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Priority No.

Investigation of mechinability of titanium-base alloys.
Object:

The object is to investigate the machinability of commercially pure
titanium and three alloys of titanium.

Summary:

Tensile tests and Brinell Hardness tests were made on five of the six
machinability work materials. Tensile test data are plotted as stress
versus natural strain. Hardness tests over a range of loads provides
Meyer exponents. The materials tested were SAE 1045 hot-rolled steel,
type 304 stainless steel, and titanium grades Ti 75A, RC 130B, and

Ti 150A.
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MECHANICAL PROPERTIES OF MACHINABILITY

PROGRAM WORK MATERTALS

Four alloys of titanium (one alloy not yet specified), hot-rolled
SAE 1045 steel, and type 304 stainless steel were selected as work materials
to be studied in the machinability investigation. Tensile specimens have
been made and tested and Brinell hardness tests run to provide supporting
information on the materials as machined. The results of these tests are
presented below. In addition to these mechanical property tests, work is
under way to determine tension impact and combined compression and torsion
properties. The latter will be presented in a later report.

Tensile Properties

Standard 0.505-inch diameter tensile specimens were prepared and
tested in a 60,000-pound Baldwin Tate Emery Universal Testing Machine. The
titanium specimens were prepared from l-inch diameter bars in the "as-
received" condition. The SAE 1045 specimens were prepared from the center
of 4-inch diameter hot-rolled bars. The type 304 stainless specimens were
prepared from the center of 3-inch diameter hot-rolled bars. Three speci-
mens were tested of each material except in the case of the stainless, for
which only two were tested.

The results of the tensile tests are given in Table I. The data
in Table I are self-explanatory. Substantial anisotropy was observed in the
RC-130B and the Ti-150A titanium alloys, as manifested in elliptical frac-
tures with the major axis approximately one-third greater than the minor
axis.

Curves of average stress versus average strain are shown in
Figures 1 to 14 inclusive for each of the fourteen tensile tests. All three
titanium alloys exhibited a very sharp yield point followed by a slight
yield point elongation.
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Composite results from all specimens for each material are shown
plotted as average stress versus natural strain (i.e., the logarithm of one
plus the engineering strain) in the five curves of Figures 15 to 19 inclusive.
There appears to be a good correlation between the slopes of these curves near
fracture with the steepness of the curves of tool life versus side rake angle
(Figure 11, Report No. 1) as the side rake angle is increased toward the
optimum. The type 304 stainless steel shows the sharpest optimum, while the
SAE 1045 steel shows the least. There is a theoretical basis for this cor-
relation, providing it can be demonstrated that the shear strain is of the
same magnitude in the chip formation and near the fracture of the tensile
test.

Brinell Hardness Tests

Brinell hardness tests were made over a range of loads on all five
work materials. The results are summarized in Table IT.

TABLE IT

BHN AND MEYER EXPONENTS

Meyer Exponent,

Work Material BHN* ¥
Ti 75A 217 2.h1
RC 130B 331 2.57
Ti 150A 302 2.27
304 8.8, 17k 2.32
SAE 1045 201 2.25

*  3000-kg load.
**¥ Toad = adll,

Hardness values are reported in the second column for a 3000-kg testing load.
The third column gives the Meyer exponents as used in the formula:
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Load = ad®,
where d = diameter of impression in m.m.
a = proportionality constant determined by material and

load units.
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TENSILE TEST for Ti-75A
(Average Stress vs Average Strain)
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TENSILE TEST for Ti-150A
(Average Stress vs Average Strain)
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TENSILE TEST for Ti-IS0A

(Average Stress vs Average Strain)
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TENSILE TEST for TI. 75A
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280

r
n
H
(@)

200

000 PSI —

- 160

120

AVERAGE STRESS,
(0 0)
o

40

.050 100 150 200
£n— NORMAL  STRAIN,

Easton {2

.250

300

Fig. I



TENSILE TEST for RC. 130B
(Average Stress vs Average Strain)
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TENSILE TEST for SAE. 1045
(Average Stress vs Average Strain)
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