of the axiom, it is essential that the quantifiers
Vo ... Vg, 30 not be layered with modal operators. For example, the
sentence 1V o, [V e,0 g0 (Lo = To,v To,) A [1(Ho = Eo, A Hp,)]is not.
valid in the intended semantics. To see this intuitively, let ¢, and g, be
two propositions that cannot co-exist (because their individual consti-
tuents cannot co-exist). Then there will be no possibly existing proposi-
tion with the same existence-conditions as the disjunction of g, and g,,
let alone the same truth-conditions. This intuitive proof may then easily
be turned into a formal demonstration.

Note that the axiom-scheme includes both a statement of the truth-
and existence-conditions for o. Thus it is, in the terminology of [9], both
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a principle of internal and external existence. In the formulation of modal
set theory, these two types of principle could be separated since there
was a direct means, in the language, of talking about the constituents
of sets. However, in the absence of any comparable rescources in .2,
it is necessary to combine the two types of principle.

The existence-conditions for ¢ in the axiom may be justified by direct
appear to the cumulation principle. For we may suppose that o is
congtructed from oy, ... ¢, and hence has, as its objectual content, the
union of the objectual contents of g, ...y 0, However, this application
of the principle depends upon the language containing only purely ge-
neral primitives, such as truth. In an extension of the language which
was not of this sort, the existence-condition would need to be appropria-
tely modified.

Let us set up the following abbreviations:

o Ex o for [O(To = Eo)A (He = Kp);

o Neg o for O(To = —To)A O(Ee = Ho);

v Conj ¢, ¢ for [O(Tv = (TorTo))A [(Br = (Ega Eo));
v Disj ¢, 0 for [1(Tt = (TovTo))A O(Er = (Hon Eo)).

Note that ¢ Neg o does not express that ¢ is the negation of g, but merely
that ¢ has the same modal value as the negation of p, and similarly for

the other notions. It may be proved, by direct application of Compre-
hengion, that:

il

LeMMA 20. From the Comprehension scheme may be derived:

(Ve do(o Br o);
OVe 3o(s Neg 0);
OV, o A7z(v Conj o, 0);
Ve, ¢ A7(v Disj o, o).

Repeated applications of Comprehension are often useful in proof. As an
example, let us show that the (compatible) existence-conditions of one
propeésition can be combined with the existence-conditions of another
proposition, without thereby upsetting its truth-conditions.

Lnoia 21. (00)[O (Bea Ho) > O 7(0(T'r = To) A O{Er = (B AEO‘)))}
48 derivable from Comprehension.

Proor: Proceeding semantically, suppose that U verifies Comprehen-
sion and that e, f € 4,. By repeated applications of lemma 20, it may
be shown that there are g,, ¢,, g in 4, such that g, Neg ¢, g, Disj g,, ¢
and g Oonj f, g, are all true in . But then it is easily shown that Ak
O(Tg = Tf) A O1(Bg = (Be Ef)).

The above proof establishes for the object-language what is established
meta-theoretically in Lemma 19.
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COovering. This is the following axiom:
Ve O[Te » Ao(Ton [I(Te = To)).

It says that for any true (but possibly non-existent) proposition there
is a true and existent proposition which necessarily implies it. As such,
it is a kind of actualist demand on propositions. As an example, consider
the proposition ¢ that Socrates does not exist. This is true (but non-
existent) in certain worlds. By Covering, there is, in each such world,

a true but existing proposition ¢ which implies ¢. Indeed, if a,, a,, ... are
all of the existing individuals in the world, we may let ¢ be the proposi-
tion tl}at @y, @y, ... are all of the existing individuals.

Covering implies some other sentences of the same form. Let Covering
(F, B and NE) be the sentences [OVo Ofg > I¢(T0 > o)), for ¢ the
formulas —Tp, Ho and —Hg, respectively. These sentences say that
the falsehood, the existence and the non:-existence of propositions are
“covered” by the existing propositions in any world. Cevering itself may
be dubbed “Covering (7)”. Then:

LevMA 22. Given Compr., Covering (T) provably implies Covering
(F, E and NE).

Proor: From Compr. can be derived [1Vod o [1(To = o), for 9= —T',
Eo or —Ho. The implications then follow.

From the definition of a world-proposition, it follows that a true
world-proposition necessarily implies all true propositions. Given the
covering theorems, this result can be extended to all conditions:

THE‘OREM 23. The sentences Covering (T, F, E and NE) provably
amply (N Wone) > (Lo = @), for any formula ¢ not containing the
variable o free. :

ProOF: It suffices to establish the theorem for the cases in which
¢ = Te, —To, Ho or —Ho; for then it follows that (2, w) F We and
(U, v) F Te imply A, = A,, from which the general result follows.

For ¢(o) in one of these cases, then, suppose that (U, w) k WeAep(f).
By Covering (T) and Lemma 22, there is a g e 4, such that (A, w)
EO(Tg> @(f)). But by the definition of W, (%, w) = O(Te > Ty).
Therefore (U, w) £ 0(Te > ¢(f)), as required.

Note that although General World-Proposition is a scheme, it follows
from a finite number of axioms.

World-Proposition. Recall that this is the axiom [13eWp. It is im-
portant to appreciate that this axiom is independent of Covering and
has, indeed, a different philosophical basis. World-proposition draws
on a form of Platonism according to which there exists a logical product
of all the true existing propositions. Covering, on the other hand, draws
on a form of Actualism according to which no merely possible proposi-
tion can better describe the world than an actual one.
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From Theorem 23 and the logical truth of ([1)[We o Tp], it follows
that () [(WeAe) o [O0(We o ¢)] is derivable from the Covering sen-
tences. Therefore the conditions (i) and (ii) of Lemma 4 in [9] are
satisfied for the theory with Compreliension, World-Proposition and
Covering as axioms. Hence the possible worlds semantics may be repre-
sented within that theory, as explained in Lemma 4, Corollary 5, Lemma 6,
Corollary 7 and Corollary 8 of that paper. ~

We shall not need this representation here, but shall merely use the
following definitions:

IIpp for Jo(Woer OVe O(Wo o o)), where o is not
free in ¢;

Qo for - O Wej

T(p,0) for [O(Te>¢); and

E(o,0) for [O(Te > o).
In order to make the role of variables qualified by @ clear, we shall usually
use a, b, ¢, ... for them, instead of g, 0, 7,.... A more detailed account
of the reduction of possible worlds to propositions may be found in [5],
though the discussion there does not have the benefit cf the general
results in [9].

Conjunctive Closure. We may define when a proposition has the
same truth- and existence-conditions as the conjunction of all (actual)
propositions p which satisfy a certain condition v, by pufting:

a Cong,p for Va[Wa =) (D(Tc = HQ({T(’!/J, e)NE(g, a)) D~T@)j/\
A [](Eq EH@((TW,@)AE(Q, a)) = Eg)))]

Note the use of Wa to secure back-reference to the actual world. The
second conjunct then says that o is true exactly when all of the proposi-
tions which exist and satisfy the condition y in the actual world are true,
and the third conjunct that o exists when 2ll of the above-mentioned pro-
positions exist. One might equally well have used Ja(Waa ...) in place
of Va[Wa = ...] in the above axiom, but it would have then not been
independent of World-Proposition. :

The axiom-scheme of Conjunciive Closure is:

(00) [Ho(o Conj,p)], where o is a variable. distinct from o and not
free in w.

A special case of the above axiom-scheme may be obtained from
Comprehension. This case is obtained by altering the prefix ([1)to [TVey ...
... Yo, and by dropping the third conjunct in the definition of Gonjqi.
The derivation then proceeds by letting ¢ in Comprehension be the for-
mula U@((T v, ) AE(g, a)) = Tg) and by supposing (intuitively) that
a is a true world-proposition. However, as we shall see, there is no Way
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of deriving the full scheme, with arbitrary parameters, from the other
axioms.

It is important to distinguish between the proposition which (in
a given world) is the conjunction of all propositions which satisfy a eon-
dition ¢(g) and the proposition expresses by Ve(y (o) > Tp). Since the
domain of propositions can vary, these propositions may differ in both
their truth- and existence-conditions. For example, if (p) is the condi-
tion 7', then the conjunction (in a given world) is a true world-proposi-
tion, perhaps existing contingently, whereas the other propositions is
2 necessary existent and truth.

Diversity. The final axiom-scheme is Diversity, as in section 2.

Putting all of the axioms together (Comprehension, Covering, World-
-Proposition, Conjunctive Closure and Diversity) gives the theory DV
(D for diversity, V for varying domain). Various results within the full
theory are of interest. Define arbitrarily disjunction, in analogy to arbi-
trary conjunction, by:

o Disj,yp for Va[Wa, - (D(Ta = Zo(T(p, a) A B(g, a) A
ATl A D(E’c EHQ((T(Q/], a)AE (g, a)) > E’g)))]

Then the closure of the actual propositions under arbitrary disjunctions
may be established:

LEMMA 24. () [Fo(c Disj, v)], for o a variable distinct from o
and not free in v, is a theorem of DV.

Proor: Use Conjunctive Closure and the closure under negation
from Comprehension.

Given the closure principles for conjunction and disjunetion, it can
be shown that for any condition there is an actual proposition which
approximates to the satisfaction of the condition from either above or
below:

LEMMA 25. For o o formula in which the distinct variables o and ©
are not free, the following two sentences are theorems of DV:

@) (0) [Fe(O(Teo > w)AVz(O(Tr > p) > O(T7 > To)))]
(i) (O) [3e(0(p > To) AV (O(y = T7) o O(To > T))).

Proor: For (i), apply Conjunective Closure to the formula [(Te > »);
and for (ii), apply Lemma 23 to the formula [O(y o Tp).

From Conjunctive Closure, it may also be shown that for any non-
-empty set of worlds (as given by a condition), there is a smallest exi-
stence-set to contain the given seb:
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LeMuaA 26. For o and v distinet variables not free in ¢, the sentence:
() {(}(p > EG([I((p > Ho)allr (C(p = Br) > O(He > E'c)))]
is a theorem of DV.
Proor: Choose a world at which ¢ is true, and then, within that
world, apply Conjuncive Closure to [J{p o Hp).

It then follows that in any world there is a proposition with maximum
objectual eontent:

LevmMa 27. [O3o Ve[O(Bo o Br) is a theorem of DV.

ProoF: Given the true world-proposition o, apply Lemma 26 to
the case in which ¢ is To.

The world-relative notion of indiscernibility may be defined within
the object-language by putting:

b =, ¢ for (It)(E(r, a) > T(z,b) = T(r, c)).

The indiscernibility eriterion (Theorem 10) for the existence of propo-
sitions may then be derived within the object-language.

LemMa 28. The sentence:

(D) [@a= Zo' (o' ~y oA B¢, @) = ITbITe((Qb A Qe
AT (g, D)Ab =, ) > T(g, 0)))|
i8 a theorem of DV.

Proor: The left-to-right direction is straighforawrd. To establish
the other direction, show first that (D)[Ha,b(Qa/\QbD Zgb(E(gb,a)

A]I(:(Qo ) (T(gb, ¢) = (b =, o))))] is & theorem by letting g, be the con-
junction of all propositions ¢ in a that satisfy the condition T'(o, b).

Then let ¢’ in the lemma be the disjunction of all the propositions g,
for which T'(g, b) holds.

6. Some Meta-Theorems

In this section we shall establish some standard meta-logical results
for the theory DV and its intended semantics. It will be shown that DV
is sound, that its axioms are independent, that the theory DV itself is
not decidable, and that the theory for the intended semantics is not
even axiomatizable.

Soundness. To establish the validity of World-Proposition and Con-

junctive Closure, we need to establish that various defined notions have
their intended meaning.
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Levwma 29, Suppose that U satisfies the condition of lemma 18, wviz.
that {w} e TSS for each w e W. Then:

(1) (W, w)E We iff ts(e) = {w}

(i) (A, w) kLo @) iff (U, w)Eqle) for all e in A;

(i) If (U, v) E We, then (W, w)ET(f,e) off vets(f);

(iv) If A, o)k We, then (U, w)EEH(f,e) iff vees(f);

(V) (U,(w) Ef Conj, w(e, ey ..r ) iff B3(f) = Nfis(e): e e 4,
and (W, w) Fyle,e,...,6,) and es(f) = ({es(e):ee 4,
and (U, w) Fy(e, 61y ..., 6,)}

Proor: Straightforward.

To establish the validity of Comprehension, we also need to. show
that the language & respects automorphisms:

LeMMA 30. Swuppose that a = {a,, ay) is an automorphism on W and
that 4, ..., ¢, are elements of WU. Then:

(U, w) E@lers ...y 6,) Aff (U, ar(w)) Fgas(er), ..., as(e,).

PrOOF: By a straightforward induction of ¢.

THEOREM 31. \(Soundness of DV). The awioms Diversity, World-Pro+
position, Oovering, Conjunctive Closure and Comprehension are true in

any structure which satisfies the conditions of Diversity, Automorphism and
World Actualism.

Proor: The truth of Diversity in structures which satisfy the cor-
responding condition is clear. In structures satisfying 4 and WA, the
truth of World-Proposition follows from lemmas 18 and 29(i), the truth
of Covering from Lemma 18 alone, and the truth of Conjunctive Closure
from lemmas 18, 17(iii) and 29(v). As for Comprehension, choose any
formula ¢ = @(g4, ..., 0,), Structure A, world w in W, and elements
619096, 0f Ay Let V ={oeW: vEgp(e,...,6,)} and B = {¢1,..., €.}
Then B determines V. For let o = {a;, ;> be an automorphism that
is fixed on B and suppose that v € V, i.e. that v F ¢(ey, ..., ¢,). By lemma
30, a,(v) E @ (as(ey), ..., as(6,)); and so, by afixed on B, a;(v) E (e, ..., ,).
But then a,(v) € ¥ and V is determined by B. By the automorphism con-
dition, <V, es(B)> € MV¥. Therefore there is an fe 4 for which mv(f)

= (¥, es(B)> and, giving ¢ the value f, shows that Comprehension is
satisfied. '

Although condition W4 was used in establishing the truth of World-
-Proposition and Conjunctive Closure, its use, in fact, is not essential.
On the other hand, a rather extensive use is made of condition 4 in esta-
blishing the truth of all but the Diversity axioms.

Independence. Tt will be useful, in establishing Independence, to be
able to ignore the Diversity axioms. This is achieved by means of the
following result:
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LeMMA 32. Let U be a structure and B an MV-equivalent structure
which satisfies the Diversity axioms. Then W wverifies World-Proposition or-

Covering or an instance of either Comprehension or Conjunmctive Closure:
just in case B does.

Proor: Since World-Proposition and Covering are identity-free, the-
result for these axioms follows from Lemma 12. For Comprehension,.
let ¢(p04y ..., 0,) be an arbitrary formula, w a member of W, and ¢,, ..., €,
elements of B. By Lemma 14, there is an identity-free formula ¢*(e,, ..., ¢,)
such that:

(1) BEO(plery ..., 6,) = 91, ..., 8,)).

Therefore the statement:

(2) (B, w) FIo[0(To = @l ..., 6,)) A O {Ho = (Heyn ... ABe,))f
is equivalent to the statement:

(3) (B, w) EIe|O(To =9 (ey,...,6,)) A O(Bo = (Heyn ... AHe,))].
But then B will verify Comprehension iff B verifies all identity-free-
ingtances of Comprehension. By Lemma 12, B will verify an identity-free-
instance of Comprehension iff % does, and so the result for Comprehen--
sion is established.

The proof for Conjunctive Closure is similar.

THEOREM 33. The five axioms of DV are independent.

ProoF: Let us establish the independence of each axiom in turn..
By Lemma 32, Diversity need not be considered in establishing the inde-
pendence of the other axioms.

Diversity. Let A = (W, 4,t), where W = {w}, 4, = {¢,f} and ¢
= {{e, w)}. Then it is readily shown that U verifies all of the axioms,,
but Diversity. :

World-Proposition. Let W = (W, A, 1), where A is an atomless set--
-algebra on W, each 4, is A, and ¢ = {V,w): V< W and we V}.
By Proposition 3 of [11], % verifies Comprehension and, given its con--
stant domain, 2 also verifies Covering. Since A is atomless, U trivially
verifies Conjunctive Closure and fails to verify World-Proposition.

Covering. Tet A = (W, 4, 1) be a structure verifying the 7-Criterion
() [e ~y 0> 0 =0) for which W = {1,2,3}, T8, = T8, = {y, {1,2},.
{3}, {1, 2, 3}} and T'S; = #(W). Then it may be shown that ¥ establishes.
the independence of Covering. The only difficult case is Comprehension,.
for which it must be shown that, for e,,...,6,e4, = 4,, (A, 1)
Fo(ey,...,e6,) iff (U, 2)Eee, ..., ).

Comprehension. Let U be the structure (W, 4, 1), where W = {w},,
A, = {e}, and t = { e, w)}.
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Conjunctive Closure. This is the most difficult case. Let A = (W, 4, 1)
be a structure verifying the T'-Criterion for which W = {0,1,2,...},
A, =T8, ={V=W: (1eV &YV is cofinite) or (1 ¢V & V is finite)},
and 4, = T8, = P(W) for all k > 0. It is readily shown that 9 verifies
‘World-Proposition and Closure.

To take care of Comprehension, some preliminary results are required.
Let a, be a permutation on W. Then ¢, induces, in the obvious way,
a permutation e, on #(W). The first result is:

(1) if a; is & permutation for which «;(0) = 0 and a,(1) =1 and
if a, is the permutation on #(W) induced by a,, then {(a;, a,> is an auto-
morphism on the structure L.

Proor: Straightforward.
Say that w, v are indiscernible w.r.f. a subset X of (W) if, for all V e X,
weV iffoeV. Then

2y forVy,..., V, < W, w,v> 1, and w, v indiscernible w.r.t. {V,, ...
vy Vs (Wyw) E@p(Vyy oo, Vo) HE (U, 0) Ep(Vy,y ooy V)

Proor: By induction on ¢. For the case in which ¢(V4, ..., V,)
is of the form Jgy(o, V4, ..., V,), (1) is required. For suppose
w Edoylo, Viy...y V,)). Then w kF (V, Vy, ..., V,) for some V < W. Let
a = {ay, ayy be the permutation which interchanges w and ». By (1)
and Lemma 30, ay(w) = v k p(ax(V), az(V4), ..., a5(V,)). But since w, v
are indiseernible w.r.t. {Vy, ..., V,.}, ay(Vy) =V, for ¢ =1,...,%, and so
o EJdop(o, Vi, .ory V,).

From (2) it follows that:

3y it Vyy...,V,ed,, then the set {we W: wko(V,,..., V,)} is
either finite or co-finite.

Given (3), it may readily be shown that U verifies Comprehension.

Ag for Conjunctive Closure, let ¢ be the formula [J(7T+ > Tp). Then
if the axiom is verified, (%, 0) F 3o (o Conj, (T {1} > Tg)). But, by
Lemma 29(v), this requires that {1} € T'S,, which is not so.

Decidability. There are two results, one for the theory DV itself,
and the other for its intended semanties.
THEOREM 34. The theory DV is undecidable.

Proor: It is readily shown that the first-order theory T of a reflexive
anti-symmetric and transitive relation E is undecidable — indeed, that
it is equivalent in undecidability to full first-order logic. The theory T
can then be embedded in DV. To show this, let:

Ro abbreviate & (WoaVe[l(He > Ho)).

Thus R is true of those propositions that possibly have maximal truth
and objectual content. Given a sentence ¢ of T, let ¢* be the result of
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replacing each atomic formula Rxy in ¢ by E(p, o), i.e. by [1(Fo > EHp),
each identity # = y by ¢ =, 0, and each quantifier 3 « by the relativized
quantifier Xo(RoA ...). It then follows that:

(%) the classical sentence ¢ is a theorem of T'iff ¢* is a theorem of DV,
The proof of the left-to-right direction is straigtforward. To establish
the other direction, suppose that ¢ is not a theorem of 7. Then ¢ is false
for some reflexive and transitive ordering (W, <). Let % = (W, 4, 1)
be a modal structure satisfying Diversity for which MV, = {(U, V):
U,V < W and V contains w and is < -closed, i.e. v € V & u < v implies
» € V}. Then it may be shown that the axioms of DV are verified by ¥,
that ¢* itself is not, and that, consequently, ¢* is not a theorem of MC,

THEOREM 35. The theory P of all structures satisfying conditions D.
WA, and A is not axiomatlizable.

Proor: Let Tt be the second-order theory of a reflexive, anti-gy-
metric and transitive relation B with greatest element. (The quantifi-
cation is over arbitrary sebts and all valid sentences are to be theorems.)
Extend the translation * in the proof of Theorem 34 to sentences ¢ of
T+ by replacing each membership formula € X by [J(Te > To’) and
each set quantifier X by Xpo'. Then it may be shown that:

(f) the sentence ¢ is a theorem of Tt iff $ITp Ho o ¢* is a theorem
of P.

The proof of the left-to-right direction is relatively straightforward. (But
note that the condition (IlpEp is required in order that the quantifiers
2o’ should, in effect, range over all sets of worlds.) The other direction
may be established by the same construction as before.

Pinite Awiomatizability. If the axiom ([1)Fp for Necessary HExigtence
is added to DV, then the resulting system is finitely axiomatizable.
{This follows with the help of Proposition 3 in [4].) It is then natural
to wonder whether the original theory DV is itself finitely axiomatizable.
Some instances of Comprehension and Closure have great deductive power.
For example, from (3o [(To = Vo (o = ¢)) and OVeOde(Te =370
(—ErATo)) can be derived []Elg[](Tg =19, —(—Ho, O30, (—Hoyn ...
...O—Ho,) .. )) forall n =1, 2,.... However. I suspect, although I have
no proof, that the theory DV is not finitely axiomatizable and that,
indeed, neither of the schemes for Comprehension or Conjunctive Closure
can be replaced by finitely many instances in the presence of the other.
It may also be true, though this is a stronger claim, that neither of the
schemes, in the presence of the other, can have its parameters restricted
to a fixed finite number. This would be in contrast to classical (though
not perhaps modal) set theory, in which the use of n-tuples enables one
to manage with one parameter.
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7. Extensions

There are four types of extension to the theory DV that we shalk
congider. The firgt two result from adding propositional abstracts and
quantifiers over sets of propositions to the language. The remaining two-
result from generalising on the comprebension scheme or from adding:
other axioms to the theory. '

Propositional Abstracts. We shall use § as a symbol for propositionak
abstraction. If ¢ is a sentence, §p will denote the proposition expressed
by @. For example, ‘§ Grass is green’ will denofe the proposition that.
grass is green. Given the admission of genuinely singular propositions,.
the application of § to a formula ¢ is not problematic. For given that ¢
expresses a relation, §p will denote, for a given assignment of values,.
the proposition to the effect that those values satisfy the relation. For
example, ‘§ # is mortal’ will express the singular proposition to the effect.
that Socrates is mortal, when Socrates is the value of the variable z..

Propositional, like class, abstracts may not denote or, at least, not
denote an object in the range of the variables, be they actualist or possi-
bilist. Suppose, for example, that ¢ and o are propositions that cannot co-
exist. Then the abstract §(HoA Ho) will not denote a possibly existing
proposition. Such abstracts may be assigned a denotation, but it must
then be a virtual proposition, i.e. one outside of the range of the quan-
tifiers.

Virtual classes may be introduced in the same way. However, the:
reasons for positing virtual objects are less compelling in the case of
propositions than of sets. For the supposition that all class abstracts
denote a real set leads to contradiction, whereas the corresponding sup-
position for propositional abstract leads only to the conclusion that all
propositions necessarily exist.

The possibility that propositional abstracts may not denote or, at
least, not denote a real proposition is of some philosophical interest.
For it has been thought that, with the help of §, any sentential connectives.
C might be eliminated in favour of a predicate ¢ of propositions, with.
c§¢; ... §¢, being used ‘in place of Cg, ...q,. But if the predicates only
apply to real propositions, such an elimination will not, in general, works;
for all abstracts which denote virtual propositions (or not at all) will
have to be treated in some uniform manner. There will be no way, for
example, of distinguishing between the truth of (Hev He) and the fal-
sehood of (HoA Ho) in case ¢ and ¢ cannot co-exist.

In another respect, class and propositional abstracts differ; for whe-
reas the former will not, in general, denote rigidly, the latter will. The
reason for this difference is that the denotation of class abstract {w: ¢}
is determined on the basis of the extension of ¢, which may vary from
world to world, whereas the denotation of a propositional abstract §g
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is determined by the intension of ¢, which remains constant in the diffe-
rent worlds. ,

Let us add the symbol § to our previous modal language . The for-
mation rules are extended in the obvious way, with §p being a term when
@ is @ formula. In particular, iterations of § are allowed, so that §7§Tp,
for example, is a legitimate term.

A theory T with Comprehension and Modal-Oriterion as theorems
may be extended to the new language by adding the following axioms:

i) (O) [T §p = 9l;

(i) (O) [B $p = (Ho,A ... AHo,)], where g4, ..., o, are exactly the
free variable s to occur in g;

(i) ([O) [s =1t =8 =y, t], where either s or # is an abstract.

{In the underlying logie, it should be supposed that each term is a rigid
designator, but not necessarily of a possible. Thus Specification (Vop(g) A
ABt) o @(t) is valid whenever ¢ is a term free for ¢ in ¢(g), but { Bt is
not valid for all terms. In the sequel I shall think semantically, although
a strongly complete logic could easily be provided.) v

By using the translation suggested by the above axioms, it may be
shown that each formula is provably equivalent to one without abstracts
and that the new theory is a conservative extension of the original one
{(i.e. no new theorems without abstracts are provable).

In the manner of Fine [9] or, originally, of Scott [19], any structure
W = (W, 4,t) for the initial theory T may be extended in a natural
way to a structure 8 = (W, B, 4, s) for the new theory (where B serves
as the domain of all objects, virtual and real). With each pair p = (U, V>
for which U, V < W, associate an object o(p) in such a way that:

(a) p g implies o(p) # o(q);

(b) o(p) is the entity ¢ in A if p = mv¥(e), and o(p) ¢ A otherwise.
Let B = {o(p): p = (U, V), and either o(p) € A or (o(p) ¢ A and V = )},
and let s = {<w, e): we W, e e B and w belongs to the first component
of 07%(e)}. In setting up the truth-definition for B, let the denotation of
Pesy ey )y fOT €1,...,6,€4, be of{w e W: (U, w) kg, -, 6,)},
{weW: e, ..., 6,c4,}). It may now be shown that the structure B
verifies the equivalences (i)-(iii) listed above (thereby providing a new
proof of the conservative extension result).

If Modal Criterion is not a theorem of the initial theory, then the
adoption of (ii) and (iil) becomes problematic. The problem with (ii) is not
ity truth, but the requirement, imposed by the Specification scheme
{Yo @(0) A Ei) > ¢(t), that all existents fall within the range of the quan-
tifier. All that Comprehension asserts is the existence of a proposition
-with the same modal value as §p, but not the existence of §p itself. Howe-
ver, if the variables are supposed to range over all propositions or if §p
is merely supposed to denote one of the propositions with a given modal
value, then this problem will not arise.
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The problem with (iii) is more serious; for in the absence of Modal
Criterion, it is not clear what to put in its place. Indeed, an adequate
solution requires a detailed account of the identity of propositions. On
certain structuralist views, it may be possible to give a reduction for
identities between abstracts. For example, if propositional identity is
tied to sentential structure, we might adopt the following reductive
theses:

(iv) (0O) [(§¢g =8y) = L, if ¢ and p are formulas which do not
only differ in their free variables;

(v)y (O) @8y =§v)= (0, = 01A ... Vg, = 0,), Where ¢ and yp only differ

in their free variables and where ¢4, ..., g, and oy, ..., 0, are the free
variables of ¢ and y respectively in their order of ocenrrence (countaing
each distinet occurrence separately).
However, even in these more favourable cases, it does not seem possible
to give a reduction for identities of the form p = §p. Such reductions
would seem to require the introduction of a vocabulary for deseribing
the structure of an arbitrary proposition.

Although elimination of § cannot be effected in many of these systems,
it is still possible to prove conservative extension results by semantical
methods. Let us illustrate in the case of a theory with Diversity and
Comprehension as axioms. Let 9 = (W, 4,t) be a countable structure
for such a theory, and let ¥, be the result of enriching the original lan-
guage % with the objects of 4 as constants. With each sentence ¢ of
£ ,, associate an object o(p) in such a way that:

(@) @ # v implies o(gp) #* o(y);

(b) o(p) is an entity e in 4 such that is(e) = {we W: (A, w) F ¢}
and es(e) = {w e W: all objects of 4 in ¢ belong to w} if there is such
an entity and o(p) ¢ A otherwise;

(¢) the range of o contains 4.

Let B be the structure (W, B, 4, s) in which B = {0(¢): ¢ a sentence
of #, and s = {{w,e): weW, eecB and (U, w) ko (e)}. In setting
up the truth-definition for B, let the denotation of §p, for ¢ a sentence
of #Z,, be o(p). Then it may be shown that B verifies the original theory
and, in addition, the axioms (i), (ii) and (iv) listed above.

Seis of Propositions. The presence of Comprehension and World-
Proposition somewhat mar the simplicity and elegance of our system.
However, following the suggestion of Fine [5], p. 121, the use of these
axioms may be avoided by introducing quantification over sets of pro-
positions. In order for the theory to reamin one-sorted, a new style of
variable #, ¥, 2..., ranging indifferently over propositions and sets of
propositions is required. In addition, there are two new predicates:
a monadic predicate § for being a set of propositions; and a dyadic pre-
dicate for membership. Let us use:’

Py for —8ex.
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Then given the intended range of the wvariables, P is the predicate for
being a proposition. The new language will be called .#°. ‘

We shall use g, 0, 7, ... for those variables which are relativized (in
the usual way) to propositions, and X, Y, Z, ... for those variables which
are relativized, to sets. We shall also suppose that the language contains.
both possibilist and actualist quantifiers as primitive. The axioms of
the theory (to be dubbed DV?) are then Covering along with:

Comprehension®. 0V @y, ..., Vo, 36| [1(To= @) A [1(Bo=(Bry, A ... A

A Ew,))|, where ¢ is a formula of £°, &, ..., @, are exactly the free variables
of ¢, and o itself does not occur free in ¢;

Type () [# ey = (PxASy)]

Rigidity (0O0) [S# > O8]

(O) ey > Or eyl
Fzistence (O [EX = IIp(p € X o Hp)]
Abstraction (0O) 3XVo(0 e X=¢), for g any formula of .#° in which
X is not free;

Bxtensionality. OVIVY (X =Y =Vo(pe X =9 e Y)).

If possibilist quantifiers are not used, then an equivalent system can
be obtained by replacing the Existence axiom with the two axioms (J)
[EX > (o€ X > Bo)land () VX |[Vo e X[O(Te » Ho) o> O(Te o EX))].
I shall not give an exact statement or proof of the result, but shall merely
refer the reader to the proof of an analogous result in Theorem 3(ii) of
91

The above axiom system is very natural and, as we shall later show
(Corollary 38), both World-Proposition and COonjunctive Closure are
derivable from it. From this point of view, then, the presence of these
axioms in DV arise from certain inadequacies in the langauge %,

. Pseudo-Classes. The effect of some quantification over sets of pro-
positions can be introduced into DV either by means of class abstracts.
or, more directly, by means of rigid conditions or what I shall call pseudo-
classes. Their introduction then allows Conjunctive Closure to be ab-
sorbed into Comprehension. To understand what pseudo-classes are,
suppose that ¢ is a formula of .#° in which all set variables are free and
occur in atomic contexts of the form p € X. Fix on a variable a that
does not occur in ¢, and let ¢’ be the result of replacing the atomic for-
mulas p € X in ¢ by formulas of the form T(y, a)A E(g, a), where the
free variables of y, other than g, do not already oceur in ¢. Then each
formula o, as used above, is a pseudo-class, the variable g its argu-
ment, and the free variables of y, other than p, its parameters. The for-
mulas ¢’ themselves are said to be regular in a. (But note: the pseudo-classes.
and their parameters may depend upon the underlying formula ¢ of #*.).



194 K. Fine

The extension of Comprehension and Conjunctive Closure may now
be stated:

General ~ Comprehension: Ve, [1... OVe, OVaYo, ... g,ﬁo‘[Wa
1

> (D(TGE(p’)A O (E’o‘z (E'Ql/\ eoo ABo, N N IIT ((T (vi(7:), ) A B (7, r))
i=1

o Er,i))))], where oy, ..., 0y, 01y..-5 0, are exactly the free variables

of ¢, each distinet from the two variables ¢ and 7, and where ¢
is a formula regular in a in which y,, ..., ¢, are the pseudo-classes with
respective arguments 7, ..., 7; and, collectively, parameters o, ..., g,.

Let DV* be the result of replacing Comprehension and Conjunctive
Closure in DV with General Comprehension. Then it readily shown that:

THEOREM 36. All theorems of DV are also theorems of DV™.

ProoF: QComprehension is obtained by supposing that ¢’ contains
no pseudo-classes, and Closure is obtained by letting ¢ be [lg(p € X o T'o)
and ¢ be Io((T(y, a)AE(e, a)) > T).

I suspect that the converse of Theorem 36 is not true and, indeed,
that DV™* cannot be obtained by adding finitely many axioms to DV.
Let y be the sentence Vo[ Jdadr[Wan D(Tv: =g (y > o' (OTe'A
A O(Tg’ > Tg)))], where is the formula T(OTeA [1(Te = To) AV, ((O
OTo A (T, > To) o [1(Te = Tay)), a) AH(g, a). Then I conjecture, in
particular, that y is not a theorem of DV.

Let DV® — be the result of requiring of the formulas in the abstraction
and comprehension schemes of DV?® that all of the variable-occurrences
to the right of ¢ be free. (No internal quantification over sets.) To each
formula ¢ of ¥ may be associated a formula ¢° of #° in the obvious way,
be relativizing all bound variables to propositions. It may now be shown
that:

THEOREM 37. A sentence ¢ of & is a theorem of DV™ iff ¢° is a theorem
of DV*—.

ProOF: =. Proceeding semantically (via the completeness proof for
modal logice), it must be shown that any structure U for DV® — verifies
¢* for each axiom of DV™*. If ¢ is World-Proposition, then it must be
shown, for each world w of U, that (A, w) F JpWpe. By (the verification
of) Abstraction, there is a set f in 4,, such that (W, w) Fe ef = Te for
each proposition ¢ in A4,. By Comprehension®, there is a proposition g
in 4, such that % k [I(Ly = Ig(e ef > Tg)). By the rigidity and exi-
stence axioms, (A, v) k ITo(g ef > Tp)iff forall ¢ € 4,,, (A, v) k£ Te when-
ever (U, w) k Te. But then (A, w) =k Wy.
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For (General Comprehension, the crucial point is to show that for
any formula y¢(a, ¢4, ..., 6;) of #, world w, and propositions e, ..., ¢, in
A, there is a set f in U such that U kFgef iff wF y(g, e, ..., ¢,)A Hy,
and fe 4, iff g e 4, for all ¢ such that w E ¢(g, ey, ..., &) A Eg. But the
existence of such a ¢ follows from the set-theoretic axioms. '

<. Suppose ¢ is not a theorem of DV™. Then there is a structure
A = (W, 4, 1) for DV* which fails to verify ¢p. We may suppose, without
loss of generality, that the members of A are not sets. Say that a subset
B of A is definable if for some formula ¢ (o) of £, and world w, B = {e e d,:
(U, w) Ep(e)}. Now define a structure B for the extended language £° in
the obvious way by letting the worlds be W, the propositions in w be
A, the sets in w be the definable sets B < 4,,, and membership be stan-
dard. Then it may be shown that B is a structure for DV*® — which fails
to verify ¢°. In order to verify the restricted forms of Comprehension® and
Abstraction, it is necessary to use pseudo-classes in place of sets.

From theorems 36 and 37, it follows that:

CorROLLARY 38. [Hwery theorem of DV is .a theorem of DV®.

I conjecture that the full system DV?® is not finitely axiomatizable
relative to DV*® — and that it is not a conservative extension of DC*.
In the light of such conjectures, it should be of some interest to gauge
the effects of placing different restrictions on the formula ¢ in the schemes
of Comprehengion® and Abstraction.

Other Huxtensions. Further axioms may be added to DV to reflect
various philosophic viewpoints. Rather than discuss such extensions
systematically, let me merely give some examples. First, even on an
objectualist conception of propositions, it might be supposed that each
proposition was necessarily equivalent to a purely general one. The sen-
tence [OVp3o(o ~; oA [1Ho) should then be adopted as an axiom. Secon-
dly, various assumptions might be made about the cardinality of pro-
positions. For example, if it is supposed that there are infinitely many
possible worlds (or, equivalently, infinitely many possibly existing pro-
positions), then the sentence (g, ... T A ¢ # o) should be

1<i<i<n
adopted as an axiom for » =1, 2, .... Thirdly, ac]tualist doctrines give
rise to axioms that go beyond Covering. These will be considered towards
the end of the next section. Finally, the use of sets along with structu-
ralist news on propositions leads to various Russel-type paradoxes. Their so-
lution, though, is a large topic and shall not be considered.

8. Truth and actmalism

According to one form of actualism, mere possibles do not have any
genuine properties and do not enter into any genuine relations, either
among themselves or with actuals. Since mere possibles do have properties
{being non-actual, for example) and do enter into relations, it is natural

7 — Studia Logica 2-3/80
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for the actualist of the sort described to attempt to explain these pro-
perties and relations in terms of the genuine ones, There are various
forms such explanation may take, but perhaps the simplest is through
definition. To take a typical case, a property of mere possibles is defined
in terms of the genuine properties that the possibles would have were
they actual.

The request for such explanation leads, then, to the demand that
all relations should be defined in terms of those that are actualist, i.e.
to those that only hold, in each possible world, of the actuals of that
world. A more general discussion of this demand is given in [10].
In application to the present paper, it means that the truth-property
of propositions should be defined in terms of actualist relations alone.

Given a relation R, let R* be its actualist restriction, i.e. that actualist
relation which agrees with E on the actuals of each possible world. Then
it is natural to attempt to define R* in terms of E. Sometimes this can
easily be done. For example, # €y can be defined as O (x et y). (See
p- 133 of [5].) However, no definition of 7 can be given in terms of T+
alone. ,

To make this result precise, let #* be the language with the two
predicates T and T7. Extend the truth-definition for a propositionak
structure % = (W, 4, ) to the language £+ by adding the clause:

wkTte iff <(w,e>et and ecd,.

We may mark the distinction between the two truth-predicates by saying
that a proposition may be true of (T) or true in (T) a world. Thus the
proposition that Socrates does not exist is true of worlds in which Socrates
does not exist, but not true in such worlds.

Say that T is definable in the structure U if there is a formula ¢(p)
which lacks 7' and for which % F ([1) [Te = vw(0)]. Then it may be shown
that:

THEOREM 39. If ithe sentence ¢* = (O)[((1(T7e =T o)A (He
= Ea)) > [(Tp = Ta)] 18 false in the structure W, then T is not definable
in .

Proor: If ¢* is false in U, there are ¢, fe.4 and w ¢ W for which
Uk O(TTe =T f)A [OI(Bea BEfyand yet (U, w) b —(Te = Tf). It is readily
shown by an appropriate induction that (U, w) k ¢(e) = ¢(f) for each
T-free formula ¢(p) of #*. But then if (*) is satistied, (U, w) k Te = Tf —
which is a contradiction. Although the above result has only been stated
for the predicate T of £*, it admits of an obvious extension to an arbitrary
predicate of any language.

For structures verifying Comprehension, a particularly simple necessary
and sufficient condition for the definability of 7 may be given:
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THEOREM 40. Suppose that W verifies Comprehension (more exactly,
its instances (Vo do(0(To = —Ho) A [1(Ho = Hg)) and [OVo 30([3
(To = (Ben —Eg)) A O(Bo = Eg)). Then T is definable in W iff Ak OV
OHe.

Proor: The right-to-left direction is trivial, since then T'p may be
defined as Tp. Now suppose that A I;é [OVe OFp, so that for some
weWandged,w [# Hg. By W's verifying the two instances of Com-
prehension, there are ¢ and f in A for which U F [J(Te = —Ey), O(Tf
= (Egn —Ey)), 0l(Be = Byg), [1(Ef = Eg). Now w k Te and w F Tf, and
80 ¢ and f are distinet. Therefore they may be used to show that the sen-
tence ¢* of theorem 39 is false in 9.

In the light of this result, it would be of some interest to determine
the T*-fragments of the various systems which have Comprehension
but not the Barcan formula.

Although T cannot be defined from T alone, it can be defined with
the help of a new primitive for actualist strict implication, as long as
the underlying modal structure is subject to certain actualist eonstraints.
- Let #* be the language which contrains T+ and the two-place predicate ="
as primitives. The predicate = is subject to the following clause in the
truth-definition:

wke="f iff e fed, and Is(e) < ts(f).

Note that the application of the predicate requires the existence of e
and f, but the inclusion of their non-existential truth sets. The relation
¢="0 can be defined, in terms of T, as Eon HoA [1{(To > To). But the
definition EoaEBoA [1(TTe o T70) is clearly inadequate, and it will
later follow from the positive result that no other definition of =T in
terms of 7+ will do. .

Since the definition of 7 in the language .£* is rather complicated,
let us, first of all, explain the underlying idea. Suppose that the proposi-
tion ¢ does not exist in the world w. Now ¢ exists in some world v. So ¢
will be constructed from certain individuals e, @s, ..., by, by, ..., Where
some of them, a,, a,, ..., exist in both w and », while the others, by, b,, ..
exist in v alone. It is then plausible to suppose that there is a proposi-
tion = which is constructed from a,, ., ... alone, which strictly implies ¢
when conjoined with the assumption that by, b,, ... do not exist, and
which is true in w if ¢ is. Given that this is so, the non-existential truth
of o may be defined in terms of the existential truth of =.

To convey this idea in the language #*, we must eliminate the refe-
rence to individuals. This requires some preliminary definitions, which
are set out below. Each definition is accompanied by a statement of the
relevant semantic facts concerning the defined notion. It should be as-
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sumed, in order to establish these facts, that the given structure U verifies
all of the axioms of the system DV.

The original definition of world-proposition used 7. An almost equi-
valent definition in 7% is:

D1 Wto for TtoaVe(Tte > p=7 c)

Tl (A, w)FWe iff ecd, and is(e) = {w}.

F1' Uk O3e(Who).

There is no direct way of saying in the langnage #* that a proposi-
tion ¢ and sentence ¢ have the same truth-set. To some extent, the same
facts may be expressed by using the notions of a minimum and of a maxi-
mum proposition: .

D2 (o is the minimum proposition satisfying the condition ¢
= @(0y 01, -+, 0n)): ¢ min, ¢ for Boag(s, e1y..., e,)AVe(p > ¢=T0),
where o is distinet from ¢ and is free for g in ¢.

F2 (U, w) Feminetp'(g,el,._ ,en)lffeeAw,(‘lI w) E (e, el, el e,,;),
and for all feA for which (U, w) F o(f, €1, ..., 6,), ts(e) < ts(f).

D3 (o‘ is the maximum proposition satlsfymg the condition ¢

= @(Q) 01y -+; 0a)): 0 max, ¢ for Hong(o, g1, ..., 0a)AVe(p 2 67 0),
where ¢ is distinet from ¢ and is free for ¢ in ¢.

F3 (A, w) ke max, (o, 6:1,...,6,) iff e ed,, (Ql,w) Fole, ey ..
.+ &), and, for all f e 4, for which (U, w) F @(f, 1, ..., &,), 15(e) < s(f).

‘With the help of max, the relation and property of belng an existential
proposition can be defined:

D4 (o an existential proposition of ¢): ¢ Hut o for HoaEon [I(Hp
o Ho)ap max,[1(Ho o Tr).

Fd (N, w) ke Bot fiff ¢, fed, and ts(¢) = es(e) = es(f).

F4' A, E OVe Fo(o Erto).

D5 (o is an existential proposition): Hx'e for Jo(e Ha'to).

The conjunction and negation of propositions are not directly defi-
nable in #*. However, we may give lattice-theoretic definitions of when
a conjunctive proposition implies and a megative proposition is implied.

D6 o, 0=F7 for BEoAaBonBrAVI[((=Tonl= o) D {=T7].
F5 (A, w) Fe, f=>Tg iff ¢,f, g€ A, and is(e)nis(f) < ts(g)-
D7  ¢=7 Fo for HoaBoaVr(p, 0="1).

(In this definition, the group of symbols ' ="F’ must, of course, be taken
a8 a whole.)

F7T (A, w) ke=TFf iff ¢, f e 4, and is(e)nis(f) = y.
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We shall need a rather special notion, which expresses that ois true
just when all of the actual propositions which do not exist in a specified
world do not, in faet, exist:

D8  o¢Da (o is a distingnishing proposition for a) for o‘min,Vg({Ew‘Lg A
A O(T e > —H)) = 7:=>+F@).

F7  Given that (U, w) E Wf, then (U, w) k eDf iff e e 4, and fs(e)
={ueW: for all ge 4,—4,, g ¢ 4,}.

Fr' Ak OVa(Wa o Ode(o Da)).

(Note: in the proof, Conjunctive Closure must be applied to the condition
Bxton 0(Tta > —Hp). Since a may not exist in the world in question,
there is no obvious way of using Comprehension instead.)

The final definition is of truth:

D9 Top for 3a[W+wA<>ab(W+bAEQVHO‘(O‘D“/\ET(O‘, T=ToA
AT re = T+T))))].
The adequaecy of the definition may now be proved:

THEOREM 41. Suppose that A is a structure for the system DV and
verifies, in addition, the sentence:

¢t = () ][(OWran O(TTa > Te)ABereDa) = Av(o, t=ToA [
(T*a > T*r))].

Then (W, w) kT iff weis(e).

Proor: =. Suppose (A, w) = T.. Then By F1, there is & v in W,
an e, in 4, and e,, f, g in 4, such that is(e) = {w}, is(e,) = {o}, (A, v}
kfDe,Af, g="er O(T"e, > Ttg). Since (A, v) F O(LTe, > TTg)w € ts(g)
by Fi. Also wets(f) by F8. But (U,v)Ef,g=Te, and therefore
w e1s(e).

<. Suppose that w eis(e). By F1’, there is an e, e 4, for which
w E Wte,. Suppose that ¢ e 4,. Then by F1 again, there is an e, e 4,
for which v £ Wte,A Ee. By F8’, there is an fe 4, for which v k f Da.
Now v E OWre, A [1(The, > Te)nEenf Da. So by the verification of
¢4, v FAz(f, v=" en (T"e, > T¥7)). But then w k Te.

The above proof of the definability of T rests upon U verifying certain
axioms of DV, which themselves contain 7. It is not clear, though I have
no proof, whether the same or otherwise adequate conditions on U can
be formulated without the aid of T. Take, as an example, the sentence
[]VaVrElg(D(Tg = (TO'/\T’L‘))) expressing closure under conjunction. In
the language £* we can say [OVoVrde(e min, ({=ToA{="7)). But
this merely asserts the existence of a minimum implier of two proposi-
tions, which may not have the same truth-conditions as their conjunction.
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The sentence ¢* is, of course, ad hoe, and so it is of some interest
that it is equivalent to the following more natural postulate:

Actualist Distinction. ([1) [(QaAQb/\Qc/\E(g, a)nT {0, b)n —T(o, ) A
ATVo ((E(o, a) A B(c, b)) = (B(c, a) A B (s, c)))) > OAv(B(r, a)AB(z, b)A
AT (z,0)n =T (7, c)).

THEOREM 42. In DV, AD is provably equivalent to ¢

PRrROOF: =. Proceeding semantically, suppose that w F Wte, and
v E [1(T"e, > Te)AKenfDe,. By Conjunctive Closure, there is a g€ 4,
for which o kg conj, (E(e, e,)vT(e,e,). Clearly, vF [1(T"e, > T*g).
Now suppose v-E f, g="e. Then by F6, for some u, « cis(f)nis(g) but
u ¢ ts(¢). Now by ¥8, 4,n4, < A,n4,,. If the inclusion is proper, there
is an h in 4,n4,—A4, and so, by Comprehension, there is a ¢’ (with
ts(g’) = es(g’) = es(h)) in A,n4,, for which v k Tg¢’ and u k T¢'. If the
inclusion is improper, then by AD, there is again a g’ in 4,n4,, for which
v ETqg' and w F Tg’. But in either case there is a conflict with the defining
property of. g.

<. Suppose that e e 4, veis(e), u ¢is(e) and A, N4, = A, NA4,.
By F1’, there is an ¢, € 4, for which v £ Wt e, and, by F§’, there is an f
in A4, for which w F f De,. By ¢“, there is a g in 4,, for which w E f,
g="e A[1(T"e, > T%g). From F8, it follows that w F f. Since u ¢ is(e)
and w Ff, g=>"e, u ¢1s(g9) by F5. But since w F [1(Te, o TTyg), v els(g)
and g € 4, by F1, and the proof is complete.

The assumption AD is itself quite plausible. It says that if two worlds
can be externally distinguished, i.e. by a proposition that exists in a third
or external world, then they may be internally distinguished, i.e. by
a proposition which exigts in the external world and also in one of the
two given worlds. The assumption 4D only deals with the case in which
the two worlds share the same propositions from the external world.
But the other cases are easily taken care of, for then a proposition e
exists in the external world but in only one of the two given worlds,
and so the distingumishing proposition can be to the effect that e exists.

The truth of AD can be derived from properties of the underlying
individual structure. Let 4D* be the condition:

it @ =<a,,ay, is an automorphism of J for which o;(v) = u and
J < I a set for which I,nJ = I,nJ = ¢, then there is an automorphism
B = (B4, B> such that a,|I, = ,|I,, B, is fixed on J, and B,(v) = .
It can then be shown that: ’

THEOREM 43. Given that I underlies % and satisfies AD*, W wveri-
fies AD.

PRrOOF: Suppose that ¢ € 4,,, vets(e) and w¢is(e), and that 4,
N4, = A4,n4,. Tt follows that I,nI, = I,nI,. For suppose otherwise,
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say 4 e L,nI,—I,nI,. Let U = {t e W: i e I,}. Then {i} determines U.
So for some fed, mv(f) =<U, U). Bub then feAd,nd,—4,n4,,
contrary to supposition.

Let V= {t e W: a,(v) = ¢ for some automorphism {o;, a,> of I which
is fixed on I,nI, = I,,nI,}. Clearly, v € V. However, w ¢ V. For suppose
otherwise. Then for some automorphism <ay, a,> fixed on I,,nI,, a;(v) = u.
Let J = I,—I,nI,. By AD* there is an automorphism g = <, fo>
of I such that a,|l, = B,|1,, B, is fixed on J and B,(v) = u. Since o, is
tixed on I,,nI,, B, is fixed on I,,. Now ¢ € 4,,; 80 B,(¢) = e; and so By{es(e)
= ¢s(e). But then either both or neither of v and % are members of es(e),
contrary to supposition.

Clearly, V is determined by I,NI,. Therefore there is an f in A such
that ts(f) = V and es(f) = es([,N],) = {w, v}.

The condition AD* itself follows from the Strong Extendibility Con-
dition on page 156 of [6]. It is thus reassuring that the actualist’s demands
on the definition of truth should only have required postulates that
were independently plausible from the actualist point of view. A charac-
teristic case in which Strong Extendibility holds is when Extendibility
and the Falsehood Prineiple hold. If Extendibility holds, then whenever
there is a proposition e of w which distinguishes between v and w, there
is a non-modal one, i.e. one with the same truth-set as a non-modal gen-
tence ¢ of the infinitary language with constants from I,. Given that
the Falsehood Principle holds, there is then a simple and uniform way
of obtaining an internal distinguishing proposition f. For suppose that ¢
is of the form ¢ (i, 4y, ...), where 4, 4,, ... are the individuals of I,, which
appear in ¢. Let p* be the result of replacing each atomic sentence of g
in which one of the individuals belongs to I, —I, by a standard necessary
falsehood, say Jo(—po = g). Then one may let f be the proposition ex-
pressed by ¢*.

Theorem 41 is rather particular. It states that truth (7) is definable
from T and =% when the underlying structure satisfies some rather
special conditions. It would be of interest to have more general informa-
tion on which combinations of primitive and conditions permit a defini-
tion of T.
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